Skip to main content
Top
Published in: Indian Journal of Hematology and Blood Transfusion 3/2023

13-01-2023 | ORIGINAL ARTICLE

Evaluation of a New Method of Leukocyte Extractions from the Leukoreduction Filter

Authors: Zahra Abbasi Malati, Ali Akbar Pourfathollah, Rasul Dabbaghi, Sahar Balagholi, Mohammad Reza Javan

Published in: Indian Journal of Hematology and Blood Transfusion | Issue 3/2023

Login to get access

Abstract

This study’s purpose was to optimize the leukocyte extraction protocol and evaluate the efficacy of this new protocol. 12BioR blood filters were collected from Tehran Blood Transfusion Center. A twosyringe system and Multi-step rinsing were designed for cell extraction. The final purpose of this optimization was: (1) removed the residual RBCs, (2) reversed the leukocyte trapping process, and (3) remove the microparticles to obtain the high yield of target cells. Finally, Extracted cells were evaluated by Automated Cell count; Samples smear differential cell count, Trypan blue, and Annexin-PI staining. The results showed that on average 11.88 × 108 ± 3.32 leukocytes recovered after indirect washing and that the mean count of granulocytes, lymphocytes, and Monocyte in this sample was 5.24 ± 2.18 × 108, 5.57 ± 1.74 × 108, and 0.56 ± 0.38 × 108 respectively. Also, the mean percent of manual differential cell count after concentration was 42.81%, 41.80%, and 15.82% for granulocytes, lymphocytes, and monocytes respectively. Moreover, viability and apoptosis assay showed > 95% viability in mononuclear cells recovered from LRFs. It is concluded that the use of a double-syringe system and RBC and microparticles removal from leukoreduction filters lead to acceptable viable leukocyte count that can be used in in vitro and in vivo studies.
Literature
1.
go back to reference Roback J, Combs M, Grossman B, Hillyer C (2008) American association of blood banks technical manual, vol 376. American Association of Blood Banks, Bethesda, MD, p 471 Roback J, Combs M, Grossman B, Hillyer C (2008) American association of blood banks technical manual, vol 376. American Association of Blood Banks, Bethesda, MD, p 471
2.
go back to reference Sharma R, Marwaha N (2010) Leukoreduced blood components: advantages and strategies for its implementation in developing countries. Asian J Transfus Sci 4(1):3–8CrossRefPubMedPubMedCentral Sharma R, Marwaha N (2010) Leukoreduced blood components: advantages and strategies for its implementation in developing countries. Asian J Transfus Sci 4(1):3–8CrossRefPubMedPubMedCentral
3.
go back to reference Bianchi M, Vaglio S, Pupella S, Marano G, Facco G, Liumbruno GM, Grazzini G (2016) Leucoreduction of blood components: An effective way to increase blood safety? Blood Transfus 14(3):214PubMedPubMedCentral Bianchi M, Vaglio S, Pupella S, Marano G, Facco G, Liumbruno GM, Grazzini G (2016) Leucoreduction of blood components: An effective way to increase blood safety? Blood Transfus 14(3):214PubMedPubMedCentral
4.
go back to reference Mönninghoff J, Moog R (2012) Investigation of a new in-lineleukocyte reduction filter for packed red blood cells. TransfusApher Sci 46(3):253–256 Mönninghoff J, Moog R (2012) Investigation of a new in-lineleukocyte reduction filter for packed red blood cells. TransfusApher Sci 46(3):253–256
5.
go back to reference Singh S, Kumar A (2009) Leukocyte depletion for safe blood transfusion. Biotechnol J 4(8):1140–1151CrossRefPubMed Singh S, Kumar A (2009) Leukocyte depletion for safe blood transfusion. Biotechnol J 4(8):1140–1151CrossRefPubMed
6.
7.
go back to reference Fergusson D, Khanna MP, Tinmouth A, Hébert PC (2004) Transfusion of leukoreduced red blood cells may decrease postoperative infections: two meta-analyses of randomized controlled trials. Can J Anaesth 51(5):417–424CrossRefPubMed Fergusson D, Khanna MP, Tinmouth A, Hébert PC (2004) Transfusion of leukoreduced red blood cells may decrease postoperative infections: two meta-analyses of randomized controlled trials. Can J Anaesth 51(5):417–424CrossRefPubMed
8.
go back to reference Pennington J, Taylor GP, Sutherland J, Davis RE, Seghatchian J, Allain J-P et al (2002) Persistence of HTLV-I in blood components after leukocyte depletion. Blood 100(2):677–681CrossRefPubMed Pennington J, Taylor GP, Sutherland J, Davis RE, Seghatchian J, Allain J-P et al (2002) Persistence of HTLV-I in blood components after leukocyte depletion. Blood 100(2):677–681CrossRefPubMed
9.
go back to reference Rapaille A, Moore G, Siquet J, Flament J, Sondag-Thull D (1997) Prestorage leukocyte reduction with in-line filtration of whole blood: evaluation of red cells and plasma storage. Vox Sang 73(1):28–35CrossRefPubMed Rapaille A, Moore G, Siquet J, Flament J, Sondag-Thull D (1997) Prestorage leukocyte reduction with in-line filtration of whole blood: evaluation of red cells and plasma storage. Vox Sang 73(1):28–35CrossRefPubMed
10.
go back to reference Sen A, Khetarpal Sm A, Jetley S (2010) Comparative study of pre-deposit and bedside leucodepletion filters. Med J ArmedForces India 66(2):142–146 Sen A, Khetarpal Sm A, Jetley S (2010) Comparative study of pre-deposit and bedside leucodepletion filters. Med J ArmedForces India 66(2):142–146
11.
go back to reference Fujii Y (2016) The potential of the novel leukocyte removal filter in cardiopulmonary bypass. Expert Rev Med Devices 13(1):5–14CrossRefPubMed Fujii Y (2016) The potential of the novel leukocyte removal filter in cardiopulmonary bypass. Expert Rev Med Devices 13(1):5–14CrossRefPubMed
12.
go back to reference Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann KD, Bröker B, Masur K (2014) Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res 48(5):542–549CrossRefPubMed Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann KD, Bröker B, Masur K (2014) Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res 48(5):542–549CrossRefPubMed
13.
go back to reference Burton GW, Ingold KU, Thompson KE (1981) An improved procedure for the isolation of ghost membranes from human red blood cells. Lipids 16(12):946CrossRefPubMed Burton GW, Ingold KU, Thompson KE (1981) An improved procedure for the isolation of ghost membranes from human red blood cells. Lipids 16(12):946CrossRefPubMed
14.
go back to reference Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA (1998) Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Investig 101(3):711–721CrossRefPubMedPubMedCentral Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA (1998) Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Investig 101(3):711–721CrossRefPubMedPubMedCentral
15.
go back to reference Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF
16.
go back to reference Meyer T, Zehnter I, Hofmann B, Zaisserer J, Burkhart J, Rapp S et al (2005) Filter buffy coats (FBC): a source of peripheral bloodleukocytes recovered from leukocyte depletion filters. J Immunol Methods 307(1–2):150–166CrossRefPubMed Meyer T, Zehnter I, Hofmann B, Zaisserer J, Burkhart J, Rapp S et al (2005) Filter buffy coats (FBC): a source of peripheral bloodleukocytes recovered from leukocyte depletion filters. J Immunol Methods 307(1–2):150–166CrossRefPubMed
17.
go back to reference Sasani N, Roghanian R, Emtiazi G, Jalali SM, Zarif MN, Aghaie A (2020) Design and introduction of a rational mechanical eluting system for leukocyte recovery from leukoreduction filters: a cell differential approach. Transfus Clin Biol 27(3):172–178CrossRefPubMed Sasani N, Roghanian R, Emtiazi G, Jalali SM, Zarif MN, Aghaie A (2020) Design and introduction of a rational mechanical eluting system for leukocyte recovery from leukoreduction filters: a cell differential approach. Transfus Clin Biol 27(3):172–178CrossRefPubMed
18.
go back to reference Wegehaupt AK, Roufs EK, Hewitt CR, Killian ML, Gorbatenko O, Anderson CM, Killian MS (2017) Recovery and assessment of leukocytes from LR express filters. Biologicals 1(49):15–22CrossRef Wegehaupt AK, Roufs EK, Hewitt CR, Killian ML, Gorbatenko O, Anderson CM, Killian MS (2017) Recovery and assessment of leukocytes from LR express filters. Biologicals 1(49):15–22CrossRef
19.
go back to reference Wegehaupt AK, Roufs EK, Hewitt CR, Killian ML, Gorbatenko O, Anderson CM et al (2017) Recovery and assessment ofleukocytes from LR express filters. Biologicals 49:15–22CrossRefPubMedPubMedCentral Wegehaupt AK, Roufs EK, Hewitt CR, Killian ML, Gorbatenko O, Anderson CM et al (2017) Recovery and assessment ofleukocytes from LR express filters. Biologicals 49:15–22CrossRefPubMedPubMedCentral
20.
go back to reference Peytour Y, Villacreces A, Chevaleyre J, Ivanovic Z, Praloran V (2013) Discarded leukoreduction filters: A new source of stem cells for research, cell engineering, and therapy? Stem Cell Res 11(2):736–742CrossRefPubMed Peytour Y, Villacreces A, Chevaleyre J, Ivanovic Z, Praloran V (2013) Discarded leukoreduction filters: A new source of stem cells for research, cell engineering, and therapy? Stem Cell Res 11(2):736–742CrossRefPubMed
21.
go back to reference Teleron AA, Carlson B, Young PP (2005) Blood donor white blood cell reduction filters as a source of human peripheral blood-derived endothelial progenitor cells. Transfusion 45(1):21–25CrossRefPubMed Teleron AA, Carlson B, Young PP (2005) Blood donor white blood cell reduction filters as a source of human peripheral blood-derived endothelial progenitor cells. Transfusion 45(1):21–25CrossRefPubMed
22.
go back to reference Weidinger TM, Keller AK, Weiss D, Zimmermann R, Eckstein R, Strasser EF (2011) Peripheral blood mononuclear cells obtained from leukoreduction system chambers show better viability than those from leukapheresis. Transfusion 51(9):2047–2049CrossRefPubMed Weidinger TM, Keller AK, Weiss D, Zimmermann R, Eckstein R, Strasser EF (2011) Peripheral blood mononuclear cells obtained from leukoreduction system chambers show better viability than those from leukapheresis. Transfusion 51(9):2047–2049CrossRefPubMed
23.
go back to reference Dietz AB, Bulur PA, Emery RL, Winters JL, Epps DE, Zubair AC et al (2006) A novel source of viable peripheral blood mononuclear cells from leukoreduction system chambers. Transfusion 46(12):2083–2089CrossRefPubMed Dietz AB, Bulur PA, Emery RL, Winters JL, Epps DE, Zubair AC et al (2006) A novel source of viable peripheral blood mononuclear cells from leukoreduction system chambers. Transfusion 46(12):2083–2089CrossRefPubMed
24.
go back to reference Izquierdo N, Naranjo M, Fernández M, Cos J, Massuet L, Martínez-Picado J et al (2003) Leukocyte reduction filters: analternative source of peripheral blood mononuclear cells. Inmunología 22(3):255–262 Izquierdo N, Naranjo M, Fernández M, Cos J, Massuet L, Martínez-Picado J et al (2003) Leukocyte reduction filters: analternative source of peripheral blood mononuclear cells. Inmunología 22(3):255–262
25.
go back to reference Néron S, Dussault N, Racine C (2006) Whole-blood leukoreduction filters are a source for cryopreserved cells for phenotypic and functional investigations on peripheral blood lymphocytes. Transfusion 46(4):537–544CrossRefPubMed Néron S, Dussault N, Racine C (2006) Whole-blood leukoreduction filters are a source for cryopreserved cells for phenotypic and functional investigations on peripheral blood lymphocytes. Transfusion 46(4):537–544CrossRefPubMed
26.
go back to reference Ferdowsi S, Pourfathollah AA (2019) Leukocyte reduction filters: a source of peripheral blood leukocytes for research and drug production. Glob J Transfus Med 4:122–123 Ferdowsi S, Pourfathollah AA (2019) Leukocyte reduction filters: a source of peripheral blood leukocytes for research and drug production. Glob J Transfus Med 4:122–123
27.
go back to reference Ivanovic Z, Duchez P, Morgan DA, Hermitte F, Lafarge X, Chevaleyre J et al (2006) Whole-blood leukodepletion filters as a source of CD34+ progenitors potentially usable in cell therapy. Transfusion 46(1):118–125CrossRefPubMed Ivanovic Z, Duchez P, Morgan DA, Hermitte F, Lafarge X, Chevaleyre J et al (2006) Whole-blood leukodepletion filters as a source of CD34+ progenitors potentially usable in cell therapy. Transfusion 46(1):118–125CrossRefPubMed
28.
go back to reference Longley RE, Stewart D (1989) Recovery of functional human lymphocytes from leuko-trap filters. J Immunol Methods 121:33–38CrossRefPubMed Longley RE, Stewart D (1989) Recovery of functional human lymphocytes from leuko-trap filters. J Immunol Methods 121:33–38CrossRefPubMed
29.
go back to reference Rashidbaigi A, Liao M-J, Hua J, Sidhu M (1999) Recovery of functional human leuko-cytes from recycled filters. Google Patents [US Patent 5,989,441] Rashidbaigi A, Liao M-J, Hua J, Sidhu M (1999) Recovery of functional human leuko-cytes from recycled filters. Google Patents [US Patent 5,989,441]
30.
go back to reference Izquierdo N, Naranjo M, Fernández M, Cos J, Massuet L, Martínez-Picado J et al (2003) Leukocyte reduction filters: an alternative source of peripheral blood mononu-clear cells. Inmunología 22:255–262 Izquierdo N, Naranjo M, Fernández M, Cos J, Massuet L, Martínez-Picado J et al (2003) Leukocyte reduction filters: an alternative source of peripheral blood mononu-clear cells. Inmunología 22:255–262
31.
go back to reference Bruil A, Beugeling T, Feijen J, van Aken WG (1995) The mechanisms of leukocyte removal by filtration. Transfus Med Rev 9(2):145–166CrossRefPubMed Bruil A, Beugeling T, Feijen J, van Aken WG (1995) The mechanisms of leukocyte removal by filtration. Transfus Med Rev 9(2):145–166CrossRefPubMed
32.
go back to reference Dzik S (1993) Leukodepletion blood filters: filter design and mechanisms of leukocyte removal. Transfus Med Rev 7(2):65–77CrossRefPubMed Dzik S (1993) Leukodepletion blood filters: filter design and mechanisms of leukocyte removal. Transfus Med Rev 7(2):65–77CrossRefPubMed
33.
go back to reference Kjeldsen- Kragh J, Golebiowska E (2002) Back- priming of the RCM1™ leucocyte- reduction filter: consequences for filtration efficacy. Vox Sang 82(3):127–130CrossRefPubMed Kjeldsen- Kragh J, Golebiowska E (2002) Back- priming of the RCM1™ leucocyte- reduction filter: consequences for filtration efficacy. Vox Sang 82(3):127–130CrossRefPubMed
34.
go back to reference Alici E, Sutlu T, Björkstrand B, Gilljam M, Stellan B, Nahi H, Quezada HC, Gahrton G, Ljunggren HG, Dilber MS (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood J Am Soc Hematol 111(6):3155–3162 Alici E, Sutlu T, Björkstrand B, Gilljam M, Stellan B, Nahi H, Quezada HC, Gahrton G, Ljunggren HG, Dilber MS (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood J Am Soc Hematol 111(6):3155–3162
35.
go back to reference Destrampe E, Schlueter AJ (2021) Successful autologous peripheral blood stem cell collection using large volume leukapheresis in patients with very low or undetectable peripheral blood CD34+ progenitor cells. Transfus Apheres Sci 60(4):103170CrossRef Destrampe E, Schlueter AJ (2021) Successful autologous peripheral blood stem cell collection using large volume leukapheresis in patients with very low or undetectable peripheral blood CD34+ progenitor cells. Transfus Apheres Sci 60(4):103170CrossRef
36.
go back to reference Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264(19):11200–11203CrossRefPubMed Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264(19):11200–11203CrossRefPubMed
37.
go back to reference Strasser EF, Eckstein R (2010) Optimization of leukocyte collection and monocyte isolation for dendritic cell culture. Transfus Med Rev 24(2):130–139CrossRefPubMed Strasser EF, Eckstein R (2010) Optimization of leukocyte collection and monocyte isolation for dendritic cell culture. Transfus Med Rev 24(2):130–139CrossRefPubMed
38.
go back to reference Larson MC, Hogg N, Hillery CA (2021) Centrifugation removes a population of large vesicles, or “macroparticles”, intermediate in size to RBCs and microvesicles. Int J Mol Sci 22(3):1243CrossRefPubMedPubMedCentral Larson MC, Hogg N, Hillery CA (2021) Centrifugation removes a population of large vesicles, or “macroparticles”, intermediate in size to RBCs and microvesicles. Int J Mol Sci 22(3):1243CrossRefPubMedPubMedCentral
39.
go back to reference Wright DG, Kauffmann JC, Chusid MJ, Gallin JI (1975) Functional abnormalities of human neutrophils collected by continuous flow filtration leukapheresis. 901–911 Wright DG, Kauffmann JC, Chusid MJ, Gallin JI (1975) Functional abnormalities of human neutrophils collected by continuous flow filtration leukapheresis. 901–911
Metadata
Title
Evaluation of a New Method of Leukocyte Extractions from the Leukoreduction Filter
Authors
Zahra Abbasi Malati
Ali Akbar Pourfathollah
Rasul Dabbaghi
Sahar Balagholi
Mohammad Reza Javan
Publication date
13-01-2023
Publisher
Springer India
Published in
Indian Journal of Hematology and Blood Transfusion / Issue 3/2023
Print ISSN: 0971-4502
Electronic ISSN: 0974-0449
DOI
https://doi.org/10.1007/s12288-022-01618-x

Other articles of this Issue 3/2023

Indian Journal of Hematology and Blood Transfusion 3/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine