Skip to main content
Top
Published in: The Cerebellum 6/2014

01-12-2014 | Review

Injury of the Developing Cerebellum: A Brief Review of the Effects of Endotoxin and Asphyxial Challenges in the Late Gestation Sheep Fetus

Authors: Lisa C. Hutton, Edwin Yan, Tamara Yawno, Margie Castillo-Melendez, Jon J. Hirst, David W. Walker

Published in: The Cerebellum | Issue 6/2014

Login to get access

Abstract

The vulnerability of the fetal and newborn brain to events in utero or at birth that cause damage arising from perturbations of cerebral blood flow and metabolism, such as the accumulation of free radicals and excitatory transmitters to neurotoxic levels, has received considerable attention over the last few decades. Attention has usually been on the damage to cerebral structures, particularly, periventricular white matter. The rapid growth of the cerebellum in the latter half of fetal life in species with long gestations, such as the human and sheep, suggests that this may be a particularly important time for the development of cerebellar structure and function. In this short review, we summarize data from recent studies with fetal sheep showing that the developing cerebellum is particularly sensitive to infectious processes, chronic hypoxia and asphyxia. The data demonstrates that the cerebellum should be further studied in insults of this nature as it responds differently to the remainder of the brain. Damage to this region of the brain has implications not only for the development of motor control and posture, but also for higher cognitive processes and the subsequent development of complex behaviours, such as learning, memory and attention.
Literature
1.
go back to reference Allen G, Courchesne E. The cerebellum and non-motor function: clinical implications. Mol Psychiatry. 1998;3(3):207–10.PubMedCrossRef Allen G, Courchesne E. The cerebellum and non-motor function: clinical implications. Mol Psychiatry. 1998;3(3):207–10.PubMedCrossRef
2.
go back to reference Allen G, Muller RA, Courchesne E. Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56(4):269–78.PubMedCrossRef Allen G, Muller RA, Courchesne E. Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56(4):269–78.PubMedCrossRef
3.
go back to reference Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70(6):473–507.PubMedCrossRef Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70(6):473–507.PubMedCrossRef
4.
go back to reference Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef
5.
go back to reference Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.PubMedCrossRef Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.PubMedCrossRef
6.
go back to reference Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol. 1998;57(7):645–52.PubMedCrossRef Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol. 1998;57(7):645–52.PubMedCrossRef
7.
go back to reference Kern JK. Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 2003;25(6):377–82.PubMedCrossRef Kern JK. Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 2003;25(6):377–82.PubMedCrossRef
8.
go back to reference Abraham H, Tornoczky T, Kosztolanyi G, Seress L. Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci. 2001;19(1):53–62.PubMedCrossRef Abraham H, Tornoczky T, Kosztolanyi G, Seress L. Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci. 2001;19(1):53–62.PubMedCrossRef
9.
go back to reference Rakic P, Sidman RL. Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol. 1970;139(4):473–500.PubMedCrossRef Rakic P, Sidman RL. Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol. 1970;139(4):473–500.PubMedCrossRef
10.
go back to reference Bodensteiner JB, Johnsen SD. Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. J Child Neurol. 2005;20(2):139–42.PubMedCrossRef Bodensteiner JB, Johnsen SD. Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. J Child Neurol. 2005;20(2):139–42.PubMedCrossRef
11.
go back to reference Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedCrossRef Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedCrossRef
12.
go back to reference Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–95.PubMedCrossRef Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–95.PubMedCrossRef
13.
go back to reference Johnsen SD, Bodensteiner JB, Lotze TE. Frequency and nature of cerebellar injury in the extremely premature survivor with cerebral palsy. J Child Neurol. 2005;20(1):60–4.PubMedCrossRef Johnsen SD, Bodensteiner JB, Lotze TE. Frequency and nature of cerebellar injury in the extremely premature survivor with cerebral palsy. J Child Neurol. 2005;20(1):60–4.PubMedCrossRef
14.
go back to reference Mercuri E, He J, Curati WL, Dubowitz LM, Cowan FM, Bydder GM. Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol. 1997;27(2):139–43.PubMedCrossRef Mercuri E, He J, Curati WL, Dubowitz LM, Cowan FM, Bydder GM. Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol. 1997;27(2):139–43.PubMedCrossRef
15.
go back to reference Le Strange E, Saeed N, Cowan FM, Edwards AD, Rutherford MA. MR imaging quantification of cerebellar growth following hypoxic-ischemic injury to the neonatal brain. AJNR Am J Neuroradiol. 2004;25(3):463–8.PubMed Le Strange E, Saeed N, Cowan FM, Edwards AD, Rutherford MA. MR imaging quantification of cerebellar growth following hypoxic-ischemic injury to the neonatal brain. AJNR Am J Neuroradiol. 2004;25(3):463–8.PubMed
16.
go back to reference Golja AM, Estroff JA, Robertson RL. Fetal imaging of central nervous system abnormalities. Neuroimaging Clin N Am. 2004;14(2):293–306. viii.PubMedCrossRef Golja AM, Estroff JA, Robertson RL. Fetal imaging of central nervous system abnormalities. Neuroimaging Clin N Am. 2004;14(2):293–306. viii.PubMedCrossRef
17.
go back to reference Limperopoulos C, Robertson RL, Estroff JA, Barnewolt C, Levine D, Bassan H, et al. Diagnosis of inferior vermian hypoplasia by fetal magnetic resonance imaging: potential pitfalls and neurodevelopmental outcome. Am J Obstet Gynecol. 2006;194(4):1070–6.PubMedCentralPubMedCrossRef Limperopoulos C, Robertson RL, Estroff JA, Barnewolt C, Levine D, Bassan H, et al. Diagnosis of inferior vermian hypoplasia by fetal magnetic resonance imaging: potential pitfalls and neurodevelopmental outcome. Am J Obstet Gynecol. 2006;194(4):1070–6.PubMedCentralPubMedCrossRef
18.
go back to reference Rees S, Harding R. The effects of intrauterine growth retardation on the development of the Purkinje cell dendritic tree in the cerebellar cortex of fetal sheep: a note on the ontogeny of the Purkinje cell. Int J Dev Neurosci. 1988;6(5):461–9.PubMedCrossRef Rees S, Harding R. The effects of intrauterine growth retardation on the development of the Purkinje cell dendritic tree in the cerebellar cortex of fetal sheep: a note on the ontogeny of the Purkinje cell. Int J Dev Neurosci. 1988;6(5):461–9.PubMedCrossRef
19.
go back to reference Inage YW, Itoh M, Wada K, Takashima S. Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: their correlation in development and neonatal hypoxic-ischemic damage. J Neuropathol Exp Neurol. 1998;57(6):554–62.PubMedCrossRef Inage YW, Itoh M, Wada K, Takashima S. Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: their correlation in development and neonatal hypoxic-ischemic damage. J Neuropathol Exp Neurol. 1998;57(6):554–62.PubMedCrossRef
20.
go back to reference Rees S, Stringer M, Just Y, Hooper SB, Harding R. The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Brain Res Dev Brain Res. 1997;103(2):103–18.PubMedCrossRef Rees S, Stringer M, Just Y, Hooper SB, Harding R. The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Brain Res Dev Brain Res. 1997;103(2):103–18.PubMedCrossRef
21.
go back to reference Castillo-Melendez M, Chow JA, Walker DW. Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res. 2004;55(5):864–71.PubMedCrossRef Castillo-Melendez M, Chow JA, Walker DW. Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res. 2004;55(5):864–71.PubMedCrossRef
22.
go back to reference Didenko VV, Ngo H, Minchew CL, Boudreaux DJ, Widmayer MA, Baskin DS. Caspase-3-dependent and -independent apoptosis in focal brain ischemia. Mol Med. 2002;8(7):347–52.PubMedCentralPubMed Didenko VV, Ngo H, Minchew CL, Boudreaux DJ, Widmayer MA, Baskin DS. Caspase-3-dependent and -independent apoptosis in focal brain ischemia. Mol Med. 2002;8(7):347–52.PubMedCentralPubMed
23.
go back to reference Dell'Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, et al. Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res. 1997;115(1):105–15.PubMedCrossRef Dell'Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, et al. Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res. 1997;115(1):105–15.PubMedCrossRef
24.
go back to reference Kohlhauser C, Mosgoller W, Hoger H, Lubec B. Myelination deficits in brain of rats following perinatal asphyxia. Life Sci. 2000;67(19):2355–68.PubMedCrossRef Kohlhauser C, Mosgoller W, Hoger H, Lubec B. Myelination deficits in brain of rats following perinatal asphyxia. Life Sci. 2000;67(19):2355–68.PubMedCrossRef
25.
go back to reference Lee C, Kim DW, Jeon GS, Roh EJ, Seo JH, Wang KC, et al. Cerebellar alterations induced by chronic hypoxia: an immunohistochemical study using a chick embryonic model. Brain Res. 2001;901(1–2):271–6.PubMedCrossRef Lee C, Kim DW, Jeon GS, Roh EJ, Seo JH, Wang KC, et al. Cerebellar alterations induced by chronic hypoxia: an immunohistochemical study using a chick embryonic model. Brain Res. 2001;901(1–2):271–6.PubMedCrossRef
26.
go back to reference Lafarga M, Berciano MT, Blanco M. Ectopic Purkinje cells in the cerebellar white matter of normal adult rodents: a Golgi study. Acta Anat (Basel). 1986;127(1):53–8.CrossRef Lafarga M, Berciano MT, Blanco M. Ectopic Purkinje cells in the cerebellar white matter of normal adult rodents: a Golgi study. Acta Anat (Basel). 1986;127(1):53–8.CrossRef
27.
go back to reference Mallard EC, Rees S, Stringer M, Cock ML, Harding R. Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res. 1998;43(2):262–70.PubMedCrossRef Mallard EC, Rees S, Stringer M, Cock ML, Harding R. Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res. 1998;43(2):262–70.PubMedCrossRef
28.
go back to reference Storm JE, Valdes JJ, Fechter LD. Postnatal alterations in cerebellar GABA content, GABA uptake and morphology following exposure to carbon monoxide early in development. Dev Neurosci. 1986;8(4):251–61.PubMedCrossRef Storm JE, Valdes JJ, Fechter LD. Postnatal alterations in cerebellar GABA content, GABA uptake and morphology following exposure to carbon monoxide early in development. Dev Neurosci. 1986;8(4):251–61.PubMedCrossRef
29.
go back to reference Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, et al. Glia-synapse interaction through Ca2+−permeable AMPA receptors in Bergmann glia. Science. 2001;292(5518):926–9.PubMedCrossRef Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, et al. Glia-synapse interaction through Ca2+−permeable AMPA receptors in Bergmann glia. Science. 2001;292(5518):926–9.PubMedCrossRef
30.
go back to reference Seil FJ. Interactions between cerebellar Purkinje cells and their associated astrocytes. Histol Histopathol. 2001;16(3):955–68.PubMed Seil FJ. Interactions between cerebellar Purkinje cells and their associated astrocytes. Histol Histopathol. 2001;16(3):955–68.PubMed
31.
go back to reference Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 2003;6(2):153–60.PubMedCrossRef Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 2003;6(2):153–60.PubMedCrossRef
32.
go back to reference Ramon Y Cajal, S, Histologie du systeme nerveux de l'homme et des vertebras. Paris, Maloine. Reprinted by Consejo Superior de Investigaciones Cientificas, Madrid, 1955. 1911 Ramon Y Cajal, S, Histologie du systeme nerveux de l'homme et des vertebras. Paris, Maloine. Reprinted by Consejo Superior de Investigaciones Cientificas, Madrid, 1955. 1911
33.
go back to reference Tanaka M, Maeda N, Noda M, Marunouchi T. A chondroitin sulfate proteoglycan PTPzeta /RPTPbeta regulates the morphogenesis of Purkinje cell dendrites in the developing cerebellum. J Neurosci. 2003;23(7):2804–14.PubMed Tanaka M, Maeda N, Noda M, Marunouchi T. A chondroitin sulfate proteoglycan PTPzeta /RPTPbeta regulates the morphogenesis of Purkinje cell dendrites in the developing cerebellum. J Neurosci. 2003;23(7):2804–14.PubMed
34.
go back to reference Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, et al. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol. 2000;418(1):106–20.PubMedCrossRef Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, et al. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol. 2000;418(1):106–20.PubMedCrossRef
35.
go back to reference Lordkipanidze T, Dunaevsky A. Purkinje cell dendrites grow in alignment with Bergmann glia. Glia. 2005;51(3):229–34.PubMedCrossRef Lordkipanidze T, Dunaevsky A. Purkinje cell dendrites grow in alignment with Bergmann glia. Glia. 2005;51(3):229–34.PubMedCrossRef
36.
go back to reference Dammann O, Leviton A. Role of the fetus in perinatal infection and neonatal brain damage. Curr Opin Pediatr. 2000;12(2):99–104.PubMedCrossRef Dammann O, Leviton A. Role of the fetus in perinatal infection and neonatal brain damage. Curr Opin Pediatr. 2000;12(2):99–104.PubMedCrossRef
37.
go back to reference Yan E, Castillo-Melendez M, Nicholls T, Hirst J, Walker D. Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr Res. 2004;55(5):855–63.PubMedCrossRef Yan E, Castillo-Melendez M, Nicholls T, Hirst J, Walker D. Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr Res. 2004;55(5):855–63.PubMedCrossRef
38.
go back to reference Borges LF, Elliott PJ, Gill R, Iversen SD, Iversen LL. Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons. Science. 1985;228(4697):346–8.PubMedCrossRef Borges LF, Elliott PJ, Gill R, Iversen SD, Iversen LL. Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons. Science. 1985;228(4697):346–8.PubMedCrossRef
39.
go back to reference Fishman PS, Farrand DA, Kristt DA. Internalization of plasma proteins by cerebellar Purkinje cells. J Neurol Sci. 1990;100(1–2):43–9.PubMedCrossRef Fishman PS, Farrand DA, Kristt DA. Internalization of plasma proteins by cerebellar Purkinje cells. J Neurol Sci. 1990;100(1–2):43–9.PubMedCrossRef
40.
go back to reference Sokrab TE, Johansson BB, Kalimo H, Olsson Y. A transient hypertensive opening of the blood–brain barrier can lead to brain damage. Extravasation of serum proteins and cellular changes in rats subjected to aortic compression. Acta Neuropathol (Berl). 1988;75(6):557–65.CrossRef Sokrab TE, Johansson BB, Kalimo H, Olsson Y. A transient hypertensive opening of the blood–brain barrier can lead to brain damage. Extravasation of serum proteins and cellular changes in rats subjected to aortic compression. Acta Neuropathol (Berl). 1988;75(6):557–65.CrossRef
41.
go back to reference Brightman MW. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I Ependymal distribution. J Cell Biol. 1965;26(1):99–123.PubMedCentralPubMedCrossRef Brightman MW. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I Ependymal distribution. J Cell Biol. 1965;26(1):99–123.PubMedCentralPubMedCrossRef
42.
go back to reference Brightman MW. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat. 1965;117(2):193–219.PubMedCrossRef Brightman MW. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat. 1965;117(2):193–219.PubMedCrossRef
43.
go back to reference Mares V, Borges LF, Sidman RL. An immunocytochemical study of the binding of lectins in the developing brain in situ. Histochem J. 1984;16(4):462–4.PubMedCrossRef Mares V, Borges LF, Sidman RL. An immunocytochemical study of the binding of lectins in the developing brain in situ. Histochem J. 1984;16(4):462–4.PubMedCrossRef
44.
go back to reference Tabernero A, Granda B, Medina A, Sanchez-Abarca LI, Lavado E, Medina JM. Albumin promotes neuronal survival by increasing the synthesis and release of glutamate. J Neurochem. 2002;81(4):881–91.PubMedCrossRef Tabernero A, Granda B, Medina A, Sanchez-Abarca LI, Lavado E, Medina JM. Albumin promotes neuronal survival by increasing the synthesis and release of glutamate. J Neurochem. 2002;81(4):881–91.PubMedCrossRef
45.
go back to reference Dziegielewska KM, Knott GW, Saunders NR. The nature and composition of the internal environment of the developing brain. Cell Mol Neurobiol. 2000;20(1):41–56.PubMedCrossRef Dziegielewska KM, Knott GW, Saunders NR. The nature and composition of the internal environment of the developing brain. Cell Mol Neurobiol. 2000;20(1):41–56.PubMedCrossRef
46.
go back to reference Heyes MP, Rubinow D, Lane C, Markey SP. Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann Neurol. 1989;26(2):275–7.PubMedCrossRef Heyes MP, Rubinow D, Lane C, Markey SP. Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann Neurol. 1989;26(2):275–7.PubMedCrossRef
47.
go back to reference Guillemin GJ, Kerr SJ, Brew BJ. Involvement of quinolinic acid in AIDS dementia complex. Neurotox Res. 2005;7(1–2):103–23.PubMedCrossRef Guillemin GJ, Kerr SJ, Brew BJ. Involvement of quinolinic acid in AIDS dementia complex. Neurotox Res. 2005;7(1–2):103–23.PubMedCrossRef
48.
go back to reference Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ. Quinolinic acid in the pathogenesis of Alzheimer's disease. Adv Exp Med Biol. 2003;527:167–76.PubMedCrossRef Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ. Quinolinic acid in the pathogenesis of Alzheimer's disease. Adv Exp Med Biol. 2003;527:167–76.PubMedCrossRef
49.
go back to reference Rios C, Santamaria A. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res. 1991;16(10):1139–43.PubMedCrossRef Rios C, Santamaria A. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res. 1991;16(10):1139–43.PubMedCrossRef
50.
go back to reference Nicholls T, Nitsos I, Walker DW. Tryptophan metabolism in pregnant sheep: increased fetal kynurenine production in response to maternal tryptophan loading. Am J Obstet Gynecol. 1999;181(6):1452–60.PubMedCrossRef Nicholls T, Nitsos I, Walker DW. Tryptophan metabolism in pregnant sheep: increased fetal kynurenine production in response to maternal tryptophan loading. Am J Obstet Gynecol. 1999;181(6):1452–60.PubMedCrossRef
51.
go back to reference Nicholls T, Lacey B, Nitsos I, Smythe G, Walker DW. Regional changes in kynurenic acid, quinolinic acid, and glial fibrillary acidic protein concentrations in the fetal sheep brain after experimentally induced placental insufficiency. Am J Obstet Gynecol. 2001;184(2):203–8.PubMedCrossRef Nicholls T, Lacey B, Nitsos I, Smythe G, Walker DW. Regional changes in kynurenic acid, quinolinic acid, and glial fibrillary acidic protein concentrations in the fetal sheep brain after experimentally induced placental insufficiency. Am J Obstet Gynecol. 2001;184(2):203–8.PubMedCrossRef
52.
go back to reference Manuelpillai U, Ligam P, Smythe G, Wallace EM, Hirst J, Walker DW. Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am J Obstet Gynecol. 2005;192(1):280–8.PubMedCrossRef Manuelpillai U, Ligam P, Smythe G, Wallace EM, Hirst J, Walker DW. Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am J Obstet Gynecol. 2005;192(1):280–8.PubMedCrossRef
53.
go back to reference Yan E, Castillo-Melendez M, Smythe G, Walker D. Quinolinic acid promotes albumin deposition in Purkinje cell, astrocytic activation and lipid peroxidation in fetal brain. Neuroscience. 2005;134(3):867–75.PubMedCrossRef Yan E, Castillo-Melendez M, Smythe G, Walker D. Quinolinic acid promotes albumin deposition in Purkinje cell, astrocytic activation and lipid peroxidation in fetal brain. Neuroscience. 2005;134(3):867–75.PubMedCrossRef
54.
go back to reference Goda K, Kishimoto R, Shimizu S, Hamane Y, Ueda M. Quinolinic acid and active oxygens. Possible contribution of active oxygens during cell death in the brain. Adv Exp Med Biol. 1996;398:247–54.PubMedCrossRef Goda K, Kishimoto R, Shimizu S, Hamane Y, Ueda M. Quinolinic acid and active oxygens. Possible contribution of active oxygens during cell death in the brain. Adv Exp Med Biol. 1996;398:247–54.PubMedCrossRef
55.
go back to reference Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O'Hearn E, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol. 2002;89:331–59.PubMed Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O'Hearn E, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol. 2002;89:331–59.PubMed
56.
go back to reference Itakura A, Kurauchi O, Takashima S, Uchida K, Ito M, Mizutani S. Immunological detection of 4-hydroxynonenal protein adducts in developing pontine and Purkinje neurons and in karyorrhexis in pontosubicular neuronal necrosis. Early Hum Dev. 2002;67(1–2):19–28.PubMedCrossRef Itakura A, Kurauchi O, Takashima S, Uchida K, Ito M, Mizutani S. Immunological detection of 4-hydroxynonenal protein adducts in developing pontine and Purkinje neurons and in karyorrhexis in pontosubicular neuronal necrosis. Early Hum Dev. 2002;67(1–2):19–28.PubMedCrossRef
57.
go back to reference Hutton L, Castillo-Melendez M, Walker DW. Inflammatory and proliferative responses in fetal periventricular regions after utero-placental LPS administration in sheep. Los Angeles: Proc Soc Gynecol Invest Annual Meeting; 2005. Hutton L, Castillo-Melendez M, Walker DW. Inflammatory and proliferative responses in fetal periventricular regions after utero-placental LPS administration in sheep. Los Angeles: Proc Soc Gynecol Invest Annual Meeting; 2005.
58.
go back to reference Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–47.PubMedCrossRef Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–47.PubMedCrossRef
59.
go back to reference Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in blood–brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol. 2006;176(12):7666–75.PubMedCrossRef Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in blood–brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol. 2006;176(12):7666–75.PubMedCrossRef
60.
go back to reference Zimmer C, Sampaolo S, Sharma HS, Cervos-Navarro J. Altered glial fibrillary acidic protein immunoreactivity in rat brain following chronic hypoxia. Neuroscience. 1991;40(2):353–61.PubMedCrossRef Zimmer C, Sampaolo S, Sharma HS, Cervos-Navarro J. Altered glial fibrillary acidic protein immunoreactivity in rat brain following chronic hypoxia. Neuroscience. 1991;40(2):353–61.PubMedCrossRef
61.
go back to reference Castillo-Melendez M, Yan E, Walker DW. Expression of erythropoietin and its receptor in the brain of late-gestation fetal sheep, and responses to asphyxia caused by umbilical cord occlusion. Dev Neurosci. 2005;27(2–4):220–7.PubMedCrossRef Castillo-Melendez M, Yan E, Walker DW. Expression of erythropoietin and its receptor in the brain of late-gestation fetal sheep, and responses to asphyxia caused by umbilical cord occlusion. Dev Neurosci. 2005;27(2–4):220–7.PubMedCrossRef
62.
go back to reference Juul S. Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr Suppl. 2002;91(438):36–42.PubMedCrossRef Juul S. Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr Suppl. 2002;91(438):36–42.PubMedCrossRef
63.
go back to reference Juul SE, Anderson DK, Li Y, Christensen RD. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res. 1998;43(1):40–9.PubMedCrossRef Juul SE, Anderson DK, Li Y, Christensen RD. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res. 1998;43(1):40–9.PubMedCrossRef
64.
go back to reference Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, et al. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol. 2003;62(3):228–36.PubMed Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, et al. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol. 2003;62(3):228–36.PubMed
65.
go back to reference Wen TC, Rogido M, Genetta T, Sola A. Permanent focal cerebral ischemia activates erythropoietin receptor in the neonatal rat brain. Neurosci Lett. 2004;355(3):165–8.PubMedCrossRef Wen TC, Rogido M, Genetta T, Sola A. Permanent focal cerebral ischemia activates erythropoietin receptor in the neonatal rat brain. Neurosci Lett. 2004;355(3):165–8.PubMedCrossRef
66.
go back to reference Nguyen PN, Yan EB, Castillo-Melendez M, Walker DW, Hirst JJ. Increased allopregnanolone levels in the fetal sheep brain following umbilical cord occlusion. J Physiol. 2004;560(Pt 2):593–602.PubMedCentralPubMedCrossRef Nguyen PN, Yan EB, Castillo-Melendez M, Walker DW, Hirst JJ. Increased allopregnanolone levels in the fetal sheep brain following umbilical cord occlusion. J Physiol. 2004;560(Pt 2):593–602.PubMedCentralPubMedCrossRef
67.
go back to reference Lauder JM. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 1993;16(6):233–40.PubMedCrossRef Lauder JM. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 1993;16(6):233–40.PubMedCrossRef
68.
go back to reference Fiszman ML, Behar T, Lange GD, Smith SV, Novotny EA, Barker JL. GABAergic cells and signals appear together in the early post-mitotic period of telencephalic and striatal development. Brain Res Dev Brain Res. 1993;73(2):243–51.PubMedCrossRef Fiszman ML, Behar T, Lange GD, Smith SV, Novotny EA, Barker JL. GABAergic cells and signals appear together in the early post-mitotic period of telencephalic and striatal development. Brain Res Dev Brain Res. 1993;73(2):243–51.PubMedCrossRef
69.
go back to reference Mandler RN, Schaffner AE, Novotny EA, Lange GD, Smith SV, Barker JL. Electrical and chemical excitability appear one week before birth in the embryonic rat spinal cord. Brain Res. 1990;522(1):46–54.PubMedCrossRef Mandler RN, Schaffner AE, Novotny EA, Lange GD, Smith SV, Barker JL. Electrical and chemical excitability appear one week before birth in the embryonic rat spinal cord. Brain Res. 1990;522(1):46–54.PubMedCrossRef
70.
go back to reference Schaffner AE, Behar T, Nadi S, Smallwood V, Barker JL. Quantitative analysis of transient GABA expression in embryonic and early postnatal rat spinal cord neurons. Brain Res Dev Brain Res. 1993;72(2):265–76.PubMedCrossRef Schaffner AE, Behar T, Nadi S, Smallwood V, Barker JL. Quantitative analysis of transient GABA expression in embryonic and early postnatal rat spinal cord neurons. Brain Res Dev Brain Res. 1993;72(2):265–76.PubMedCrossRef
71.
go back to reference Bailey CD, Brien JF, Reynolds JN. Neurosteroid modulation of the GABAA receptor in the developing guinea pig cerebral cortex. Brain Res Dev Brain Res. 1999;113(1–2):21–8.PubMedCrossRef Bailey CD, Brien JF, Reynolds JN. Neurosteroid modulation of the GABAA receptor in the developing guinea pig cerebral cortex. Brain Res Dev Brain Res. 1999;113(1–2):21–8.PubMedCrossRef
72.
go back to reference Shen H, Gong QH, Yuan M, Smith SS. Short-term steroid treatment increases delta GABAA receptor subunit expression in rat CA1 hippocampus: pharmacological and behavioral effects. Neuropharmacology. 2005;49(5):573–86.PubMedCentralPubMedCrossRef Shen H, Gong QH, Yuan M, Smith SS. Short-term steroid treatment increases delta GABAA receptor subunit expression in rat CA1 hippocampus: pharmacological and behavioral effects. Neuropharmacology. 2005;49(5):573–86.PubMedCentralPubMedCrossRef
73.
go back to reference Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol. 2000;21(1):1–56.PubMedCrossRef Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol. 2000;21(1):1–56.PubMedCrossRef
74.
go back to reference Paul SM, Purdy RH. Neuroactive steroids. Faseb J. 1992;6(6):2311–22.PubMed Paul SM, Purdy RH. Neuroactive steroids. Faseb J. 1992;6(6):2311–22.PubMed
75.
go back to reference Lambert JJ, Belelli D, Hill-Venning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci. 1995;16(9):295–303.PubMedCrossRef Lambert JJ, Belelli D, Hill-Venning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci. 1995;16(9):295–303.PubMedCrossRef
76.
go back to reference Petratos S, Hirst JJ, Mendis S, Anikijenko P, Walker DW. Localization of p450scc and 5alpha-reductase type-2 in the cerebellum of fetal and newborn sheep. Brain Res Dev Brain Res. 2000;123(1):81–6.PubMedCrossRef Petratos S, Hirst JJ, Mendis S, Anikijenko P, Walker DW. Localization of p450scc and 5alpha-reductase type-2 in the cerebellum of fetal and newborn sheep. Brain Res Dev Brain Res. 2000;123(1):81–6.PubMedCrossRef
77.
go back to reference Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in fetal sheep with umbilicoplacental embolization. Pediatr Res. 2003;54(6):840–7.PubMedCrossRef Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in fetal sheep with umbilicoplacental embolization. Pediatr Res. 2003;54(6):840–7.PubMedCrossRef
78.
go back to reference Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep. Pediatr Res. 2003;53(6):956–64.PubMedCrossRef Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep. Pediatr Res. 2003;53(6):956–64.PubMedCrossRef
79.
go back to reference Fritschy JM, Mohler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol. 1995;359(1):154–94.PubMedCrossRef Fritschy JM, Mohler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol. 1995;359(1):154–94.PubMedCrossRef
80.
go back to reference Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci. 1992;12(11):4151–72.PubMed Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci. 1992;12(11):4151–72.PubMed
81.
go back to reference Yawno, T, Walker, DW and Hirst, JJ, Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in late gestation fetal sheep. Proc. Soc. Gynecol. Invest. Annual Meeting, 2006. Yawno, T, Walker, DW and Hirst, JJ, Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in late gestation fetal sheep. Proc. Soc. Gynecol. Invest. Annual Meeting, 2006.
Metadata
Title
Injury of the Developing Cerebellum: A Brief Review of the Effects of Endotoxin and Asphyxial Challenges in the Late Gestation Sheep Fetus
Authors
Lisa C. Hutton
Edwin Yan
Tamara Yawno
Margie Castillo-Melendez
Jon J. Hirst
David W. Walker
Publication date
01-12-2014
Publisher
Springer US
Published in
The Cerebellum / Issue 6/2014
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-014-0602-3

Other articles of this Issue 6/2014

The Cerebellum 6/2014 Go to the issue