Skip to main content
Top
Published in: The Cerebellum 3/2011

01-09-2011

Precerebellar Cell Groups in the Hindbrain of the Mouse Defined by Retrograde Tracing and Correlated with Cumulative Wnt1-Cre Genetic Labeling

Authors: YuHong Fu, Petr Tvrdik, Nadja Makki, George Paxinos, Charles Watson

Published in: The Cerebellum | Issue 3/2011

Login to get access

Abstract

The precerebellar nuclei are hindbrain and spinal cord centers that send fibers to the cerebellum. The neurons of the major hindbrain precerebellar nuclei are derived from the rhombic lip. Wnt1, a developmentally important gene involved in intercellular signaling, is expressed in the developing rhombic lip. We sought to investigate the relationship between the cell clusters expressing Wnt1 and the precerebellar nuclei in the hindbrain. We therefore defined the hindbrain precerebellar nuclei by retrograde tracing, following cerebellar injections of HRP, and compared these results with the cell clusters expressing Wnt1 in newborn mice. We found that 39 distinct hindbrain nuclei project to the cerebellum. Of these nuclei, all but three (namely the oral pontine reticular nucleus, the caudal pontine reticular nucleus, and the subcoeruleus nucleus) contain neurons expressing Wnt1. This shows a high degree of overlap between the precerebellar nuclei and the nuclei that express Wnt1. However, it should be noted that neurons expressing Wnt1 are also found in the superior olivary complex, which is a basal plate derivative lacking cerebellar projections.
Literature
1.
go back to reference Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, et al. Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron. 2005;48:933–47.PubMedCrossRef Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, et al. Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron. 2005;48:933–47.PubMedCrossRef
2.
go back to reference Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24.PubMedCrossRef Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24.PubMedCrossRef
3.
go back to reference Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48:31–43.PubMedCrossRef Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48:31–43.PubMedCrossRef
4.
go back to reference Brodal A. The cerebellum. Neurological anatomy in relation to clinical medicine. third ed. New York: Oxford university press; 1981. p. 294–394. Brodal A. The cerebellum. Neurological anatomy in relation to clinical medicine. third ed. New York: Oxford university press; 1981. p. 294–394.
5.
go back to reference Harkmark W. Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons; a morphological and experimental investigation on chick embryos. J Comp Neurol. 1954;100:115–209.PubMedCrossRef Harkmark W. Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons; a morphological and experimental investigation on chick embryos. J Comp Neurol. 1954;100:115–209.PubMedCrossRef
6.
go back to reference Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: I. The precerebellar neuroepithelium of the rhombencephalon. J Comp Neurol. 1987;257:477–89.PubMedCrossRef Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: I. The precerebellar neuroepithelium of the rhombencephalon. J Comp Neurol. 1987;257:477–89.PubMedCrossRef
7.
go back to reference Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol. 1987;257:490–512.PubMedCrossRef Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol. 1987;257:490–512.PubMedCrossRef
8.
go back to reference Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol. 1987;257:513–28.PubMedCrossRef Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol. 1987;257:513–28.PubMedCrossRef
9.
go back to reference Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol. 1987;257:529–52.PubMedCrossRef Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol. 1987;257:529–52.PubMedCrossRef
10.
go back to reference Keynes R, Krumlauf R. Hox genes and regionalization of the nervous system. Annu Rev Neurosci. 1994;17:109–32.PubMedCrossRef Keynes R, Krumlauf R. Hox genes and regionalization of the nervous system. Annu Rev Neurosci. 1994;17:109–32.PubMedCrossRef
11.
go back to reference Aroca P, Puelles L. Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Brain Res Rev. 2005;49:179–90.PubMedCrossRef Aroca P, Puelles L. Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Brain Res Rev. 2005;49:179–90.PubMedCrossRef
12.
go back to reference Liu Z, Li H, Hu X, Yu L, Liu H, Han R, et al. Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci. 2008;28:10124–33.PubMedCrossRef Liu Z, Li H, Hu X, Yu L, Liu H, Han R, et al. Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci. 2008;28:10124–33.PubMedCrossRef
13.
go back to reference Rowan A. Development—mapping cerebellar development. Nat Rev Neurosci. 2006;7:598.CrossRef Rowan A. Development—mapping cerebellar development. Nat Rev Neurosci. 2006;7:598.CrossRef
14.
go back to reference Farago AF, Awatramani RB, Dymecki SM. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron. 2006;50:205–18.PubMedCrossRef Farago AF, Awatramani RB, Dymecki SM. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron. 2006;50:205–18.PubMedCrossRef
15.
16.
go back to reference Nichols DH, Bruce LL. Migratory routes and fates of cells transcribing the Wnt-1 gene in the murine hindbrain. Dev Dyn. 2006;235:285–300.PubMedCrossRef Nichols DH, Bruce LL. Migratory routes and fates of cells transcribing the Wnt-1 gene in the murine hindbrain. Dev Dyn. 2006;235:285–300.PubMedCrossRef
17.
go back to reference Ahlsén G. Retrograde labelling of retinogeniculate neurones in the cat by HRP uptake from the diffuse injection zone. Brain Res. 1981;223:374–80.PubMedCrossRef Ahlsén G. Retrograde labelling of retinogeniculate neurones in the cat by HRP uptake from the diffuse injection zone. Brain Res. 1981;223:374–80.PubMedCrossRef
18.
go back to reference Dietrichs E, Walberg F. The cerebellar nucleo-olivary and olivo-cerebellar nuclear projections in the cat as studied with anterograde and retrograde transport in the same animal after implantation of crystalline WGA-HRP. II. The fastigial nucleus. Anat Embryol Berl. 1985;173:253–61.PubMedCrossRef Dietrichs E, Walberg F. The cerebellar nucleo-olivary and olivo-cerebellar nuclear projections in the cat as studied with anterograde and retrograde transport in the same animal after implantation of crystalline WGA-HRP. II. The fastigial nucleus. Anat Embryol Berl. 1985;173:253–61.PubMedCrossRef
19.
go back to reference Mesulam MM. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem. 1978;26:106–17.PubMedCrossRef Mesulam MM. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem. 1978;26:106–17.PubMedCrossRef
20.
go back to reference Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998;8:1323–6.PubMedCrossRef Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998;8:1323–6.PubMedCrossRef
21.
go back to reference Chai Y, Jiang X, Ito Y, Bringas Jr P, Han J, Rowitch DH, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127:1671–9.PubMed Chai Y, Jiang X, Ito Y, Bringas Jr P, Han J, Rowitch DH, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127:1671–9.PubMed
22.
go back to reference Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21:70–1.PubMedCrossRef Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21:70–1.PubMedCrossRef
23.
go back to reference Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates. 3rd ed. San Diego: Elsevier; 2008. Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates. 3rd ed. San Diego: Elsevier; 2008.
24.
go back to reference Tsai EC, van Bendegem RL, Hwang SW, Tator CH. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal. J Histochem Cytochem. 2001;49:1111–22.PubMedCrossRef Tsai EC, van Bendegem RL, Hwang SW, Tator CH. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal. J Histochem Cytochem. 2001;49:1111–22.PubMedCrossRef
25.
go back to reference Fujimori KE, Takauji R, Yoshihara Y, Tamada A, Mori K, Tamamaki N. A procedure for in situ hybridization combined with retrograde labeling of neurons: application to the study of cell adhesion molecule expression in Dil-labeled rat pyramidal neurons. J Histochem Cytochem. 1997;45:455–9.PubMedCrossRef Fujimori KE, Takauji R, Yoshihara Y, Tamada A, Mori K, Tamamaki N. A procedure for in situ hybridization combined with retrograde labeling of neurons: application to the study of cell adhesion molecule expression in Dil-labeled rat pyramidal neurons. J Histochem Cytochem. 1997;45:455–9.PubMedCrossRef
26.
go back to reference Fu Y, Tvrdik P, Makki N, Palombi O, Machold R, Paxinos G, et al. The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression. Brain Res. 2009;1271:49–59.PubMedCrossRef Fu Y, Tvrdik P, Makki N, Palombi O, Machold R, Paxinos G, et al. The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression. Brain Res. 2009;1271:49–59.PubMedCrossRef
27.
go back to reference Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414:131–48.PubMedCrossRef Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414:131–48.PubMedCrossRef
28.
go back to reference Van der Want JJ, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.PubMedCrossRef Van der Want JJ, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.PubMedCrossRef
29.
go back to reference Ruigrok TJH. Precerebellar nuclei and red nuclei The rat nervous system. 3rd ed. Sydney: Academic; 2004. p. 180–7. Ruigrok TJH. Precerebellar nuclei and red nuclei The rat nervous system. 3rd ed. Sydney: Academic; 2004. p. 180–7.
30.
go back to reference Røste GK. Observations on the projection from the perihypoglossal nuclei to the cerebellar cortex and nuclei in the cat. A retrograde WGA-HRP and fluorescent tracer study. Anat Embryol Berl. 1989;180:521–33.PubMedCrossRef Røste GK. Observations on the projection from the perihypoglossal nuclei to the cerebellar cortex and nuclei in the cat. A retrograde WGA-HRP and fluorescent tracer study. Anat Embryol Berl. 1989;180:521–33.PubMedCrossRef
31.
go back to reference Kotchabhakdi N, Walberg F. Cerebellar afferent projections from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res. 1978;31:591–604.PubMed Kotchabhakdi N, Walberg F. Cerebellar afferent projections from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res. 1978;31:591–604.PubMed
32.
go back to reference Langer T, Fuchs AF, Scudder CA, Chubb MC. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 1985;235:1–25.PubMedCrossRef Langer T, Fuchs AF, Scudder CA, Chubb MC. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 1985;235:1–25.PubMedCrossRef
33.
go back to reference Blanks RH, Precht W, Torigoe Y. Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res. 1983;52:293–306.PubMedCrossRef Blanks RH, Precht W, Torigoe Y. Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res. 1983;52:293–306.PubMedCrossRef
34.
go back to reference Horn AK, Buttner-Ennever JA, Wahle P, Reichenberger I. Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. J Neurosci. 1994;14:2032–46.PubMed Horn AK, Buttner-Ennever JA, Wahle P, Reichenberger I. Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. J Neurosci. 1994;14:2032–46.PubMed
35.
go back to reference Aitken AR, Tork I. Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal-rat brain. J Comp Neurol. 1988;274:32–47.PubMedCrossRef Aitken AR, Tork I. Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal-rat brain. J Comp Neurol. 1988;274:32–47.PubMedCrossRef
36.
go back to reference Beyerl BD, Borges LF, Swearingen B, Sidman RL. Parasagittal organization of the olivocerebellar projection in the mouse. J Comp Neurol. 1982;209:339–46.PubMedCrossRef Beyerl BD, Borges LF, Swearingen B, Sidman RL. Parasagittal organization of the olivocerebellar projection in the mouse. J Comp Neurol. 1982;209:339–46.PubMedCrossRef
37.
go back to reference Hökfelt T, Fuxe K. Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp Brain Res. 1969;9:63–72.PubMedCrossRef Hökfelt T, Fuxe K. Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp Brain Res. 1969;9:63–72.PubMedCrossRef
38.
go back to reference Dietrichs E, Wiklund L, Haines DE. The hypothalamo-cerebellar projection in the rat: origin and transmitter. Arch Ital Biol. 1992;130:203–11.PubMed Dietrichs E, Wiklund L, Haines DE. The hypothalamo-cerebellar projection in the rat: origin and transmitter. Arch Ital Biol. 1992;130:203–11.PubMed
39.
go back to reference Haines DE, Dietrichs E, Culberson JL, Sowa TE. The organization of hypothalamocerebellar cortical fibers in the squirrel monkey (Saimiri sciureus). J Comp Neurol. 1986;250:377–88.PubMedCrossRef Haines DE, Dietrichs E, Culberson JL, Sowa TE. The organization of hypothalamocerebellar cortical fibers in the squirrel monkey (Saimiri sciureus). J Comp Neurol. 1986;250:377–88.PubMedCrossRef
40.
go back to reference Olson L, Fuxe K. On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. Brain Res. 1971;28:165–71.PubMedCrossRef Olson L, Fuxe K. On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. Brain Res. 1971;28:165–71.PubMedCrossRef
41.
go back to reference Yaginuma H, Matsushita M. Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1987;258:1–27.PubMedCrossRef Yaginuma H, Matsushita M. Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1987;258:1–27.PubMedCrossRef
42.
go back to reference Grant G, Wiksten B, Berkley KJ, Aldskogius H. The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. J Comp Neurol. 1982;204:336–48.PubMedCrossRef Grant G, Wiksten B, Berkley KJ, Aldskogius H. The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. J Comp Neurol. 1982;204:336–48.PubMedCrossRef
43.
go back to reference Matsushita M, Tanami T. Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1987;266:376–97.PubMedCrossRef Matsushita M, Tanami T. Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1987;266:376–97.PubMedCrossRef
44.
go back to reference Matsushita M, Yaginuma H. Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol. 1995;353:234–46.PubMedCrossRef Matsushita M, Yaginuma H. Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol. 1995;353:234–46.PubMedCrossRef
45.
go back to reference Shaw MD, Baker R. The locations of stapedius and tensor tympani motoneurons in the cat. J Comp Neurol. 1983;216:10–9.PubMedCrossRef Shaw MD, Baker R. The locations of stapedius and tensor tympani motoneurons in the cat. J Comp Neurol. 1983;216:10–9.PubMedCrossRef
46.
go back to reference Strutz J, Münker G, Zöllner C. The motor innervation of the tympanic muscles in the guinea pig. Arch Otorhinolaryngol. 1988;245:108–11.PubMedCrossRef Strutz J, Münker G, Zöllner C. The motor innervation of the tympanic muscles in the guinea pig. Arch Otorhinolaryngol. 1988;245:108–11.PubMedCrossRef
47.
go back to reference Mukerji S, Brown MC, Lee DJ. A morphologic study of Fluorogold labeled tensor tympani motoneurons in mice. Brain Res. 2009;1278:59–65.PubMedCrossRef Mukerji S, Brown MC, Lee DJ. A morphologic study of Fluorogold labeled tensor tympani motoneurons in mice. Brain Res. 2009;1278:59–65.PubMedCrossRef
48.
go back to reference De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.PubMedCrossRef De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.PubMedCrossRef
49.
go back to reference Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346:847–50.PubMedCrossRef Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346:847–50.PubMedCrossRef
50.
51.
go back to reference Muroyama Y, Fujihara M, Ikeya M, Kondoh H, Takada S. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev. 2002;16:548–53.PubMedCrossRef Muroyama Y, Fujihara M, Ikeya M, Kondoh H, Takada S. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev. 2002;16:548–53.PubMedCrossRef
52.
go back to reference Dickinson ME, Krumlauf R, McMahon AP. Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development. 1994;120:1453–71.PubMed Dickinson ME, Krumlauf R, McMahon AP. Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development. 1994;120:1453–71.PubMed
53.
go back to reference Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S. The chick brain in stereotaxic coordinates. San Diego: Elsevier; 2007. Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S. The chick brain in stereotaxic coordinates. San Diego: Elsevier; 2007.
54.
go back to reference Aroca P, Lorente-Cánovas B, Mateos FR, Puelles L. Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: studies in chick and mouse embryos. J Comp Neurol. 2006;496:802–18.PubMedCrossRef Aroca P, Lorente-Cánovas B, Mateos FR, Puelles L. Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: studies in chick and mouse embryos. J Comp Neurol. 2006;496:802–18.PubMedCrossRef
55.
go back to reference Müller F, O'Rahilly R. The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol. 1990;182:375–400.PubMedCrossRef Müller F, O'Rahilly R. The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol. 1990;182:375–400.PubMedCrossRef
56.
go back to reference Marín F, Puelles L. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci. 1995;7:1714–38.PubMedCrossRef Marín F, Puelles L. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci. 1995;7:1714–38.PubMedCrossRef
57.
go back to reference Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME. Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. Anat Rec A Discov Mol Cell Evol Biol. 2005;283:224–38.PubMed Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME. Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. Anat Rec A Discov Mol Cell Evol Biol. 2005;283:224–38.PubMed
Metadata
Title
Precerebellar Cell Groups in the Hindbrain of the Mouse Defined by Retrograde Tracing and Correlated with Cumulative Wnt1-Cre Genetic Labeling
Authors
YuHong Fu
Petr Tvrdik
Nadja Makki
George Paxinos
Charles Watson
Publication date
01-09-2011
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 3/2011
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0266-1

Other articles of this Issue 3/2011

The Cerebellum 3/2011 Go to the issue