Skip to main content
Top
Published in: The Cerebellum 4/2012

Open Access 01-12-2012 | Original Paper

Friedreich's Ataxia Causes Redistribution of Iron, Copper, and Zinc in the Dentate Nucleus

Authors: Arnulf H. Koeppen, R. Liane Ramirez, Devin Yu, Sarah E. Collins, Jiang Qian, Patrick J. Parsons, Karl X. Yang, Zewu Chen, Joseph E. Mazurkiewicz, Paul J. Feustel

Published in: The Cerebellum | Issue 4/2012

Login to get access

Abstract

Friedreich's ataxia (FRDA) causes selective atrophy of the large neurons of the dentate nucleus (DN). High iron (Fe) concentration and failure to clear the metal from the affected brain tissue are potential risk factors in the progression of the lesion. The DN also contains relatively high amounts of copper (Cu) and zinc (Zn), but the importance of these metals in FRDA has not been established. This report describes nondestructive quantitative X-ray fluorescence (XRF) and "mapping" of Fe, Cu, and Zn in polyethylene glycol–dimethylsulfoxide (PEG/DMSO)-embedded DN of 10 FRDA patients and 13 controls. Fe fluorescence arose predominantly from the hilar white matter, whereas Cu and Zn were present at peak levels in DN gray matter. Despite collapse of the DN in FRDA, the location of the peak Fe signal did not change. In contrast, the Cu and Zn regions broadened and overlapped extensively with the Fe-rich region. Maximal metal concentrations did not differ from normal (in micrograms per milliliter of solid PEG/DMSO as means ± S.D.): Fe normal, 364 ± 117, FRDA, 344 ± 159; Cu normal, 33 ± 13, FRDA, 33 ± 18; and Zn normal, 32 ± 16, FRDA, 33 ± 19. Tissues were recovered from PEG/DMSO and transferred into paraffin for matching with immunohistochemistry of neuron-specific enolase (NSE), glutamic acid decarboxylase (GAD), and ferritin. NSE and GAD reaction products confirmed neuronal atrophy and grumose degeneration that coincided with abnormally diffuse Cu and Zn zones. Ferritin immunohistochemistry matched Fe XRF maps, revealing the most abundant reaction product in oligodendroglia of the DN hilus. In FRDA, these cells were smaller and more numerous than normal. In the atrophic DN gray matter of FRDA, anti-ferritin labeled mostly hypertrophic microglia. Immunohistochemistry and immunofluorescence of the Cu-responsive proteins Cu,Zn-superoxide dismutase and Cu++-transporting ATPase α-peptide did not detect specific responses to Cu redistribution in FRDA. In contrast, metallothionein (MT)-positive processes were more abundant than normal and contributed to the gliosis of the DN. The isoforms of MT, MT-1/2, and brain-specific MT-3 displayed only limited co-localization with glial fibrillary acidic protein. The results suggest that MT can provide effective protection against endogenous Cu and Zn toxicity in FRDA, similar to the neuroprotective sequestration of Fe in holoferritin.
Literature
1.
go back to reference Koeppen AH. Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303:1–12.PubMedCrossRef Koeppen AH. Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303:1–12.PubMedCrossRef
2.
go back to reference Koeppen AH, Davis AN, Morral JA. The cerebellar component of Friedreich's ataxia. Acta Neuropathol. 2011;122:323–30.PubMedCrossRef Koeppen AH, Davis AN, Morral JA. The cerebellar component of Friedreich's ataxia. Acta Neuropathol. 2011;122:323–30.PubMedCrossRef
3.
go back to reference Koeppen AH, Dickson AC, Lamarche JB, Robitaille Y. Synapses in the hereditary ataxias. J Neuropathol Exp Neurol. 1999;58:748–64.PubMedCrossRef Koeppen AH, Dickson AC, Lamarche JB, Robitaille Y. Synapses in the hereditary ataxias. J Neuropathol Exp Neurol. 1999;58:748–64.PubMedCrossRef
4.
go back to reference Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S, et al. The dentate nucleus in Friedreich's ataxia: the role of iron responsive proteins. Acta Neuropathol. 2007;114:163–73.PubMedCrossRef Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S, et al. The dentate nucleus in Friedreich's ataxia: the role of iron responsive proteins. Acta Neuropathol. 2007;114:163–73.PubMedCrossRef
6.
go back to reference Warren PJ, Earl CJ, Thompson RHS. The distribution of copper in human brain. Brain. 1960;83:709–17.PubMedCrossRef Warren PJ, Earl CJ, Thompson RHS. The distribution of copper in human brain. Brain. 1960;83:709–17.PubMedCrossRef
7.
8.
go back to reference Höck A, Demmel U, Schicha H, Kasperek K, Feinendegen LE. Trace element concentration in human brain. Brain. 1975;98:49–64.PubMedCrossRef Höck A, Demmel U, Schicha H, Kasperek K, Feinendegen LE. Trace element concentration in human brain. Brain. 1975;98:49–64.PubMedCrossRef
9.
go back to reference Duflou H, Maenhaut W, De Reuck J. Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res. 1989;14:1099–112.PubMedCrossRef Duflou H, Maenhaut W, De Reuck J. Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res. 1989;14:1099–112.PubMedCrossRef
10.
go back to reference Popescu BFG, Robinson CA, Rajput A, Rajput AH, Harder SL, Nichol H. Iron, copper, and zinc distribution of the cerebellum. Cerebellum. 2009;8:74–9.PubMedCrossRef Popescu BFG, Robinson CA, Rajput A, Rajput AH, Harder SL, Nichol H. Iron, copper, and zinc distribution of the cerebellum. Cerebellum. 2009;8:74–9.PubMedCrossRef
11.
go back to reference Vogel FS, Evans JW. Morphological alterations produced by copper in neural tissues with consideration of the role of the metal in the pathogenesis of Wilson's disease. J Exp Med. 1961;113:997–1004.PubMedCrossRef Vogel FS, Evans JW. Morphological alterations produced by copper in neural tissues with consideration of the role of the metal in the pathogenesis of Wilson's disease. J Exp Med. 1961;113:997–1004.PubMedCrossRef
12.
go back to reference Wisniewski H, Majdecki T, Wisniewska K. Topography of brain lesions after intracerebral, intraventricular and subarachnoid injection of copper salts. Neuropatol Polska. 1965;3:391–6. Wisniewski H, Majdecki T, Wisniewska K. Topography of brain lesions after intracerebral, intraventricular and subarachnoid injection of copper salts. Neuropatol Polska. 1965;3:391–6.
13.
go back to reference Lem KE, Brinster LR, Tjurmina O, Lizak M, Lal S, Centeno JA, et al. Safety of intracerebroventricular copper histidine in adult rats. Mol Genet Metab. 2007;91:30–6.PubMedCrossRef Lem KE, Brinster LR, Tjurmina O, Lizak M, Lal S, Centeno JA, et al. Safety of intracerebroventricular copper histidine in adult rats. Mol Genet Metab. 2007;91:30–6.PubMedCrossRef
14.
go back to reference Koeppen AH, Michael SC, Li D, Chen Z, Cusack MJ, Gibson WM, et al. The pathology of superficial siderosis of the central nervous system. Acta Neuropathol. 2008;116:371–82.PubMedCrossRef Koeppen AH, Michael SC, Li D, Chen Z, Cusack MJ, Gibson WM, et al. The pathology of superficial siderosis of the central nervous system. Acta Neuropathol. 2008;116:371–82.PubMedCrossRef
15.
go back to reference Koeppen AH, Morral JA, Davis AN, Qian J, Petrocine SV, Knutson MD, et al. The dorsal root ganglion in Friedreich's ataxia. Acta Neuropathol. 2009;118:763–76.PubMedCrossRef Koeppen AH, Morral JA, Davis AN, Qian J, Petrocine SV, Knutson MD, et al. The dorsal root ganglion in Friedreich's ataxia. Acta Neuropathol. 2009;118:763–76.PubMedCrossRef
18.
go back to reference Chen ZW, Wittry DW. Microanalysis by monochromatic microprobe X-ray fluorescence—physical basis, properties and future prospects. J Appl Phys. 1998;84:1064–73.CrossRef Chen ZW, Wittry DW. Microanalysis by monochromatic microprobe X-ray fluorescence—physical basis, properties and future prospects. J Appl Phys. 1998;84:1064–73.CrossRef
19.
go back to reference Chen J, Spear SK, Huddleston JG, Rogers RD. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem. 2005;7:64–82.CrossRef Chen J, Spear SK, Huddleston JG, Rogers RD. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem. 2005;7:64–82.CrossRef
20.
go back to reference Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr. 2000;130:1471S–83S.PubMed Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr. 2000;130:1471S–83S.PubMed
21.
go back to reference Boddaert N, Le Quan Sang KH, Rötig A, Leroy-Willig A, Gallet S, Brunelle F, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 2007;110:401–8.PubMedCrossRef Boddaert N, Le Quan Sang KH, Rötig A, Leroy-Willig A, Gallet S, Brunelle F, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 2007;110:401–8.PubMedCrossRef
22.
go back to reference Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedreich's ataxia. Ann Neurol. 1999;46:123–5.PubMedCrossRef Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedreich's ataxia. Ann Neurol. 1999;46:123–5.PubMedCrossRef
23.
go back to reference Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85.PubMedCrossRef Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85.PubMedCrossRef
24.
go back to reference Koppenol WH. Chemistry of iron and copper in radical reactions. In: Rice-Evans CA, Burdon RH, editors. Free radical damage and its control. Amsterdam: Elsevier; 1994. p. 3–24.CrossRef Koppenol WH. Chemistry of iron and copper in radical reactions. In: Rice-Evans CA, Burdon RH, editors. Free radical damage and its control. Amsterdam: Elsevier; 1994. p. 3–24.CrossRef
25.
go back to reference Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57:467–78.PubMedCrossRef Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57:467–78.PubMedCrossRef
26.
go back to reference Prohaska JR, Gybina AA. Intracellular copper transport in mammals. J Nutr. 2004;134:1003–6.PubMed Prohaska JR, Gybina AA. Intracellular copper transport in mammals. J Nutr. 2004;134:1003–6.PubMed
27.
go back to reference Levenson CW, Janghobaini M. Long-term measurements of organ copper turnover in rats by continuous feeding of a stable isotope. Anal Biochem. 1994;221:243–9.PubMedCrossRef Levenson CW, Janghobaini M. Long-term measurements of organ copper turnover in rats by continuous feeding of a stable isotope. Anal Biochem. 1994;221:243–9.PubMedCrossRef
28.
go back to reference Prohaska JR, Brokate B. Lower copper, zinc-superoxide dismutase protein but not mRNA in organs of copper-deficient rats. Arch Biochem Biophys. 2001;393:170–6.PubMedCrossRef Prohaska JR, Brokate B. Lower copper, zinc-superoxide dismutase protein but not mRNA in organs of copper-deficient rats. Arch Biochem Biophys. 2001;393:170–6.PubMedCrossRef
29.
go back to reference Prohaska JR, Broderius M, Brokate B. Metallochaperone for Cu, Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper deficient mice and rats. Arch Biochem Biophys. 2003;417:227–34.PubMedCrossRef Prohaska JR, Broderius M, Brokate B. Metallochaperone for Cu, Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper deficient mice and rats. Arch Biochem Biophys. 2003;417:227–34.PubMedCrossRef
30.
go back to reference Prohaska JR, Geissler J, Brokate B, Broderius M. Copper, zinc-superoxide dismutase protein but not mRNA is lower in copper-deficient mice and mice lacking the copper chaperone for superoxide dismutase. Exp Biol Med. 2003;228:959–66. Prohaska JR, Geissler J, Brokate B, Broderius M. Copper, zinc-superoxide dismutase protein but not mRNA is lower in copper-deficient mice and mice lacking the copper chaperone for superoxide dismutase. Exp Biol Med. 2003;228:959–66.
31.
go back to reference Caruano-Yzermans AL, Bartnikas TB, Gitlin JD. Mechanism of the copper-dependent turnover of the copper chaperone for superoxide dismutase. J Biol Chem. 2006;281:13581–7.PubMedCrossRef Caruano-Yzermans AL, Bartnikas TB, Gitlin JD. Mechanism of the copper-dependent turnover of the copper chaperone for superoxide dismutase. J Biol Chem. 2006;281:13581–7.PubMedCrossRef
32.
go back to reference Prado CA, Xu Z, Borchelt DR, Price DL, Sisoda SS, Cleveland DW. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci USA. 1995;92:954–8.CrossRef Prado CA, Xu Z, Borchelt DR, Price DL, Sisoda SS, Cleveland DW. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci USA. 1995;92:954–8.CrossRef
33.
go back to reference Petris MJ, Mercer JFB, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 1996;15:6084–95.PubMed Petris MJ, Mercer JFB, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 1996;15:6084–95.PubMed
34.
go back to reference Choi B-S, Zheng W. Copper transport to the brain by the blood–brain barrier and blood-CSF barrier. Brain Res. 2009;1248:14–21.PubMedCrossRef Choi B-S, Zheng W. Copper transport to the brain by the blood–brain barrier and blood-CSF barrier. Brain Res. 2009;1248:14–21.PubMedCrossRef
35.
go back to reference Qian Y, Tiffany-Castiglioni E, Welsh J, Harris ED. Copper efflux from murine microvascular cells requires expression of the Menkes disease Cu-ATPase. J Nutr. 1998;128:1276–82.PubMed Qian Y, Tiffany-Castiglioni E, Welsh J, Harris ED. Copper efflux from murine microvascular cells requires expression of the Menkes disease Cu-ATPase. J Nutr. 1998;128:1276–82.PubMed
36.
go back to reference Dincer Z, Haywood S, Jasani B. Immunocytochemical detection of metallothionein (MT1 and MT2) in copper-enhanced sheep brains. J Comp Pathol. 1999;120:29–37.PubMedCrossRef Dincer Z, Haywood S, Jasani B. Immunocytochemical detection of metallothionein (MT1 and MT2) in copper-enhanced sheep brains. J Comp Pathol. 1999;120:29–37.PubMedCrossRef
37.
go back to reference Hidalgo J, Aschner M, Zatta P, Vasák M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull. 2001;55:133–45.PubMedCrossRef Hidalgo J, Aschner M, Zatta P, Vasák M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull. 2001;55:133–45.PubMedCrossRef
38.
go back to reference Blaauwgeers HGT, Sillevis Smitt PAE, De Jong JMBV, Troost D. Distribution of metallothionein in the human central nervous system. Glia. 1993;8:62–70.PubMedCrossRef Blaauwgeers HGT, Sillevis Smitt PAE, De Jong JMBV, Troost D. Distribution of metallothionein in the human central nervous system. Glia. 1993;8:62–70.PubMedCrossRef
39.
go back to reference Fox PL. The copper-iron chronicles: the story of an intimate relationship. BioMetals. 2003;16:9–40.PubMedCrossRef Fox PL. The copper-iron chronicles: the story of an intimate relationship. BioMetals. 2003;16:9–40.PubMedCrossRef
40.
go back to reference Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG, Kelly RA, et al. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science. 2010;327:331–4.PubMedCrossRef Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG, Kelly RA, et al. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science. 2010;327:331–4.PubMedCrossRef
41.
go back to reference Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. 2011;10:637–46.PubMedCrossRef Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. 2011;10:637–46.PubMedCrossRef
42.
go back to reference Marmolino D, Manto M. Pregabalin antagonizes copper-induced toxicity in the brain: in vitro and in vivo studies. Neurosignals. 2010;18:210–22.PubMedCrossRef Marmolino D, Manto M. Pregabalin antagonizes copper-induced toxicity in the brain: in vitro and in vivo studies. Neurosignals. 2010;18:210–22.PubMedCrossRef
Metadata
Title
Friedreich's Ataxia Causes Redistribution of Iron, Copper, and Zinc in the Dentate Nucleus
Authors
Arnulf H. Koeppen
R. Liane Ramirez
Devin Yu
Sarah E. Collins
Jiang Qian
Patrick J. Parsons
Karl X. Yang
Zewu Chen
Joseph E. Mazurkiewicz
Paul J. Feustel
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 4/2012
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-012-0383-5

Other articles of this Issue 4/2012

The Cerebellum 4/2012 Go to the issue