Skip to main content
Top
Published in: The Cerebellum 2/2013

01-04-2013 | Original Paper

Spinocerebellar Ataxias Type 8, 12, and 17 and Dentatorubro-Pallidoluysian Atrophy in Czech Ataxic Patients

Authors: Zuzana Musova, Zdenek Sedlacek, Radim Mazanec, Jiri Klempir, Jan Roth, Pavlina Plevova, Martin Vyhnalek, Marta Kopeckova, Ludmila Apltova, Anna Krepelova, Alena Zumrova

Published in: The Cerebellum | Issue 2/2013

Login to get access

Abstract

Spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative disorders currently associated with 27 genes. The most frequent types are caused by expansions in coding CAG repeats. The frequency of SCA subtypes varies among populations. We examined the occurrence of rare SCAs, SCA8, SCA12, SCA17 and dentatorubro-pallidoluysian atrophy (DRPLA), in the Czech population from where the data were missing. We analyzed causal gene expansions in 515 familial and sporadic ataxic patients negatively tested for SCA1–3 and SCA6–7. Pathogenic SCA8 and SCA17 expansions were identified in eight and five patients, respectively. Tay–Sachs disease was later diagnosed in one patient with an SCA8 expansion and the diagnosis of multiple sclerosis (MS) was suspected in two other patients with SCA8 expansions. These findings are probably coincidental, although the participation of SCA8 expansions in the susceptibility to MS and disease progression cannot be fully excluded. None of the patients had pathogenic SCA12 or DRPLA expansions. However, three patients had intermediate SCA12 alleles out of the normal range with 36 and 43 CAGs. Amyotrophic lateral sclerosis (ALS) was probable in the patient with 43 CAGs. This coincidence is remarkable, especially in the context with the recently identified predisposing role of longer SCA2 alleles in ALS. Five families with SCA17 represent a significant portion of ataxic patients and this should be reflected in the diagnostics of SCAs in the Czech population. SCA8 expansions must be considered after careful clinical evaluation.
Literature
1.
go back to reference Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.PubMed Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.PubMed
2.
go back to reference Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010;9:148–66.PubMedCrossRef Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010;9:148–66.PubMedCrossRef
3.
go back to reference Matilla-Duenas A. The ever expanding spinocerebellar ataxias. Cerebellum: Editorial; 2012. Matilla-Duenas A. The ever expanding spinocerebellar ataxias. Cerebellum: Editorial; 2012.
5.
go back to reference Klockgether T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum. 2008;7:101–5.PubMedCrossRef Klockgether T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum. 2008;7:101–5.PubMedCrossRef
6.
go back to reference Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94.PubMedCrossRef Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94.PubMedCrossRef
7.
go back to reference Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21:379–84.PubMedCrossRef Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21:379–84.PubMedCrossRef
8.
go back to reference Ikeda Y, Daughters RS, Ranum LP. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum. 2008;7:150–8.PubMedCrossRef Ikeda Y, Daughters RS, Ranum LP. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum. 2008;7:150–8.PubMedCrossRef
9.
go back to reference Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;23:391–2.PubMedCrossRef Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;23:391–2.PubMedCrossRef
10.
go back to reference Dagda RK, Zaucha JA, Wadzinski BE, Strack S. A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem. 2003;278:24976–85.PubMedCrossRef Dagda RK, Zaucha JA, Wadzinski BE, Strack S. A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem. 2003;278:24976–85.PubMedCrossRef
11.
go back to reference Srivastava AK, Choudhry S, Gopinath MS, Roy S, Tripathi M, Brahmachari SK, et al. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol. 2001;50:796–800.PubMedCrossRef Srivastava AK, Choudhry S, Gopinath MS, Roy S, Tripathi M, Brahmachari SK, et al. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol. 2001;50:796–800.PubMedCrossRef
12.
go back to reference Bahl S, Virdi K, Mittal U, Sachdeva MP, Kalla AK, Holmes SE, et al. Evidence of a common founder for SCA12 in the Indian population. Ann Hum Genet. 2005;69:528–34.PubMedCrossRef Bahl S, Virdi K, Mittal U, Sachdeva MP, Kalla AK, Holmes SE, et al. Evidence of a common founder for SCA12 in the Indian population. Ann Hum Genet. 2005;69:528–34.PubMedCrossRef
13.
go back to reference Li HT, Lei J, Ma JH, Yu J, Zhang XN. Gene mutation and clinical characteristics of a Chinese Uygur family with spinocerebellar ataxia type 12. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2011;28:137–41.PubMed Li HT, Lei J, Ma JH, Yu J, Zhang XN. Gene mutation and clinical characteristics of a Chinese Uygur family with spinocerebellar ataxia type 12. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2011;28:137–41.PubMed
14.
go back to reference Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet. 1999;8:2047–53.PubMedCrossRef Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet. 1999;8:2047–53.PubMedCrossRef
15.
go back to reference Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, et al. Intergenerational instability and marked anticipation in SCA-17. Neurology. 2003;61:1441–3.PubMedCrossRef Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, et al. Intergenerational instability and marked anticipation in SCA-17. Neurology. 2003;61:1441–3.PubMedCrossRef
16.
go back to reference Nolte D, Sobanski E, Wissen A, Regula JU, Lichy C, Muller U. Spinocerebellar ataxia type 17 associated with an expansion of 42 glutamine residues in TATA-box binding protein gene. J Neurol Neurosurg Psychiatry. 2010;81:1396–9.PubMedCrossRef Nolte D, Sobanski E, Wissen A, Regula JU, Lichy C, Muller U. Spinocerebellar ataxia type 17 associated with an expansion of 42 glutamine residues in TATA-box binding protein gene. J Neurol Neurosurg Psychiatry. 2010;81:1396–9.PubMedCrossRef
17.
go back to reference Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.PubMedCrossRef Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.PubMedCrossRef
18.
go back to reference Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994;6:14–8.PubMedCrossRef Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994;6:14–8.PubMedCrossRef
19.
go back to reference Li SH, McInnis MG, Margolis RL, Antonarakis SE, Ross CA. Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics. 1993;16:572–9.PubMedCrossRef Li SH, McInnis MG, Margolis RL, Antonarakis SE, Ross CA. Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics. 1993;16:572–9.PubMedCrossRef
20.
go back to reference Majounie E, Wardle M, Muzaimi M, Cross WC, Robertson NP, Williams NM, et al. Case control analysis of repeat expansion size in ataxia. Neurosci Lett. 2007;429:28–32.PubMedCrossRef Majounie E, Wardle M, Muzaimi M, Cross WC, Robertson NP, Williams NM, et al. Case control analysis of repeat expansion size in ataxia. Neurosci Lett. 2007;429:28–32.PubMedCrossRef
21.
go back to reference Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet. 1996;33:1022–6.PubMedCrossRef Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet. 1996;33:1022–6.PubMedCrossRef
22.
go back to reference Bauer PO, Zumrova A, Matoska V, Marikova T, Krilova S, Boday A, et al. Absence of spinocerebellar ataxia type 3/Machado–Joseph disease within ataxic patients in the Czech population. Eur J Neurol. 2005;12:851–7.PubMedCrossRef Bauer PO, Zumrova A, Matoska V, Marikova T, Krilova S, Boday A, et al. Absence of spinocerebellar ataxia type 3/Machado–Joseph disease within ataxic patients in the Czech population. Eur J Neurol. 2005;12:851–7.PubMedCrossRef
23.
go back to reference Bauer P, Kraus J, Matoska V, Brouckova M, Zumrova A, Goetz P. Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. J Neurol. 2004;251:1023–4.PubMedCrossRef Bauer P, Kraus J, Matoska V, Brouckova M, Zumrova A, Goetz P. Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. J Neurol. 2004;251:1023–4.PubMedCrossRef
24.
go back to reference Brusco A, Cagnoli C, Franco A, Dragone E, Nardacchione A, Grosso E, et al. Analysis of SCA8 and SCA12 loci in 134 Italian ataxic patients negative for SCA1-3, 6 and 7 CAG expansions. J Neurol. 2002;249:923–9.PubMedCrossRef Brusco A, Cagnoli C, Franco A, Dragone E, Nardacchione A, Grosso E, et al. Analysis of SCA8 and SCA12 loci in 134 Italian ataxic patients negative for SCA1-3, 6 and 7 CAG expansions. J Neurol. 2002;249:923–9.PubMedCrossRef
25.
go back to reference Sulek A, Hoffman-Zacharska D, Bednarska-Makaruk M, Szirkowiec W, Zaremba J. Polymorphism of trinucleotide repeats in non-translated regions of SCA8 and SCA12 genes: allele distribution in a Polish control group. J Appl Genet. 2004;45:101–5.PubMed Sulek A, Hoffman-Zacharska D, Bednarska-Makaruk M, Szirkowiec W, Zaremba J. Polymorphism of trinucleotide repeats in non-translated regions of SCA8 and SCA12 genes: allele distribution in a Polish control group. J Appl Genet. 2004;45:101–5.PubMed
26.
go back to reference Ikeda Y, Dalton JC, Moseley ML, Gardner KL, Bird TD, Ashizawa T, et al. Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet. 2004;75:3–16.PubMedCrossRef Ikeda Y, Dalton JC, Moseley ML, Gardner KL, Bird TD, Ashizawa T, et al. Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet. 2004;75:3–16.PubMedCrossRef
27.
go back to reference Worth PF, Houlden H, Giunti P, Davis MB, Wood NW. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet. 2000;24:214–5.PubMedCrossRef Worth PF, Houlden H, Giunti P, Davis MB, Wood NW. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet. 2000;24:214–5.PubMedCrossRef
28.
go back to reference Vincent JB, Neves-Pereira ML, Paterson AD, Yamamoto E, Parikh SV, Macciardi F, et al. An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet. 2000;66:819–29.PubMedCrossRef Vincent JB, Neves-Pereira ML, Paterson AD, Yamamoto E, Parikh SV, Macciardi F, et al. An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet. 2000;66:819–29.PubMedCrossRef
29.
go back to reference Zuhlke C, Burk K: Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum 2007:1–8. Zuhlke C, Burk K: Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum 2007:1–8.
30.
go back to reference Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum. 2008;7:170–8.PubMedCrossRef Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum. 2008;7:170–8.PubMedCrossRef
31.
go back to reference Fujigasaki H, Verma IC, Camuzat A, Margolis RL, Zander C, Lebre AS, et al. SCA12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol. 2001;49:117–21.PubMedCrossRef Fujigasaki H, Verma IC, Camuzat A, Margolis RL, Zander C, Lebre AS, et al. SCA12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol. 2001;49:117–21.PubMedCrossRef
32.
go back to reference Masopust J, Hosák L, Waberžinek G, P. K: Cerebellar-olivar atrophy with dementia. Ces. a slov. Neurol. Neurochir 2003:64–69. Masopust J, Hosák L, Waberžinek G, P. K: Cerebellar-olivar atrophy with dementia. Ces. a slov. Neurol. Neurochir 2003:64–69.
33.
go back to reference Rasmussen A, De Biase I, Fragoso-Benitez M, Macias-Flores MA, Yescas P, Ochoa A, et al. Anticipation and intergenerational repeat instability in spinocerebellar ataxia type 17. Ann Neurol. 2007;61:607–10.PubMedCrossRef Rasmussen A, De Biase I, Fragoso-Benitez M, Macias-Flores MA, Yescas P, Ochoa A, et al. Anticipation and intergenerational repeat instability in spinocerebellar ataxia type 17. Ann Neurol. 2007;61:607–10.PubMedCrossRef
34.
go back to reference Wardle M, Morris HR, Robertson NP. Clinical and genetic characteristics of non-Asian dentatorubral-pallidoluysian atrophy: a systematic review. Mov Disord. 2009;24:1636–40.PubMedCrossRef Wardle M, Morris HR, Robertson NP. Clinical and genetic characteristics of non-Asian dentatorubral-pallidoluysian atrophy: a systematic review. Mov Disord. 2009;24:1636–40.PubMedCrossRef
35.
go back to reference Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, et al. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet. 1998;63:1060–6.PubMedCrossRef Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, et al. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet. 1998;63:1060–6.PubMedCrossRef
36.
go back to reference Hellenbroich Y, Schulz-Schaeffer W, Nitschke MF, Kohnke J, Handler G, Burk K, et al. Coincidence of a large SCA12 repeat allele with a case of Creutzfeld–Jacob disease. J Neurol Neurosurg Psychiatry. 2004;75:937–8.PubMedCrossRef Hellenbroich Y, Schulz-Schaeffer W, Nitschke MF, Kohnke J, Handler G, Burk K, et al. Coincidence of a large SCA12 repeat allele with a case of Creutzfeld–Jacob disease. J Neurol Neurosurg Psychiatry. 2004;75:937–8.PubMedCrossRef
37.
go back to reference Brussino A, Graziano C, Giobbe D, Ferrone M, Dragone E, Arduino C, et al. Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia. Mov Disord. 2010;25:1269–73.PubMedCrossRef Brussino A, Graziano C, Giobbe D, Ferrone M, Dragone E, Arduino C, et al. Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia. Mov Disord. 2010;25:1269–73.PubMedCrossRef
38.
go back to reference Wang J, Shen L, Lei L, Xu Q, Zhou J, Liu Y, et al. Spinocerebellar ataxias in mainland China: an updated genetic analysis among a large cohort of familial and sporadic cases. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36:482–9.PubMed Wang J, Shen L, Lei L, Xu Q, Zhou J, Liu Y, et al. Spinocerebellar ataxias in mainland China: an updated genetic analysis among a large cohort of familial and sporadic cases. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36:482–9.PubMed
39.
go back to reference Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75.PubMedCrossRef Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75.PubMedCrossRef
40.
go back to reference Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, et al. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry. 1991;30:3589–97.PubMedCrossRef Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, et al. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry. 1991;30:3589–97.PubMedCrossRef
41.
go back to reference Schmidt K, Kins S, Schild A, Nitsch RM, Hemmings BA, Gotz J. Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci. 2002;16:2039–48.PubMedCrossRef Schmidt K, Kins S, Schild A, Nitsch RM, Hemmings BA, Gotz J. Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci. 2002;16:2039–48.PubMedCrossRef
42.
go back to reference Reyes NA, Fisher JK, Austgen K, VandenBerg S, Huang EJ, Oakes SA. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest. 2010;120:3673–9.PubMedCrossRef Reyes NA, Fisher JK, Austgen K, VandenBerg S, Huang EJ, Oakes SA. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest. 2010;120:3673–9.PubMedCrossRef
43.
go back to reference Dagda RK, Merrill RA, Cribbs JT, Chen Y, Hell JW, Usachev YM, et al. The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem. 2008;283:36241–8.PubMedCrossRef Dagda RK, Merrill RA, Cribbs JT, Chen Y, Hell JW, Usachev YM, et al. The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem. 2008;283:36241–8.PubMedCrossRef
44.
go back to reference Lin CH, Chen CM, Hou YT, Wu YR, Hsieh-Li HM, Su MT, et al. The CAG repeat in SCA12 functions as a cis element to up-regulate PPP2R2B expression. Hum Genet. 2010;128:205–12.PubMedCrossRef Lin CH, Chen CM, Hou YT, Wu YR, Hsieh-Li HM, Su MT, et al. The CAG repeat in SCA12 functions as a cis element to up-regulate PPP2R2B expression. Hum Genet. 2010;128:205–12.PubMedCrossRef
Metadata
Title
Spinocerebellar Ataxias Type 8, 12, and 17 and Dentatorubro-Pallidoluysian Atrophy in Czech Ataxic Patients
Authors
Zuzana Musova
Zdenek Sedlacek
Radim Mazanec
Jiri Klempir
Jan Roth
Pavlina Plevova
Martin Vyhnalek
Marta Kopeckova
Ludmila Apltova
Anna Krepelova
Alena Zumrova
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 2/2013
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-012-0403-5

Other articles of this Issue 2/2013

The Cerebellum 2/2013 Go to the issue