Skip to main content
Top
Published in: Breast Cancer 5/2017

01-09-2017 | Original Article

miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα

Authors: Ming Luo, Ling Ding, Qingjian Li, Herui Yao

Published in: Breast Cancer | Issue 5/2017

Login to get access

Abstract

Background

A large proportion of breast cancer patients are resistant to radiotherapy, which is a mainstay treatment for this malignancy, but the mechanisms of radioresistance remain unclear.

Methods and materials

To evaluate the role of miRNAs in radioresistance, we established two radioresistant breast cancer cell lines MCF-7R and T-47DR derived from parental MCF-7 and T-47D. Moreover, miRNA microarray, quantitative RT-PCR analysis, luciferase reporter assay and western blotting were used.

Results

We found that miR-668 was most abundantly expressed in radioresistant cells MCF-7R and T-47DR. miR-668 knockdown reversed radioresistance of MCF-7R and T-47DR, miR-668 overexpression enhanced radioresistance of MCF-7 and T-47D cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated IκBα, a tumor-suppressor as well as an NF-κB inhibitor, was a direct target of miR-668. Further, miR-668 overexpression inhibited IκBα expression, activated NF-κB, thus, increased radioresistance of MCF-7 and T-47D cells. Conversely, miR-668 knockdown restored IκBα expression, suppressed NF-κB, increased radiosensitivity of MCF-7R and T-47DR cells.

Conclusion

Our findings suggest miR-668 is involved in the radioresistance of breast cancer cells and miR-668-IκBα-NF-κB axis may be a novel candidate for developing rational therapeutic strategies for human breast cancer treatment.
Literature
1.
go back to reference Ahn SJ, Choi C, Choi YD, Kim YC, Kim KS, Oh IJ, et al. Microarray analysis of gene expression in lung cancer cell lines treated by fractionated irradiation. Anticancer Res. 2014;34(9):4939–48.PubMed Ahn SJ, Choi C, Choi YD, Kim YC, Kim KS, Oh IJ, et al. Microarray analysis of gene expression in lung cancer cell lines treated by fractionated irradiation. Anticancer Res. 2014;34(9):4939–48.PubMed
2.
go back to reference Burstein HJ, Morrow M. Nodal irradiation after breast-cancer surgery in the era of effective adjuvant therapy. N Engl J Med. 2015;373(4):379–81.CrossRefPubMed Burstein HJ, Morrow M. Nodal irradiation after breast-cancer surgery in the era of effective adjuvant therapy. N Engl J Med. 2015;373(4):379–81.CrossRefPubMed
3.
go back to reference But-Hadzic J, Bilban-Jakopin C, Hadzic V. The role of radiation therapy in locally advanced breast cancer. Breast J. 2010;16(2):183–8.CrossRefPubMed But-Hadzic J, Bilban-Jakopin C, Hadzic V. The role of radiation therapy in locally advanced breast cancer. Breast J. 2010;16(2):183–8.CrossRefPubMed
4.
go back to reference Chen XY, Wang Z, Li B, Zhang YJ, Li YY. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells. Biochem Biophys Res Commun. 2016;473(1):296–302.CrossRefPubMed Chen XY, Wang Z, Li B, Zhang YJ, Li YY. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells. Biochem Biophys Res Commun. 2016;473(1):296–302.CrossRefPubMed
6.
go back to reference Fu ZC, Wang FM, Cai JM. Gene expression changes in residual advanced cervical cancer after radiotherapy: indicators of poor prognosis and radioresistance? Med Sci Monit. 2015;21:1276–87.CrossRefPubMedPubMedCentral Fu ZC, Wang FM, Cai JM. Gene expression changes in residual advanced cervical cancer after radiotherapy: indicators of poor prognosis and radioresistance? Med Sci Monit. 2015;21:1276–87.CrossRefPubMedPubMedCentral
7.
go back to reference Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, et al. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res. 2014;74(16):4341–52.CrossRefPubMed Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, et al. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res. 2014;74(16):4341–52.CrossRefPubMed
8.
go back to reference Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286(21):19127–37.CrossRefPubMedPubMedCentral Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286(21):19127–37.CrossRefPubMedPubMedCentral
9.
go back to reference Hein AL, Post CM, Sheinin YM, Lakshmanan I, Natarajan A, Enke CA, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35(49):6319–29.CrossRefPubMedPubMedCentral Hein AL, Post CM, Sheinin YM, Lakshmanan I, Natarajan A, Enke CA, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35(49):6319–29.CrossRefPubMedPubMedCentral
10.
go back to reference Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, et al. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget. 2015;6(26):22439–51.CrossRefPubMedPubMedCentral Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, et al. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget. 2015;6(26):22439–51.CrossRefPubMedPubMedCentral
11.
go back to reference Kim W, Youn H, Kang C, Youn B. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis. 2015;20(9):1242–52.CrossRefPubMed Kim W, Youn H, Kang C, Youn B. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis. 2015;20(9):1242–52.CrossRefPubMed
12.
go back to reference Kurth I, Hein L, Mabert K, Peitzsch C, Koi L, Cojoc M, et al. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509.PubMedPubMedCentral Kurth I, Hein L, Mabert K, Peitzsch C, Koi L, Cojoc M, et al. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509.PubMedPubMedCentral
13.
go back to reference Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, et al. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway. Int J Radiat Oncol Biol Phys. 2015;91(1):73–81.CrossRefPubMed Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, et al. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway. Int J Radiat Oncol Biol Phys. 2015;91(1):73–81.CrossRefPubMed
14.
go back to reference Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res. 2009;15(12):3998–4008.CrossRefPubMed Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res. 2009;15(12):3998–4008.CrossRefPubMed
15.
go back to reference Liang DH, El-Zein R, Dave B. Autophagy inhibition to increase radiosensitization in breast cancer. J Nucl Med Radiat Ther. 2015;6(5):1–13.CrossRef Liang DH, El-Zein R, Dave B. Autophagy inhibition to increase radiosensitization in breast cancer. J Nucl Med Radiat Ther. 2015;6(5):1–13.CrossRef
16.
go back to reference Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther. 2003;2(11):1113–20.PubMed Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther. 2003;2(11):1113–20.PubMed
17.
go back to reference Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol Lett. 2015;10(4):2055–62.PubMedPubMedCentral Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol Lett. 2015;10(4):2055–62.PubMedPubMedCentral
18.
go back to reference Mazurik VK, Moroz BB. Problems of radiobiology and p53 protein. Radiat Biol Radioecol. 2001;41(5):548–72. Mazurik VK, Moroz BB. Problems of radiobiology and p53 protein. Radiat Biol Radioecol. 2001;41(5):548–72.
19.
go back to reference McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I, et al. Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res. 2001;61(3):912–5.PubMed McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I, et al. Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res. 2001;61(3):912–5.PubMed
20.
go back to reference Mehta M, Basalingappa K, Griffith JN, Andrade D, Babu A, Amreddy N, et al. HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. Oncotarget. 2016;7(40):64820–35.PubMedPubMedCentral Mehta M, Basalingappa K, Griffith JN, Andrade D, Babu A, Amreddy N, et al. HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. Oncotarget. 2016;7(40):64820–35.PubMedPubMedCentral
21.
go back to reference Oh ET, Byun MS, Lee H, Park MT, Jue DM, Lee CW, et al. Aurora-A contributes to radioresistance by increasing NF-κB DNA binding. Radiat Res. 2010;174(3):265–73.CrossRefPubMed Oh ET, Byun MS, Lee H, Park MT, Jue DM, Lee CW, et al. Aurora-A contributes to radioresistance by increasing NF-κB DNA binding. Radiat Res. 2010;174(3):265–73.CrossRefPubMed
22.
go back to reference Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci USA. 2001;98(4):1676–81.CrossRefPubMedPubMedCentral Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci USA. 2001;98(4):1676–81.CrossRefPubMedPubMedCentral
23.
go back to reference Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012;11(4):785–96.CrossRefPubMedPubMedCentral Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012;11(4):785–96.CrossRefPubMedPubMedCentral
24.
go back to reference Qu JQ, Yi HM, Ye X, Li LN, Zhu JF, Xiao T, et al. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget. 2015;6(29):28341–56.CrossRefPubMed Qu JQ, Yi HM, Ye X, Li LN, Zhu JF, Xiao T, et al. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget. 2015;6(29):28341–56.CrossRefPubMed
25.
go back to reference Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-κB and IκB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer. 2010;46(1):191–7.CrossRefPubMedPubMedCentral Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-κB and IκB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer. 2010;46(1):191–7.CrossRefPubMedPubMedCentral
26.
go back to reference Ropars V, Despouy G, Stern MH, Benichou S, Roumestand C, Arold ST. The TCL1A oncoprotein interacts directly with the NF-κB inhibitor IκB. PLoS ONE. 2009;4(8):e6567.CrossRefPubMedPubMedCentral Ropars V, Despouy G, Stern MH, Benichou S, Roumestand C, Arold ST. The TCL1A oncoprotein interacts directly with the NF-κB inhibitor IκB. PLoS ONE. 2009;4(8):e6567.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Vandenboom Ii TG, Li Y, Philip PA, Sarkar FH. MicroRNA and cancer: tiny molecules with major implications. Curr Genom. 2008;9(2):97–109.CrossRef Vandenboom Ii TG, Li Y, Philip PA, Sarkar FH. MicroRNA and cancer: tiny molecules with major implications. Curr Genom. 2008;9(2):97–109.CrossRef
29.
go back to reference Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29(29):4194–204.CrossRefPubMed Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29(29):4194–204.CrossRefPubMed
30.
go back to reference Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.CrossRefPubMed Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.CrossRefPubMed
31.
go back to reference Zand H, Rahimipour A, Salimi S, Shafiee SM. Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-gamma activation and NF-κB suppression. Mol Cell Biochem. 2008;317(1–2):113–20.CrossRefPubMed Zand H, Rahimipour A, Salimi S, Shafiee SM. Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-gamma activation and NF-κB suppression. Mol Cell Biochem. 2008;317(1–2):113–20.CrossRefPubMed
32.
go back to reference Zhao F, Ming J, Zhou Y, Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 2016;77(5):963–72.CrossRefPubMed Zhao F, Ming J, Zhou Y, Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 2016;77(5):963–72.CrossRefPubMed
33.
go back to reference Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13:252–65.CrossRefPubMedPubMedCentral Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13:252–65.CrossRefPubMedPubMedCentral
Metadata
Title
miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα
Authors
Ming Luo
Ling Ding
Qingjian Li
Herui Yao
Publication date
01-09-2017
Publisher
Springer Japan
Published in
Breast Cancer / Issue 5/2017
Print ISSN: 1340-6868
Electronic ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-017-0756-1

Other articles of this Issue 5/2017

Breast Cancer 5/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine