Skip to main content
Top
Published in: The Cerebellum 3/2009

01-09-2009

Malformations of the Midbrain and Hindbrain: A Retrospective Study and Review of the Literature

Authors: Ozlem Alkan, Osman Kizilkilic, Tulin Yildirim

Published in: The Cerebellum | Issue 3/2009

Login to get access

Abstract

We report the results of a retrospective analysis of radiological and clinical findings in 45 cases of midbrain–hindbrain anomalies and review recent advances in embryology and molecular neurogenetics. Among 45 patients with midbrain–hindbrain malformations, 16 cases of molar tooth malformation, 12 of cerebellar hypoplasia, ten of posterior fossa cyst and cerebellar vermian hypoplasia, three of rhombencephalosynapsis, two of Fukuyama congenital muscular dystrophy and two cases of isolated cerebellar dysplasia were identified. Twenty-six patients presented with motor-mental retardation, which was the most common clinical finding. Eleven patients were born to consanguineous parents. The correct diagnosis of cerebellar malformation is important for determining prognosis, the risk of recurrence and the need for genetic counselling. Integrated classification of malformations based on morphology, embryology and molecular neurogenetics may be useful.
Literature
1.
go back to reference Demaerel P (2002) Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations. Neuroradiology 44:639–646PubMedCrossRef Demaerel P (2002) Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations. Neuroradiology 44:639–646PubMedCrossRef
2.
go back to reference Soto-Ares G, Joyes B, Lemaitre MP, Vallee L, Pruvo JP (2003) MRI in children with mental retardation. Pediatr Radiol 33:334–345PubMed Soto-Ares G, Joyes B, Lemaitre MP, Vallee L, Pruvo JP (2003) MRI in children with mental retardation. Pediatr Radiol 33:334–345PubMed
3.
go back to reference Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. Am J Neuroradiol 23:1074–1087PubMed Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. Am J Neuroradiol 23:1074–1087PubMed
4.
go back to reference Sarnat HB, Flores-Sarnat L (2003) Etiological classification of CNS malformations: integration of molecular genetics and morphological criteria. Epileptic Disord 5(Suppl 2):S35–S43PubMed Sarnat HB, Flores-Sarnat L (2003) Etiological classification of CNS malformations: integration of molecular genetics and morphological criteria. Epileptic Disord 5(Suppl 2):S35–S43PubMed
5.
go back to reference Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53PubMedCrossRef Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53PubMedCrossRef
6.
go back to reference Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491PubMedCrossRef Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491PubMedCrossRef
7.
go back to reference Millen KJ, Millonig JH, Wingate RJ, Alder J, Hatten ME (1999) Neurogenetics of the cerebellar system. J Child Neurol 14:574–581PubMedCrossRef Millen KJ, Millonig JH, Wingate RJ, Alder J, Hatten ME (1999) Neurogenetics of the cerebellar system. J Child Neurol 14:574–581PubMedCrossRef
8.
go back to reference Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31PubMed Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31PubMed
9.
go back to reference Hallonet ME, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155PubMedCrossRef Hallonet ME, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155PubMedCrossRef
10.
go back to reference Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20PubMedCrossRef Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20PubMedCrossRef
11.
go back to reference Jaspan T (2008) New concepts on posterior fossa malformations. Pediatr Radiol 38:409–414CrossRef Jaspan T (2008) New concepts on posterior fossa malformations. Pediatr Radiol 38:409–414CrossRef
12.
go back to reference Barkovich AJ, Millen KJ, Dobyns WBA (2007) Developmental classification of malformations of the brainstem. Ann Neurol 62:625–639PubMedCrossRef Barkovich AJ, Millen KJ, Dobyns WBA (2007) Developmental classification of malformations of the brainstem. Ann Neurol 62:625–639PubMedCrossRef
13.
go back to reference Demaerel P, Morel C, Lagae L, Wilms G (2004) Partial rhombencephalosynapsis. AJNR Am J Neuroradiol 25:29–31PubMed Demaerel P, Morel C, Lagae L, Wilms G (2004) Partial rhombencephalosynapsis. AJNR Am J Neuroradiol 25:29–31PubMed
14.
go back to reference Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382PubMedCrossRef Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382PubMedCrossRef
15.
go back to reference Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M (1998) Rhombencephalosynapsis: cerebellar embryogenesis. AJNR Am J Neuroradiol 19:547–549PubMed Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M (1998) Rhombencephalosynapsis: cerebellar embryogenesis. AJNR Am J Neuroradiol 19:547–549PubMed
16.
go back to reference Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, III, pp 3–145 Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, III, pp 3–145
17.
go back to reference Sarnat HB (2000) Molecular genetics classification of central nervous system malformations. J Child Neurol 15:675–687PubMedCrossRef Sarnat HB (2000) Molecular genetics classification of central nervous system malformations. J Child Neurol 15:675–687PubMedCrossRef
18.
go back to reference Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182:299–313PubMedCrossRef Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182:299–313PubMedCrossRef
19.
go back to reference Muntoni F, Brockington M, Blake DJ, Torelli S, Brown SC (2002) Defective glycosylation in muscular dystrophy. Lancet 360:1419–1421PubMedCrossRef Muntoni F, Brockington M, Blake DJ, Torelli S, Brown SC (2002) Defective glycosylation in muscular dystrophy. Lancet 360:1419–1421PubMedCrossRef
20.
go back to reference Toda T, Segawa M, Nomura Y et al (1993) Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31–33. Nat Genet 5:283–286PubMedCrossRef Toda T, Segawa M, Nomura Y et al (1993) Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31–33. Nat Genet 5:283–286PubMedCrossRef
21.
go back to reference Kobayashi K, Nakahori Y, Miyake M et al (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392PubMedCrossRef Kobayashi K, Nakahori Y, Miyake M et al (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392PubMedCrossRef
22.
go back to reference Beltran-Valero de Bernabe D, Currier S, Steinbrecher A et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker–Warburg syndrome. Am J Hum Genet 71:1033–1043PubMedCrossRef Beltran-Valero de Bernabe D, Currier S, Steinbrecher A et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker–Warburg syndrome. Am J Hum Genet 71:1033–1043PubMedCrossRef
23.
go back to reference Cormand B, Avela K, Pihko H et al (1999) Assignment of the muscle–eye–brain disease gene to 1p32–p34 by linkage analysis and homozygosity mapping. Am J Hum Genet 64:126–135PubMedCrossRef Cormand B, Avela K, Pihko H et al (1999) Assignment of the muscle–eye–brain disease gene to 1p32–p34 by linkage analysis and homozygosity mapping. Am J Hum Genet 64:126–135PubMedCrossRef
24.
go back to reference Joubert M, Eisenring JJ, Robb JP, Andermann F (1969) Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19:813–825PubMed Joubert M, Eisenring JJ, Robb JP, Andermann F (1969) Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19:813–825PubMed
25.
go back to reference Gleeson JG, Keeler LC, Parisi MA et al (2004) Molar tooth sign of the midbrain–hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet 125:125–134CrossRef Gleeson JG, Keeler LC, Parisi MA et al (2004) Molar tooth sign of the midbrain–hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet 125:125–134CrossRef
26.
go back to reference Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA (1999) New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet 36:437–446PubMed Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA (1999) New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet 36:437–446PubMed
27.
go back to reference Chen CP (2007) Meckel syndrome: genetics, perinatal findings, and differential diagnosis. Taiwan J Obstet Gynecol 46:9–14PubMedCrossRef Chen CP (2007) Meckel syndrome: genetics, perinatal findings, and differential diagnosis. Taiwan J Obstet Gynecol 46:9–14PubMedCrossRef
28.
go back to reference Quisling RG, Barkovich AJ, Maria BL (1999) Magnetic resonance imaging features and classification of central nervous system malformations in Joubert syndrome. J Child Neurol 14:628–635PubMedCrossRef Quisling RG, Barkovich AJ, Maria BL (1999) Magnetic resonance imaging features and classification of central nervous system malformations in Joubert syndrome. J Child Neurol 14:628–635PubMedCrossRef
29.
go back to reference Valente EM, Brancati F, Dallapiccola B (2008) Genotypes and phenotypes of Joubert syndrome and related disorders. Eur J Med Genet 51:1–23PubMedCrossRef Valente EM, Brancati F, Dallapiccola B (2008) Genotypes and phenotypes of Joubert syndrome and related disorders. Eur J Med Genet 51:1–23PubMedCrossRef
30.
go back to reference Ansley SJ, Badano JL, Blacque OE et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 425:628–633PubMedCrossRef Ansley SJ, Badano JL, Blacque OE et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 425:628–633PubMedCrossRef
31.
go back to reference Ferrante MI, Zullo A, Barra A et al (2006) Oral–facial–digital type I protein is required for primary cilia formation and left–right axis specification. Nat Genet 38:112–117PubMedCrossRef Ferrante MI, Zullo A, Barra A et al (2006) Oral–facial–digital type I protein is required for primary cilia formation and left–right axis specification. Nat Genet 38:112–117PubMedCrossRef
32.
go back to reference Parisi MA, Bennett CL, Eckert ML et al (2004) The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet 75:82–91PubMedCrossRef Parisi MA, Bennett CL, Eckert ML et al (2004) The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet 75:82–91PubMedCrossRef
33.
go back to reference Valente EM, Marsh SE, Castori M (2005) Distinguishing the four genetic causes of Jouberts syndrome-related disorders. Ann Neurol 57:513–519PubMedCrossRef Valente EM, Marsh SE, Castori M (2005) Distinguishing the four genetic causes of Jouberts syndrome-related disorders. Ann Neurol 57:513–519PubMedCrossRef
34.
go back to reference Hart MN, Malamud N, Ellis WG (1972) The Dandy–Walker syndrome. A clinicopathological study based on 28 cases. Neurology 22:771–780PubMed Hart MN, Malamud N, Ellis WG (1972) The Dandy–Walker syndrome. A clinicopathological study based on 28 cases. Neurology 22:771–780PubMed
35.
go back to reference Barkovich AJ, Kjos BO, Norman D, Edwards MS (1989) Revised classification of posterior fossa cysts and cystlike malformations based on the results of multiplanar MR imaging. AJR Am J Roentgenol 153:1289–1300PubMed Barkovich AJ, Kjos BO, Norman D, Edwards MS (1989) Revised classification of posterior fossa cysts and cystlike malformations based on the results of multiplanar MR imaging. AJR Am J Roentgenol 153:1289–1300PubMed
36.
go back to reference Raybaud C, Girard N, Sevely A, Leboucq N (1996) Neuroradiologie pediatrique (I). In: Raybaud C, Girard N, Sevely A, Leboucq N (eds) Radiodiagnostic–neuroradiologie–appariel locomoteur. Elsevier, Paris, p 26 Raybaud C, Girard N, Sevely A, Leboucq N (1996) Neuroradiologie pediatrique (I). In: Raybaud C, Girard N, Sevely A, Leboucq N (eds) Radiodiagnostic–neuroradiologie–appariel locomoteur. Elsevier, Paris, p 26
37.
go back to reference Barkovich AJ (2005) Congenital malformations of the brain and skull. In: Barkovich AJ (ed) Pediatric neuroimaging, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 291–440 Barkovich AJ (2005) Congenital malformations of the brain and skull. In: Barkovich AJ (ed) Pediatric neuroimaging, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 291–440
38.
go back to reference Tortori-Donati P, Fondelli MP, Rossi A, Carini S (1996) Cystic malformations of the posterior cranial fossa originating from a defect of the posterior membranous area. Mega cisterna magna and persisting Blake’s pouch: two separate entities. Childs Nerv Syst 12:303–308PubMedCrossRef Tortori-Donati P, Fondelli MP, Rossi A, Carini S (1996) Cystic malformations of the posterior cranial fossa originating from a defect of the posterior membranous area. Mega cisterna magna and persisting Blake’s pouch: two separate entities. Childs Nerv Syst 12:303–308PubMedCrossRef
39.
go back to reference Rengachary SS, Watanabe I (1981) Ultrastructure and pathogenesis of intracranial arachnoid cysts. J Neuropathol Exp Neurol 40:61–83PubMedCrossRef Rengachary SS, Watanabe I (1981) Ultrastructure and pathogenesis of intracranial arachnoid cysts. J Neuropathol Exp Neurol 40:61–83PubMedCrossRef
40.
go back to reference Bonnevie K, Brodal A (1946) Hereditary hydrocephalus in the house mouse. VI. The development of cerebellar anomalies during fetal life with notes on the normal development of the mouse cerebellum. Lkr Norske Vidensk Akad Oslo 1 Matj-nat KI 4:4–60 Bonnevie K, Brodal A (1946) Hereditary hydrocephalus in the house mouse. VI. The development of cerebellar anomalies during fetal life with notes on the normal development of the mouse cerebellum. Lkr Norske Vidensk Akad Oslo 1 Matj-nat KI 4:4–60
41.
go back to reference Nelson MD Jr, Maher K, Gilles FH (2004) A different approach to cysts of the posterior fossa. Pediatr Radiol 34:720–732PubMedCrossRef Nelson MD Jr, Maher K, Gilles FH (2004) A different approach to cysts of the posterior fossa. Pediatr Radiol 34:720–732PubMedCrossRef
42.
go back to reference Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy–Walker malformation. Nat Genet 36:1053–1055PubMedCrossRef Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy–Walker malformation. Nat Genet 36:1053–1055PubMedCrossRef
43.
go back to reference Boddaert N, Klein O, Ferguson N et al (2003) Intellectual prognosis of the Dandy–Walker malformation in children: the importance of vermian lobulation. Neuroradiology 45:320–324PubMed Boddaert N, Klein O, Ferguson N et al (2003) Intellectual prognosis of the Dandy–Walker malformation in children: the importance of vermian lobulation. Neuroradiology 45:320–324PubMed
44.
go back to reference Patel MS, Becker LE, Toi A, Armstrong DL, Chitayat D (2006) Severe, fetal-onset form of olivopontocerebellar hypoplasia in three sibs: PCH type 5? Am J Med Genet A 140:594–603PubMed Patel MS, Becker LE, Toi A, Armstrong DL, Chitayat D (2006) Severe, fetal-onset form of olivopontocerebellar hypoplasia in three sibs: PCH type 5? Am J Med Genet A 140:594–603PubMed
45.
go back to reference Donkelaar HJ, Wesseling P, Lammens M, Renier WO, Mullaart RA, Thijssen HO (2001) Development and the developmental disorders of human brain. I. Early development of the cerebrum. Ned Tijdschr Geneeskd 145:345–353PubMed Donkelaar HJ, Wesseling P, Lammens M, Renier WO, Mullaart RA, Thijssen HO (2001) Development and the developmental disorders of human brain. I. Early development of the cerebrum. Ned Tijdschr Geneeskd 145:345–353PubMed
46.
go back to reference Ramaekers VT, Heimann G, Reul J, Thron A, Jaeken J (1997) Genetic disorders and cerebellar structural abnormalities in childhood. Brain 120:1739–1751PubMedCrossRef Ramaekers VT, Heimann G, Reul J, Thron A, Jaeken J (1997) Genetic disorders and cerebellar structural abnormalities in childhood. Brain 120:1739–1751PubMedCrossRef
47.
go back to reference Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54–65PubMedCrossRef Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54–65PubMedCrossRef
48.
go back to reference Soto-Ares G, Delmaire C, Deries B, Vallee L, Pruvo JP (2000) Cerebellar cortical dysplasia: MR findings in a complex entity. AJNR Am J Neuroradiol 21:1511–1519PubMed Soto-Ares G, Delmaire C, Deries B, Vallee L, Pruvo JP (2000) Cerebellar cortical dysplasia: MR findings in a complex entity. AJNR Am J Neuroradiol 21:1511–1519PubMed
49.
go back to reference Soto-Ares G, Devisme L, Jorriot S, Deries B, Pruvo JP, Ruchoux MM (2002) Neuropathologic and MR imaging correlation in a neonatal case of cerebellar cortical dysplasia. AJNR Am J Neuroradiol 23:1101–1104PubMed Soto-Ares G, Devisme L, Jorriot S, Deries B, Pruvo JP, Ruchoux MM (2002) Neuropathologic and MR imaging correlation in a neonatal case of cerebellar cortical dysplasia. AJNR Am J Neuroradiol 23:1101–1104PubMed
50.
go back to reference Sztriha L, Johansen JG (2005) Spectrum of malformations of the hindbrain (cerebellum, pons, and medulla) in a cohort of children with high rate of parental consanguinity. Am J Med Genet A 135:134–141PubMed Sztriha L, Johansen JG (2005) Spectrum of malformations of the hindbrain (cerebellum, pons, and medulla) in a cohort of children with high rate of parental consanguinity. Am J Med Genet A 135:134–141PubMed
Metadata
Title
Malformations of the Midbrain and Hindbrain: A Retrospective Study and Review of the Literature
Authors
Ozlem Alkan
Osman Kizilkilic
Tulin Yildirim
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 3/2009
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-009-0104-x

Other articles of this Issue 3/2009

The Cerebellum 3/2009 Go to the issue