Skip to main content
Top
Published in: The Cerebellum 1/2012

01-03-2012

Gait Pattern in Inherited Cerebellar Ataxias

Authors: Mariano Serrao, Francesco Pierelli, Alberto Ranavolo, Francesco Draicchio, Carmela Conte, Romildo Don, Roberto Di Fabio, Margherita LeRose, Luca Padua, Giorgio Sandrini, Carlo Casali

Published in: The Cerebellum | Issue 1/2012

Login to get access

Abstract

Our aim was to perform a comprehensive analysis of the global and segmental features of gait in patients with genetically confirmed inherited ataxias. Sixteen patients with autosomal dominant (spinocerebellar ataxia, SCA1 or 2) or recessive (Friedreich’s ataxia, FRDA) ataxia were studied. We used a motion analysis system to record gait kinematic and kinetic data. We measured the mean values of global (time–distance parameters, COM displacement, support moment) and segmental gait parameters (joint displacement and inter-joint coordination), as both discrete and continuous variables, and their variability and correlations with International Cooperative Ataxia Rating Scale (ICARS) scores. We found a marked difference in all global gait parameters between the ataxic patients and the controls and close correlations between longer stride and stance duration and lower gait, posture and total ICARS scores. The only difference between the two patient groups was a shorter step length in the FRDA patients. As regards the segmental features, we found a significantly different waveform shape for all continuous kinematic and kinetic measures between the ataxic patients and the healthy controls, but only minor differences for the discrete measures. Intersegmental coordination evaluated using the continuous relative phase method revealed an irregular alternating joint behaviour without clear evidence of the synchronous pattern of alternating proximal/distal joint seen in healthy subjects. For almost all gait parameters we observed a markedly higher intra-subject variability in the ataxic patients versus the controls, which was strongly related to the clinical ICARS scores. Patients with chronic, progressive inherited ataxias lose the ability to “stabilize” a walking pattern that can be repeated over time. The most peculiar aspect of the gait of inherited ataxia patients, regardless the different genetic forms, seems to be the presence of increased variability of all global and segmental parameters rather than an invariant abnormal gait pattern.
Literature
2.
go back to reference Hallett M, Massaquoi SG. Physiologic studies of dysmetria in patients with cerebellar deficits. Can J Neurol Sci. 1993;20:S83–92.PubMed Hallett M, Massaquoi SG. Physiologic studies of dysmetria in patients with cerebellar deficits. Can J Neurol Sci. 1993;20:S83–92.PubMed
3.
go back to reference Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol. 1984;57:134–42.PubMedCrossRef Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol. 1984;57:134–42.PubMedCrossRef
4.
go back to reference Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10:247–59.PubMedCrossRef Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10:247–59.PubMedCrossRef
5.
go back to reference Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRef Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRef
6.
go back to reference Wilson CL, Fahey MC, Corben LA, Collins VR, Churchyard AJ, Lamont PJ, et al. Quality of life in Friedreich ataxia: what clinical, social and demographic factors are important? Eur J Neurol. 2007;14:1040–7.PubMedCrossRef Wilson CL, Fahey MC, Corben LA, Collins VR, Churchyard AJ, Lamont PJ, et al. Quality of life in Friedreich ataxia: what clinical, social and demographic factors are important? Eur J Neurol. 2007;14:1040–7.PubMedCrossRef
7.
go back to reference Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 2007;6:245–57.PubMedCrossRef Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 2007;6:245–57.PubMedCrossRef
8.
go back to reference Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998;13:958–64.PubMedCrossRef Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998;13:958–64.PubMedCrossRef
9.
go back to reference Hudson CC, Krebs DE. Frontal plane dynamic stability and coordination in subjects with cerebellar degeneration. Exp Brain Res. 2000;132:103–13.PubMedCrossRef Hudson CC, Krebs DE. Frontal plane dynamic stability and coordination in subjects with cerebellar degeneration. Exp Brain Res. 2000;132:103–13.PubMedCrossRef
10.
go back to reference Ebersbach G, Sojer M, Valldeoriola F, Wissel J, Muller J, Tolosa E, et al. Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain. 1999;122:1349–55.PubMedCrossRef Ebersbach G, Sojer M, Valldeoriola F, Wissel J, Muller J, Tolosa E, et al. Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain. 1999;122:1349–55.PubMedCrossRef
11.
go back to reference Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci. 2000;174:22–39.PubMedCrossRef Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci. 2000;174:22–39.PubMedCrossRef
12.
go back to reference Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, et al. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry. 2002;73:310–2.PubMedCrossRef Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, et al. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry. 2002;73:310–2.PubMedCrossRef
13.
go back to reference Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89:1844–56.PubMedCrossRef Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89:1844–56.PubMedCrossRef
14.
go back to reference Earhart GM, Bastian AJ. Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol. 2001;85:759–69.PubMed Earhart GM, Bastian AJ. Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol. 2001;85:759–69.PubMed
15.
go back to reference Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130:786–8.PubMedCrossRef Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130:786–8.PubMedCrossRef
16.
go back to reference Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain. 2008;131:2913–27.PubMedCrossRef Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain. 2008;131:2913–27.PubMedCrossRef
17.
go back to reference Crowdy KA, Hollands MA, Ferguson IT, Marple-Horvat DE. Evidence for interactive locomotor and oculomotor deficits in cerebellar patients during visually guided stepping. Exp Brain Res. 2000;135:437–54.PubMedCrossRef Crowdy KA, Hollands MA, Ferguson IT, Marple-Horvat DE. Evidence for interactive locomotor and oculomotor deficits in cerebellar patients during visually guided stepping. Exp Brain Res. 2000;135:437–54.PubMedCrossRef
18.
go back to reference Trouillas P, Takayanagi T, Hallett M, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRef Trouillas P, Takayanagi T, Hallett M, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRef
19.
go back to reference Ferrigno G, Pedotti A. ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing. IEEE Trans Biomed Eng. 1985;32:943–50.PubMedCrossRef Ferrigno G, Pedotti A. ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing. IEEE Trans Biomed Eng. 1985;32:943–50.PubMedCrossRef
20.
go back to reference Winter DA. Biomechanics of human movement. New York. Wiley, 1990. Winter DA. Biomechanics of human movement. New York. Wiley, 1990.
21.
go back to reference Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Movement Sci. 1991;10:575–87.CrossRef Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Movement Sci. 1991;10:575–87.CrossRef
22.
go back to reference Gutierrez-Farewik EM, Bartonek A, Saraste H. Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait. Hum Movement Sci. 2006;25:238–56.CrossRef Gutierrez-Farewik EM, Bartonek A, Saraste H. Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait. Hum Movement Sci. 2006;25:238–56.CrossRef
23.
go back to reference Perry J. Movement analysis. Normal and pathological function. New Jersey: SLACK Incorporated. Elsevier; 1992. Perry J. Movement analysis. Normal and pathological function. New Jersey: SLACK Incorporated. Elsevier; 1992.
25.
go back to reference DeVita P, Lassiter Jr T, Hortobagyi T, Torry M. Functional knee brace effects during walking in patients with anterior cruciate ligament reconstruction. Am J Sports Med. 1998;26:778–84.PubMed DeVita P, Lassiter Jr T, Hortobagyi T, Torry M. Functional knee brace effects during walking in patients with anterior cruciate ligament reconstruction. Am J Sports Med. 1998;26:778–84.PubMed
26.
go back to reference Vaughan CL, Davis BL, O’Connor JC. Dynamics of human gait. 2nd Ed. South Africa: Kiboho Publishers; 1999. Vaughan CL, Davis BL, O’Connor JC. Dynamics of human gait. 2nd Ed. South Africa: Kiboho Publishers; 1999.
27.
go back to reference Kelso JA. Phase transitions and critical behavior in human bimanual coordination. Am J Physiol. 1984;246:R1000–4.PubMed Kelso JA. Phase transitions and critical behavior in human bimanual coordination. Am J Physiol. 1984;246:R1000–4.PubMed
28.
go back to reference Haken H, Kelso JA, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985;51:347–56.PubMedCrossRef Haken H, Kelso JA, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985;51:347–56.PubMedCrossRef
29.
go back to reference Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech (Bristol, Avon). 1999;14:297–308.CrossRef Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech (Bristol, Avon). 1999;14:297–308.CrossRef
30.
go back to reference Stergiou N, Jensen JL, Bates BT, Scholten SD, Tzetzis G. A dynamical systems investigation of lower extremity coordination during running over obstacles. Clin Biomech (Bristol, Avon). 2001;16:213–21.CrossRef Stergiou N, Jensen JL, Bates BT, Scholten SD, Tzetzis G. A dynamical systems investigation of lower extremity coordination during running over obstacles. Clin Biomech (Bristol, Avon). 2001;16:213–21.CrossRef
31.
go back to reference Li L, Van Den Bogert ECH, Caldwell GE, Van Emmerick REA, Hamill J. Coordination patterns of walking and running at similar speed and stride frequency. Hum Mov Sci. 1999;8:67–85.CrossRef Li L, Van Den Bogert ECH, Caldwell GE, Van Emmerick REA, Hamill J. Coordination patterns of walking and running at similar speed and stride frequency. Hum Mov Sci. 1999;8:67–85.CrossRef
32.
go back to reference Kabada MP, Ramakrishnan ME, Gainey WJ, Gorton G, Cochran GVB. Reproducibility of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989;7:849–60.CrossRef Kabada MP, Ramakrishnan ME, Gainey WJ, Gorton G, Cochran GVB. Reproducibility of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989;7:849–60.CrossRef
33.
go back to reference Gilman S, Bloedel JR, Lechtemberg R. Disorders of the cerebellum. Contemporary Neurology Series. Philadelphia: EA Davis; 1981. Gilman S, Bloedel JR, Lechtemberg R. Disorders of the cerebellum. Contemporary Neurology Series. Philadelphia: EA Davis; 1981.
34.
go back to reference Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20((Suppl)3):S93–104.PubMed Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20((Suppl)3):S93–104.PubMed
35.
go back to reference Goodkin HP, Thach WT. Cerebellar control of constrained and unconstrained movements: II. EMG and nuclear activity. J Neurophysiol. 2003;89:896–908.PubMedCrossRef Goodkin HP, Thach WT. Cerebellar control of constrained and unconstrained movements: II. EMG and nuclear activity. J Neurophysiol. 2003;89:896–908.PubMedCrossRef
36.
go back to reference Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.PubMed Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.PubMed
37.
go back to reference Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83:3019–30.PubMed Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83:3019–30.PubMed
38.
go back to reference Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRef Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRef
39.
40.
go back to reference Barak Y, Wagenaar RC, Holt KG. Gait characteristics of elderly people with a history of falls: a dynamic approach. Phys Ther. 2006;86:1501–10.PubMedCrossRef Barak Y, Wagenaar RC, Holt KG. Gait characteristics of elderly people with a history of falls: a dynamic approach. Phys Ther. 2006;86:1501–10.PubMedCrossRef
41.
go back to reference Hollman JH, Kovash FM, Kubik JJ, Linbo RA. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture. 2007;26:113–9.PubMedCrossRef Hollman JH, Kovash FM, Kubik JJ, Linbo RA. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture. 2007;26:113–9.PubMedCrossRef
42.
go back to reference Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord. 1998;13:428–37.PubMedCrossRef Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord. 1998;13:428–37.PubMedCrossRef
43.
go back to reference Webster KE, Merory JR, Wittwer JE. Gait variability in community dwelling adults with Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20:37–40.PubMedCrossRef Webster KE, Merory JR, Wittwer JE. Gait variability in community dwelling adults with Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20:37–40.PubMedCrossRef
Metadata
Title
Gait Pattern in Inherited Cerebellar Ataxias
Authors
Mariano Serrao
Francesco Pierelli
Alberto Ranavolo
Francesco Draicchio
Carmela Conte
Romildo Don
Roberto Di Fabio
Margherita LeRose
Luca Padua
Giorgio Sandrini
Carlo Casali
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 1/2012
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0296-8

Other articles of this Issue 1/2012

The Cerebellum 1/2012 Go to the issue