Skip to main content
Top
Published in: The Cerebellum 2/2010

01-06-2010

Computation of Egomotion in the Macaque Cerebellar Vermis

Authors: Dora E. Angelaki, Tatyana A. Yakusheva, Andrea M. Green, J. David Dickman, Pablo M. Blazquez

Published in: The Cerebellum | Issue 2/2010

Login to get access

Abstract

The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.
Literature
1.
go back to reference Blazquez PM, Hirata Y, Highstein SM (2004) The vestibulo-ocular reflex as a model system for motor learning: what is the role of the cerebellum? Cerebellum 3(3):188–192PubMedCrossRef Blazquez PM, Hirata Y, Highstein SM (2004) The vestibulo-ocular reflex as a model system for motor learning: what is the role of the cerebellum? Cerebellum 3(3):188–192PubMedCrossRef
2.
go back to reference Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609PubMedCrossRef Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609PubMedCrossRef
3.
go back to reference du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci 18:409–441PubMedCrossRef du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci 18:409–441PubMedCrossRef
4.
go back to reference Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131PubMedCrossRef Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131PubMedCrossRef
5.
go back to reference Barmack NH, Baughman RW, Errico P, Shojaku H (1993) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521–534PubMedCrossRef Barmack NH, Baughman RW, Errico P, Shojaku H (1993) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521–534PubMedCrossRef
6.
go back to reference Carpenter MB, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135:221–249PubMedCrossRef Carpenter MB, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135:221–249PubMedCrossRef
7.
go back to reference Kevetter GA, Perachio AA (1986) Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol 254(3):410–424PubMedCrossRef Kevetter GA, Perachio AA (1986) Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol 254(3):410–424PubMedCrossRef
8.
go back to reference Korte GE (1979) The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol 184(2):265–277PubMedCrossRef Korte GE (1979) The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol 184(2):265–277PubMedCrossRef
9.
go back to reference Gerrits NM, Epema AH, van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105(1–2):27–33PubMedCrossRef Gerrits NM, Epema AH, van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105(1–2):27–33PubMedCrossRef
10.
go back to reference Kevetter GA, Leonard RB, Newlands SD, Perachio AA (2004) Central distribution of vestibular afferents that innervate the anterior or lateral semicircular canal in the Mongolian gerbil. J Vestib Res 14(1):1–15PubMed Kevetter GA, Leonard RB, Newlands SD, Perachio AA (2004) Central distribution of vestibular afferents that innervate the anterior or lateral semicircular canal in the Mongolian gerbil. J Vestib Res 14(1):1–15PubMed
11.
go back to reference Ono S, Kushiro K, Zakir M, Meng H, Sato H, Uchino Y (2000) Properties of utricular and saccular nerve-activated vestibulocerebellar neurons in cats. Exp Brain Res 134(1):1–8PubMedCrossRef Ono S, Kushiro K, Zakir M, Meng H, Sato H, Uchino Y (2000) Properties of utricular and saccular nerve-activated vestibulocerebellar neurons in cats. Exp Brain Res 134(1):1–8PubMedCrossRef
12.
go back to reference Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58(1):62–74PubMedCrossRef Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58(1):62–74PubMedCrossRef
13.
go back to reference Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and unulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res 80(1):72–82PubMedCrossRef Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and unulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res 80(1):72–82PubMedCrossRef
14.
go back to reference Akaogi K-I, Ikarashi K, Kawasaki T (1994) Mossy fiber projections from the brain stem to the nodulus in the cat: an experimental study comparing the nodulus, the uvula and the flocculus. Brain Res 638(1–2):12–20PubMedCrossRef Akaogi K-I, Ikarashi K, Kawasaki T (1994) Mossy fiber projections from the brain stem to the nodulus in the cat: an experimental study comparing the nodulus, the uvula and the flocculus. Brain Res 638(1–2):12–20PubMedCrossRef
15.
go back to reference Sato Y, Kanda K-I, Ikarashi K, Kawasaki T (1989) Differential mossy fiber projections to the dorsal and ventral uvula in the cat. J Comp Neurol 279(1):149–164PubMedCrossRef Sato Y, Kanda K-I, Ikarashi K, Kawasaki T (1989) Differential mossy fiber projections to the dorsal and ventral uvula in the cat. J Comp Neurol 279(1):149–164PubMedCrossRef
16.
go back to reference Ruigrok TJ (2003) Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 466(2):278–298PubMedCrossRef Ruigrok TJ (2003) Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 466(2):278–298PubMedCrossRef
17.
go back to reference Bigare F, Voogd J (1977) Cerebello-vestibular projections in the cat. Acta Morphol Neerl Scand 15(4):323–325PubMed Bigare F, Voogd J (1977) Cerebello-vestibular projections in the cat. Acta Morphol Neerl Scand 15(4):323–325PubMed
18.
go back to reference Bernard J-F (1987) Topographical organization of olivocerebellar and corticonuclear connections in the rat-An WGA-HRP study: I. Lobules IX, X and the flocculus. J Comp Neurol 263(2):241–258PubMedCrossRef Bernard J-F (1987) Topographical organization of olivocerebellar and corticonuclear connections in the rat-An WGA-HRP study: I. Lobules IX, X and the flocculus. J Comp Neurol 263(2):241–258PubMedCrossRef
19.
go back to reference Groenewegen HJ, Voogd J (1977) Parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174(3):417–488PubMedCrossRef Groenewegen HJ, Voogd J (1977) Parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174(3):417–488PubMedCrossRef
20.
go back to reference Brodal P, Brodal A (1982) Further observation on the olivocerebellar projection in the monkey. Exp Brain Res 45:71–83PubMedCrossRef Brodal P, Brodal A (1982) Further observation on the olivocerebellar projection in the monkey. Exp Brain Res 45:71–83PubMedCrossRef
21.
go back to reference Kaufman GD, Mustari MJ, Miselis RR, Perachio AA (1996) Transneuronal pathways to the vestibulocerebellum. J Comp Neurol 370:501–523PubMedCrossRef Kaufman GD, Mustari MJ, Miselis RR, Perachio AA (1996) Transneuronal pathways to the vestibulocerebellum. J Comp Neurol 370:501–523PubMedCrossRef
22.
go back to reference Voogd J, Gerrits NM, Ruigrok TJH (1996) Organization of the vestibulocerebellum. Ann N Y Acad Sci 781:553–579PubMedCrossRef Voogd J, Gerrits NM, Ruigrok TJH (1996) Organization of the vestibulocerebellum. Ann N Y Acad Sci 781:553–579PubMedCrossRef
23.
go back to reference Angelaki DE, Hess BJ (1995) Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response. J Neurophysiol 73(4):1716–1720PubMed Angelaki DE, Hess BJ (1995) Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response. J Neurophysiol 73(4):1716–1720PubMed
24.
go back to reference Angelaki DE, Hess BJ (1995) Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol 73(5):1729–1751PubMed Angelaki DE, Hess BJ (1995) Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol 73(5):1729–1751PubMed
25.
go back to reference Wearne S, Raphan T, Cohen B (1998) Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 79:2690–2715PubMed Wearne S, Raphan T, Cohen B (1998) Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 79:2690–2715PubMed
26.
go back to reference Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS (2008) Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes. Prog Brain Res 171:167–172PubMedCrossRef Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS (2008) Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes. Prog Brain Res 171:167–172PubMedCrossRef
27.
go back to reference Marini G, Provini L, Rosina A (1975) Macular input to the cerebellar nodulus. Brain Res 99(2):367–371PubMedCrossRef Marini G, Provini L, Rosina A (1975) Macular input to the cerebellar nodulus. Brain Res 99(2):367–371PubMedCrossRef
28.
go back to reference Marini G, Provini L, Rosina A (1976) Gravity responses of Purkinje cells in the nodulus. Exp Brain Res 24:311–323PubMedCrossRef Marini G, Provini L, Rosina A (1976) Gravity responses of Purkinje cells in the nodulus. Exp Brain Res 24:311–323PubMedCrossRef
29.
go back to reference Precht W, Simpson JI, Llin SR (1976) Responses of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pflugers Arch 367(1):1–6PubMedCrossRef Precht W, Simpson JI, Llin SR (1976) Responses of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pflugers Arch 367(1):1–6PubMedCrossRef
30.
go back to reference Fushiki H, Barmack NH (1997) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78(6):3083–3094PubMed Fushiki H, Barmack NH (1997) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78(6):3083–3094PubMed
31.
go back to reference Barmack NH, Yakhnitsa V (2003) Cerebellar climbing fibers modulate simple spikes in Purkinje cells. J Neurosci 23(21):7904–7916PubMed Barmack NH, Yakhnitsa V (2003) Cerebellar climbing fibers modulate simple spikes in Purkinje cells. J Neurosci 23(21):7904–7916PubMed
32.
go back to reference Yakhnitsa V, Barmack NH (2006) Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll–tilt and topographically organized. Neuroscience 143(2):615–626PubMedCrossRef Yakhnitsa V, Barmack NH (2006) Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll–tilt and topographically organized. Neuroscience 143(2):615–626PubMedCrossRef
33.
go back to reference Barmack NH, Shojaku H (1995) Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 74(6):2573–2589PubMed Barmack NH, Shojaku H (1995) Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 74(6):2573–2589PubMed
34.
go back to reference Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res 140(2):223–236CrossRef Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res 140(2):223–236CrossRef
35.
go back to reference Barmack NH, Shojaku H (1992) Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit. Neuroscience 50(1):1–5PubMedCrossRef Barmack NH, Shojaku H (1992) Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit. Neuroscience 50(1):1–5PubMedCrossRef
36.
go back to reference Yakusheva T, Blazquez PM, Angelaki DE (2008) Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula. J Neurosci 28(40):9997–10009PubMedCrossRef Yakusheva T, Blazquez PM, Angelaki DE (2008) Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula. J Neurosci 28(40):9997–10009PubMedCrossRef
37.
go back to reference Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54(6):973–985PubMedCrossRef Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54(6):973–985PubMedCrossRef
38.
39.
go back to reference Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304–313PubMedCrossRef Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304–313PubMedCrossRef
40.
go back to reference Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430(6999):560–564PubMedCrossRef Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430(6999):560–564PubMedCrossRef
41.
go back to reference Dickman JD, Angelaki DE, Correia MJ (1991) Response properties of gerbil otolith afferents to small angle pitch and roll tilts. Brain Res 556(2):303–310PubMedCrossRef Dickman JD, Angelaki DE, Correia MJ (1991) Response properties of gerbil otolith afferents to small angle pitch and roll tilts. Brain Res 556(2):303–310PubMedCrossRef
42.
go back to reference Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35(6):978–987PubMed Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35(6):978–987PubMed
43.
go back to reference Si X, Angelaki DE, Dickman JD (1997) Response properties of pigeon otolith afferents to linear acceleration. Exp Brain Res 117(2):242–250PubMedCrossRef Si X, Angelaki DE, Dickman JD (1997) Response properties of pigeon otolith afferents to linear acceleration. Exp Brain Res 117(2):242–250PubMedCrossRef
44.
go back to reference Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJ (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19(1):316–327PubMed Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJ (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19(1):316–327PubMed
45.
go back to reference Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39(5):985–995PubMed Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39(5):985–995PubMed
46.
go back to reference Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39(5):970–984PubMed Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39(5):970–984PubMed
47.
go back to reference Green AM, Angelaki DE (2003) Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator. J Neurosci 23(28):9265–9275PubMed Green AM, Angelaki DE (2003) Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator. J Neurosci 23(28):9265–9275PubMed
48.
go back to reference Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618PubMedCrossRef Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618PubMedCrossRef
49.
go back to reference MacNeilage PR, Banks MS, Berger DR, Bulthoff HH (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp Brain Res 179(2):263–290PubMedCrossRef MacNeilage PR, Banks MS, Berger DR, Bulthoff HH (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp Brain Res 179(2):263–290PubMedCrossRef
50.
go back to reference Zupan LH, Merfeld DM (2003) Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli. J Neurophysiol 89(1):390–400PubMedCrossRef Zupan LH, Merfeld DM (2003) Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli. J Neurophysiol 89(1):390–400PubMedCrossRef
51.
go back to reference Glasauer S (1995) Linear acceleration perception: frequency dependence of the hilltop illusion. Acta Otolaryngol S520:37–40CrossRef Glasauer S (1995) Linear acceleration perception: frequency dependence of the hilltop illusion. Acta Otolaryngol S520:37–40CrossRef
52.
go back to reference Glasauer S, Merfeld DM (1997) Modeling three-dimensional responses during complex motion stimulation. In: Fetter MTH, Misslisch H, Tweed D (eds) Three-dimensional kinematics of eye, head, and limb movements. Howard Academic Press, Amsterdam, pp 387–398 Glasauer S, Merfeld DM (1997) Modeling three-dimensional responses during complex motion stimulation. In: Fetter MTH, Misslisch H, Tweed D (eds) Three-dimensional kinematics of eye, head, and limb movements. Howard Academic Press, Amsterdam, pp 387–398
53.
go back to reference Green AM, Angelaki DE (2004) An integrative neural network for detecting inertial motion and head orientation. J Neurophysiol 92(2):905–925PubMedCrossRef Green AM, Angelaki DE (2004) An integrative neural network for detecting inertial motion and head orientation. J Neurophysiol 92(2):905–925PubMedCrossRef
54.
go back to reference Green AM, Angelaki DE (2007) Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments. Prog Brain Res 165:155–180PubMedCrossRef Green AM, Angelaki DE (2007) Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments. Prog Brain Res 165:155–180PubMedCrossRef
55.
go back to reference Green AM, Shaikh AG, Angelaki DE (2005) Sensory vestibular contributions to constructing internal models of self-motion. J Neural Eng 2(3):S164–S179PubMedCrossRef Green AM, Shaikh AG, Angelaki DE (2005) Sensory vestibular contributions to constructing internal models of self-motion. J Neural Eng 2(3):S164–S179PubMedCrossRef
56.
go back to reference Merfeld DM (1995) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp Brain Res 106(1):123–134PubMed Merfeld DM (1995) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp Brain Res 106(1):123–134PubMed
57.
go back to reference Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined tilt & translation. J Neurophysiol 94(1):199–205PubMedCrossRef Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined tilt & translation. J Neurophysiol 94(1):199–205PubMedCrossRef
58.
go back to reference Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt. J Neurophysiol 94(1):186–198PubMedCrossRef Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt. J Neurophysiol 94(1):186–198PubMedCrossRef
59.
go back to reference Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 8792:819–833 Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 8792:819–833
60.
go back to reference Mergner T, Glasauer S (1999) A simple model of vestibular canal-otolith signal fusion. Ann N Y Acad Sci 871:430–434PubMedCrossRef Mergner T, Glasauer S (1999) A simple model of vestibular canal-otolith signal fusion. Ann N Y Acad Sci 871:430–434PubMedCrossRef
61.
go back to reference Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86(3):209–230PubMedCrossRef Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86(3):209–230PubMedCrossRef
62.
go back to reference Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE (2005) Sensory convergence solves a motion ambiguity problem. Curr Biol 15(18):1657–1662PubMedCrossRef Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE (2005) Sensory convergence solves a motion ambiguity problem. Curr Biol 15(18):1657–1662PubMedCrossRef
63.
go back to reference Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84(4):2113–2132PubMed Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84(4):2113–2132PubMed
64.
go back to reference Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88(6):3518–3533PubMedCrossRef Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88(6):3518–3533PubMedCrossRef
65.
go back to reference Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE (2005) Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol 93(2):853–863PubMedCrossRef Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE (2005) Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol 93(2):853–863PubMedCrossRef
66.
go back to reference Barmack NH, Shojaku H (1992) Representation of a postural coordinate system in the nodulus of the rabbit cerebellum by vestibular climbing fiber signals. In: Shimazu H, Shinoda Y (eds) Vestibular and brain stem control of eye, head and body movements. S. Karger, Basel, pp 331–338 Barmack NH, Shojaku H (1992) Representation of a postural coordinate system in the nodulus of the rabbit cerebellum by vestibular climbing fiber signals. In: Shimazu H, Shinoda Y (eds) Vestibular and brain stem control of eye, head and body movements. S. Karger, Basel, pp 331–338
67.
go back to reference Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416(1):100–112PubMedCrossRef Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416(1):100–112PubMedCrossRef
68.
go back to reference Wylie DR, De Zeeuw CI, Digiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349(3):448–463PubMedCrossRef Wylie DR, De Zeeuw CI, Digiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349(3):448–463PubMedCrossRef
69.
go back to reference Meng H, May PJ, Dickman JD, Angelaki DE (2007) Vestibular signals in primate thalamus: properties and origins. J Neurosci 27(50):13590–13602PubMedCrossRef Meng H, May PJ, Dickman JD, Angelaki DE (2007) Vestibular signals in primate thalamus: properties and origins. J Neurosci 27(50):13590–13602PubMedCrossRef
70.
go back to reference Liu S, Angelaki DE (2009) Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J Neurosci 29(28):8936–8945PubMedCrossRef Liu S, Angelaki DE (2009) Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J Neurosci 29(28):8936–8945PubMedCrossRef
71.
go back to reference Britten KH, van Wezel RJ (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1(1):59–63PubMedCrossRef Britten KH, van Wezel RJ (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1(1):59–63PubMedCrossRef
72.
go back to reference Gu Y, Angelaki DE, Deangelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11(10):1201–1210PubMedCrossRef Gu Y, Angelaki DE, Deangelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11(10):1201–1210PubMedCrossRef
73.
go back to reference Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10(8):1038–1047PubMedCrossRef Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10(8):1038–1047PubMedCrossRef
74.
75.
go back to reference Seidman SH, Telford L, Paige GD (1998) Tilt perception during dynamic linear acceleration. Exp Brain Res 119(3):307–314PubMedCrossRef Seidman SH, Telford L, Paige GD (1998) Tilt perception during dynamic linear acceleration. Exp Brain Res 119(3):307–314PubMedCrossRef
76.
go back to reference Kaptein RG, Van Gisbergen JA (2006) Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation. J Neurophysiol 95(3):1936–1948PubMedCrossRef Kaptein RG, Van Gisbergen JA (2006) Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation. J Neurophysiol 95(3):1936–1948PubMedCrossRef
77.
go back to reference Graybiel A (1952) Oculogravic illusion. AMA Arch Ophthalmol 48(5):605–615PubMed Graybiel A (1952) Oculogravic illusion. AMA Arch Ophthalmol 48(5):605–615PubMed
78.
go back to reference Clark B, Graybiel A (1963) Contributing factors in the perception of the oculogravic illusion. Am J Psychol 76:18–27PubMedCrossRef Clark B, Graybiel A (1963) Contributing factors in the perception of the oculogravic illusion. Am J Psychol 76:18–27PubMedCrossRef
79.
go back to reference Clark B, Graybiel A (1966) Factors contributing to the delay in the perception of the oculogravic illusion. Am J Psychol 79(3):377–388PubMedCrossRef Clark B, Graybiel A (1966) Factors contributing to the delay in the perception of the oculogravic illusion. Am J Psychol 79(3):377–388PubMedCrossRef
80.
go back to reference Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34(4):661–675PubMed Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34(4):661–675PubMed
81.
go back to reference Dichgans J, Held R, Young LR, Brandt T (1972) Moving visual scenes influence the apparent direction of gravity. Science 176:1217–1219CrossRef Dichgans J, Held R, Young LR, Brandt T (1972) Moving visual scenes influence the apparent direction of gravity. Science 176:1217–1219CrossRef
82.
83.
go back to reference Jacobson GA, Rokni D, Yarom Y (2008) A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci 31(12):617–625PubMedCrossRef Jacobson GA, Rokni D, Yarom Y (2008) A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci 31(12):617–625PubMedCrossRef
84.
go back to reference Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26(4):222–227PubMedCrossRef Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26(4):222–227PubMedCrossRef
85.
go back to reference Yarom Y, Cohen D (2002) The olivocerebellar system as a generator of temporal patterns. Ann N Y Acad Sci 978:122–134PubMedCrossRef Yarom Y, Cohen D (2002) The olivocerebellar system as a generator of temporal patterns. Ann N Y Acad Sci 978:122–134PubMedCrossRef
Metadata
Title
Computation of Egomotion in the Macaque Cerebellar Vermis
Authors
Dora E. Angelaki
Tatyana A. Yakusheva
Andrea M. Green
J. David Dickman
Pablo M. Blazquez
Publication date
01-06-2010
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 2/2010
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-009-0147-z

Other articles of this Issue 2/2010

The Cerebellum 2/2010 Go to the issue