Skip to main content
Top
Published in: The Cerebellum 3/2014

01-06-2014 | Original Paper

Cerebellar Contributions to Verbal Working Memory

Authors: Simon P. Tomlinson, Nick J. Davis, Helen M. Morgan, R. Martyn Bracewell

Published in: The Cerebellum | Issue 3/2014

Login to get access

Abstract

There is increasing evidence for a cerebellar role in working memory. Clinical research has shown that working memory impairments after cerebellar damage and neuroimaging studies have revealed task-specific activation in the cerebellum during working memory processing. A lateralisation of cerebellar function within working memory has been proposed with the right hemisphere making the greater contribution to verbal processing and the left hemisphere for visuospatial tasks. We used continuous theta burst stimulation (cTBS) to examine whether differences in post-stimulation performance could be observed based on the cerebellar hemisphere stimulated and the type of data presented. We observed that participants were significantly less accurate on a verbal version of a Sternberg task after stimulation to the right cerebellar hemisphere when compared to left hemisphere stimulation. Performance on a visual Sternberg task was unaffected by stimulation of either hemisphere. We discuss our results in the context of prior studies that have used cerebellar stimulation to investigate working memory and highlight the cerebellar role in phonological encoding.
Literature
1.
go back to reference O'Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning : a critical review. J Clin Exp Neuropsychol. 2011;34(1):35–56.PubMed O'Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning : a critical review. J Clin Exp Neuropsychol. 2011;34(1):35–56.PubMed
2.
go back to reference Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef
3.
go back to reference Stoodley CJ. The Cerebellum and Cognition: Evidence from Functional Imaging Studies. Cerebellum. 2011. Stoodley CJ. The Cerebellum and Cognition: Evidence from Functional Imaging Studies. Cerebellum. 2011.
4.
go back to reference Bloedel JR. Functional heterogeneity with structural homogeneity: how does the cerebellum operate? Behav Brain Sci. 1992;15(4):666–78. Bloedel JR. Functional heterogeneity with structural homogeneity: how does the cerebellum operate? Behav Brain Sci. 1992;15(4):666–78.
5.
go back to reference Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRef Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRef
6.
7.
go back to reference Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76.PubMedCrossRef Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76.PubMedCrossRef
8.
go back to reference Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedCrossRef Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedCrossRef
9.
go back to reference Holmes G. The cerebellum of man. Brain. 1939;62(1):1–30. Holmes G. The cerebellum of man. Brain. 1939;62(1):1–30.
10.
go back to reference Luciani L. Il cervelletto: nuovi studi di fisiologia normale e patologica. Le Monnier: Firenze; 1891. Luciani L. Il cervelletto: nuovi studi di fisiologia normale e patologica. Le Monnier: Firenze; 1891.
11.
go back to reference Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMedCrossRef Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMedCrossRef
12.
13.
go back to reference Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.PubMedCrossRef Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.PubMedCrossRef
14.
go back to reference Wada JA, Clarke R, Hamm A. Cerebral hemispheric asymmetry in humans: cortical speech zones in 100 adult and 100 infant brains. Arch Neurol. 1975;32(4):239.PubMedCrossRef Wada JA, Clarke R, Hamm A. Cerebral hemispheric asymmetry in humans: cortical speech zones in 100 adult and 100 infant brains. Arch Neurol. 1975;32(4):239.PubMedCrossRef
15.
go back to reference Jonides J, Smith E, Koeppe R, Awh E. Spatial working-memory in humans as revealed by PET. Nature. 1993;363:623–5.PubMedCrossRef Jonides J, Smith E, Koeppe R, Awh E. Spatial working-memory in humans as revealed by PET. Nature. 1993;363:623–5.PubMedCrossRef
16.
go back to reference Jansen A, Flöel A, Van Randenborgh J, Konrad C, Rotte M, Förster A-F, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24(3):165–72.PubMedCrossRef Jansen A, Flöel A, Van Randenborgh J, Konrad C, Rotte M, Förster A-F, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24(3):165–72.PubMedCrossRef
17.
go back to reference Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79(3):580–600.PubMedCrossRef Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79(3):580–600.PubMedCrossRef
19.
go back to reference Baddeley A, Hitch GJL. Working memory. In: Bower GA, editor. Psychol. Learn. Motiv. New York: Academic Press; 1974. p. 47–89. Baddeley A, Hitch GJL. Working memory. In: Bower GA, editor. Psychol. Learn. Motiv. New York: Academic Press; 1974. p. 47–89.
21.
go back to reference Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain. 1998;87:2175.CrossRef Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain. 1998;87:2175.CrossRef
22.
go back to reference Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(2):306–20.PubMedCrossRef Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(2):306–20.PubMedCrossRef
23.
go back to reference Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef
24.
go back to reference Peterburs J, Bellebaum C, Koch B, Schwarz M, Daum I. Working memory and verbal fluency deficits following cerebellar lesions: relation to interindividual differences in patient variables. Cerebellum. 2010;9(3):375–83.PubMedCrossRef Peterburs J, Bellebaum C, Koch B, Schwarz M, Daum I. Working memory and verbal fluency deficits following cerebellar lesions: relation to interindividual differences in patient variables. Cerebellum. 2010;9(3):375–83.PubMedCrossRef
25.
go back to reference Greve KW, Stanford MS, Sutton C, Foundas AL. Cerebellar infarct : a case report. Neuropsychology. 1999;14(5):455–69. Greve KW, Stanford MS, Sutton C, Foundas AL. Cerebellar infarct : a case report. Neuropsychology. 1999;14(5):455–69.
26.
go back to reference Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex, Elsevier Srl. 2010;46(7):869–79.CrossRef Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex, Elsevier Srl. 2010;46(7):869–79.CrossRef
27.
go back to reference Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75(11):1524–31.PubMedCentralPubMedCrossRef Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75(11):1524–31.PubMedCentralPubMedCrossRef
28.
go back to reference Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, Elsevier Inc. 2009;44(2):489–501.CrossRef Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, Elsevier Inc. 2009;44(2):489–501.CrossRef
29.
go back to reference E K-H, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2012;5:000. E K-H, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2012;5:000.
30.
go back to reference Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.PubMedCrossRef Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.PubMedCrossRef
31.
go back to reference Cheeran B, Koch G, Stagg CJ, Baig F, Teo J. Transcranial magnetic stimulation: from neurophysiology to pharmacology, molecular biology and genomics. Neuroscientist. 2010;16(3):210–21.PubMedCrossRef Cheeran B, Koch G, Stagg CJ, Baig F, Teo J. Transcranial magnetic stimulation: from neurophysiology to pharmacology, molecular biology and genomics. Neuroscientist. 2010;16(3):210–21.PubMedCrossRef
32.
go back to reference Lorenzo F Di, Martorana A, Ponzo V, Bonnì S, Angelo ED, Caltagirone C, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients. Front. Aging Neurosci. 2013;5(2). Lorenzo F Di, Martorana A, Ponzo V, Bonnì S, Angelo ED, Caltagirone C, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients. Front. Aging Neurosci. 2013;5(2).
33.
go back to reference Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol Int Fed Clin Neurophysiol. 2008;119(11):2559–69.CrossRef Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol Int Fed Clin Neurophysiol. 2008;119(11):2559–69.CrossRef
34.
go back to reference Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev. 2013;37(5):766–89.PubMedCrossRef Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev. 2013;37(5):766–89.PubMedCrossRef
35.
go back to reference Grimaldi G, Argyropoulos GP, Boehringer a, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive Cerebellar Stimulation-a Consensus Paper. Cerebellum. 2013. Grimaldi G, Argyropoulos GP, Boehringer a, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive Cerebellar Stimulation-a Consensus Paper. Cerebellum. 2013.
36.
go back to reference Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.PubMedCrossRef Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.PubMedCrossRef
37.
go back to reference Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul,Elsevier Ltd. 2013;6(4):649–53.CrossRef Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul,Elsevier Ltd. 2013;6(4):649–53.CrossRef
38.
go back to reference Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60.PubMedCrossRef Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60.PubMedCrossRef
39.
go back to reference Rami L, Gironell A, Kulisevsky J, Garcı́a-Sánchez C, Berthier M, Estévez-González A. Effects of repetitive transcranial magnetic stimulation on memory subtypes: a controlled study. Neuropsychologia. 2003;41(14):1877–83.PubMedCrossRef Rami L, Gironell A, Kulisevsky J, Garcı́a-Sánchez C, Berthier M, Estévez-González A. Effects of repetitive transcranial magnetic stimulation on memory subtypes: a controlled study. Neuropsychologia. 2003;41(14):1877–83.PubMedCrossRef
40.
go back to reference Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.PubMedCrossRef Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.PubMedCrossRef
41.
go back to reference Arasanz CP, Staines WR, Roy EA, Schweizer TA. The cerebellum and its role in word generation: a cTBS study. Cortex Elsevier Srl. 2012;48(6):718–24.CrossRef Arasanz CP, Staines WR, Roy EA, Schweizer TA. The cerebellum and its role in word generation: a cTBS study. Cortex Elsevier Srl. 2012;48(6):718–24.CrossRef
42.
go back to reference Argyropoulos GP. Cerebellar theta-burst stimulation selectively enhances lexical associative priming. Cerebellum. 2011;10(3):540–50.PubMedCrossRef Argyropoulos GP. Cerebellar theta-burst stimulation selectively enhances lexical associative priming. Cerebellum. 2011;10(3):540–50.PubMedCrossRef
43.
go back to reference Argyropoulos GP, Kimiskidis VK, Papagiannopoulos S. Θ-Burst stimulation of the right neocerebellar vermis selectively disrupts the practice-induced acceleration of lexical decisions. Behav Neurosci. 2011;125(5):724–34.PubMedCrossRef Argyropoulos GP, Kimiskidis VK, Papagiannopoulos S. Θ-Burst stimulation of the right neocerebellar vermis selectively disrupts the practice-induced acceleration of lexical decisions. Behav Neurosci. 2011;125(5):724–34.PubMedCrossRef
44.
go back to reference Bijsterbosch JD, Lee K-H, Hunter MD, Tsoi DT, Lankappa S, Wilkinson ID, et al. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS. J Cogn Neurosci. 2011;23(5):1100–12.PubMedCrossRef Bijsterbosch JD, Lee K-H, Hunter MD, Tsoi DT, Lankappa S, Wilkinson ID, et al. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS. J Cogn Neurosci. 2011;23(5):1100–12.PubMedCrossRef
45.
go back to reference Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eye-blink classical conditioning. J Physiol. 2011;4:887–97. Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eye-blink classical conditioning. J Physiol. 2011;4:887–97.
46.
go back to reference Grube M, Lee K-H, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front. Psychol. 2010; 171. Grube M, Lee K-H, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front. Psychol. 2010; 171.
47.
go back to reference Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.PubMedCrossRef Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.PubMedCrossRef
48.
go back to reference Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1–16.PubMedCrossRef Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1–16.PubMedCrossRef
49.
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol International Federation of Clinical Neurophysiology. 2009;120(12):2008–39.CrossRef Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol International Federation of Clinical Neurophysiology. 2009;120(12):2008–39.CrossRef
50.
go back to reference Oldfield R. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef Oldfield R. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef
52.
go back to reference Coltheart M. The MRC psycholinguistic database. Q J Exp Psychol. 1981;33A:497–505.CrossRef Coltheart M. The MRC psycholinguistic database. Q J Exp Psychol. 1981;33A:497–505.CrossRef
53.
go back to reference Arnoult MD, Attneave F. The quantitative study of shape and pattern perception. Psychol Bull. 1956;53(6):452–71.PubMedCrossRef Arnoult MD, Attneave F. The quantitative study of shape and pattern perception. Psychol Bull. 1956;53(6):452–71.PubMedCrossRef
54.
go back to reference Collin CA, McMullen PA. Using Matlab to generate families of similar Attneave shapes. Behav Res Methods Instrum Comput. 2002;34(1):55–68.PubMedCrossRef Collin CA, McMullen PA. Using Matlab to generate families of similar Attneave shapes. Behav Res Methods Instrum Comput. 2002;34(1):55–68.PubMedCrossRef
55.
go back to reference Walsh V, Pascual-Leone A. Transcranial magnetic stimulation: a neurochronometrics of mind. Cambridge: MIT Press; 2003. Walsh V, Pascual-Leone A. Transcranial magnetic stimulation: a neurochronometrics of mind. Cambridge: MIT Press; 2003.
57.
go back to reference Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.PubMedCrossRef Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.PubMedCrossRef
58.
go back to reference Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004;16(9):1605–11.PubMedCrossRef Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004;16(9):1605–11.PubMedCrossRef
59.
go back to reference Picazio S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Cerebellar Contribution to Mental Rotation: a cTBS Study. Cerebellum. 2013. Picazio S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Cerebellar Contribution to Mental Rotation: a cTBS Study. Cerebellum. 2013.
60.
go back to reference Kirschen MP, Chen SHA, Schraedley-Desmond P, Desmond JE. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage. 2005;24(2):462–72.PubMedCrossRef Kirschen MP, Chen SHA, Schraedley-Desmond P, Desmond JE. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage. 2005;24(2):462–72.PubMedCrossRef
61.
go back to reference Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.PubMedCrossRef Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.PubMedCrossRef
62.
go back to reference Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50. discussion 453–4.PubMedCrossRef Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50. discussion 453–4.PubMedCrossRef
63.
go back to reference Barker AT. The history and basic principles of magnetic nerves stimulation. In: Pascual-Leone A, Davey NJ, Rothwell JC, Wassermann EM, Puri BK, editors. Handb. Transcranial Magn. Stimul. London: Oxford University Press; 2002. p. 3–17. Barker AT. The history and basic principles of magnetic nerves stimulation. In: Pascual-Leone A, Davey NJ, Rothwell JC, Wassermann EM, Puri BK, editors. Handb. Transcranial Magn. Stimul. London: Oxford University Press; 2002. p. 3–17.
64.
go back to reference Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar Theta Burst Stimulation Impairs Eye-Blink Classical Conditioning. J. Physiol. 2011 Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar Theta Burst Stimulation Impairs Eye-Blink Classical Conditioning. J. Physiol. 2011
65.
66.
go back to reference Wildgruber D, Ackermann H, Grodd W. Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage. 2001;13(1):101–9.PubMedCrossRef Wildgruber D, Ackermann H, Grodd W. Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage. 2001;13(1):101–9.PubMedCrossRef
67.
go back to reference Baddeley AD. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–23.PubMedCrossRef Baddeley AD. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–23.PubMedCrossRef
68.
go back to reference Thielscher A, Kammer T. Electric field properties of two commercial figure 8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol. 2004;115(7):1697–708.PubMedCrossRef Thielscher A, Kammer T. Electric field properties of two commercial figure 8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol. 2004;115(7):1697–708.PubMedCrossRef
69.
go back to reference Hautzel H, Mottaghy FM, Specht K, Müller H-W, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage Elsevier Inc. 2009;47(4):2073–82.CrossRef Hautzel H, Mottaghy FM, Specht K, Müller H-W, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage Elsevier Inc. 2009;47(4):2073–82.CrossRef
Metadata
Title
Cerebellar Contributions to Verbal Working Memory
Authors
Simon P. Tomlinson
Nick J. Davis
Helen M. Morgan
R. Martyn Bracewell
Publication date
01-06-2014
Publisher
Springer US
Published in
The Cerebellum / Issue 3/2014
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-013-0542-3

Other articles of this Issue 3/2014

The Cerebellum 3/2014 Go to the issue