Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2021

01-02-2021 | Colchicine | Original Article

Effects of Colchicine on Atherosclerotic Plaque Stabilization: a Multimodality Imaging Study in an Animal Model

Authors: Alberto Cecconi, Jean Paul Vilchez-Tschischke, Jesus Mateo, Javier Sanchez-Gonzalez, Samuel España, Rodrigo Fernandez-Jimenez, Beatriz Lopez-Melgar, Leticia Fernández Friera, Gonzalo J López-Martín, Valentin Fuster, Jesus Ruiz-Cabello, Borja Ibañez

Published in: Journal of Cardiovascular Translational Research | Issue 1/2021

Login to get access

Abstract

Colchicine demonstrated clinical benefits in the treatment of stable coronary artery disease. Our aim was to evaluate the effects of colchicine on atherosclerotic plaque stabilization. Atherosclerosis was induced in the abdominal aorta of 20 rabbits with high-cholesterol diet and balloon endothelial denudation. Rabbits were randomized to receive either colchicine or placebo. All animals underwent MRI, 18F-FDG PET/CT, optical coherence tomography (OCT), and histology. Similar progression of atherosclerotic burden was observed in the two groups as relative increase of normalized wall index (NWI). Maximum 18F-FDG standardized uptake value (meanSUVmax) decreased after colchicine treatment, while it increased in the placebo group with a trend toward significance. Animals with higher levels of cholesterol showed significant differences in favor to colchicine group, both as NWI at the end of the protocol and as relative increase in meanSUVmax. Colchicine may stabilize atherosclerotic plaque by reducing inflammatory activity and plaque burden, without altering macrophage infiltration or plaque typology.
Literature
1.
go back to reference Tousoulis, D., et al. (2016). Inflammatory cytokines in atherosclerosis: current therapeutic approaches. European Heart Journal, 37(22), 1723–1732.PubMedCrossRef Tousoulis, D., et al. (2016). Inflammatory cytokines in atherosclerosis: current therapeutic approaches. European Heart Journal, 37(22), 1723–1732.PubMedCrossRef
3.
go back to reference Naruko, T., et al. (2002). Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 106(23), 2894–2900.PubMedCrossRef Naruko, T., et al. (2002). Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 106(23), 2894–2900.PubMedCrossRef
4.
go back to reference Vacek, T. P., et al. (2015). Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vascular Health and Risk Management, 11, 173–183.PubMedPubMedCentralCrossRef Vacek, T. P., et al. (2015). Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vascular Health and Risk Management, 11, 173–183.PubMedPubMedCentralCrossRef
5.
go back to reference Peters, M. J., et al. (2009). Does rheumatoid arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A prospective study. Arthritis and Rheumatism, 61(11), 1571–1579.PubMedCrossRef Peters, M. J., et al. (2009). Does rheumatoid arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A prospective study. Arthritis and Rheumatism, 61(11), 1571–1579.PubMedCrossRef
6.
go back to reference Ridker, P. M. (2014). Inflammation, C-reactive protein, and cardiovascular disease: moving past the marker versus mediator debate. Circulation Research, 114(4), 594–595.PubMedCrossRef Ridker, P. M. (2014). Inflammation, C-reactive protein, and cardiovascular disease: moving past the marker versus mediator debate. Circulation Research, 114(4), 594–595.PubMedCrossRef
7.
go back to reference Moreno, P. R., & Kini, A. (2012). Resolution of inflammation, statins, and plaque regression. JACC: Cardiovascular Imaging, 5(2), 178–181.PubMed Moreno, P. R., & Kini, A. (2012). Resolution of inflammation, statins, and plaque regression. JACC: Cardiovascular Imaging, 5(2), 178–181.PubMed
8.
go back to reference Ridker, P. M., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377(12), 1119–1131.PubMedCrossRef Ridker, P. M., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377(12), 1119–1131.PubMedCrossRef
9.
go back to reference Ridker, P. M., et al. (2019). Low-dose methotrexate for the prevention of atherosclerotic events. The New England Journal of Medicine, 380(8), 752–762.PubMedCrossRef Ridker, P. M., et al. (2019). Low-dose methotrexate for the prevention of atherosclerotic events. The New England Journal of Medicine, 380(8), 752–762.PubMedCrossRef
10.
go back to reference Pan, W., et al. (2019). Immunomodulation by exosomes in myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 28–36.PubMedCrossRef Pan, W., et al. (2019). Immunomodulation by exosomes in myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 28–36.PubMedCrossRef
11.
go back to reference Leung, Y. Y., Yao Hui, L. L., & Kraus, V. B. (2015). Colchicine—update on mechanisms of action and therapeutic uses. Seminars in Arthritis and Rheumatism, 45(3), 341–350.PubMedPubMedCentralCrossRef Leung, Y. Y., Yao Hui, L. L., & Kraus, V. B. (2015). Colchicine—update on mechanisms of action and therapeutic uses. Seminars in Arthritis and Rheumatism, 45(3), 341–350.PubMedPubMedCentralCrossRef
12.
go back to reference Crittenden, D. B., et al. (2012). Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. The Journal of Rheumatology, 39(7), 1458–1464.PubMedPubMedCentralCrossRef Crittenden, D. B., et al. (2012). Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. The Journal of Rheumatology, 39(7), 1458–1464.PubMedPubMedCentralCrossRef
13.
go back to reference Langevitz, P., et al. (2001). Prevalence of ischemic heart disease in patients with familial Mediterranean fever. The Israel Medical Association Journal, 3(1), 9–12.PubMed Langevitz, P., et al. (2001). Prevalence of ischemic heart disease in patients with familial Mediterranean fever. The Israel Medical Association Journal, 3(1), 9–12.PubMed
14.
go back to reference Nidorf, S. M., et al. (2013). Low-dose colchicine for secondary prevention of cardiovascular disease. Journal of the American College of Cardiology, 61(4), 404–410.PubMedCrossRef Nidorf, S. M., et al. (2013). Low-dose colchicine for secondary prevention of cardiovascular disease. Journal of the American College of Cardiology, 61(4), 404–410.PubMedCrossRef
15.
go back to reference Nidorf, S. M., et al. (2019). The effect of low-dose colchicine in patients with stable coronary artery disease: the LoDoCo2 trial rationale, design, and baseline characteristics. American Heart Journal, 218, 46–56.PubMedCrossRef Nidorf, S. M., et al. (2019). The effect of low-dose colchicine in patients with stable coronary artery disease: the LoDoCo2 trial rationale, design, and baseline characteristics. American Heart Journal, 218, 46–56.PubMedCrossRef
16.
go back to reference Deftereos, S., et al. (2013). Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. Journal of the American College of Cardiology, 61(16), 1679–1685.PubMedCrossRef Deftereos, S., et al. (2013). Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. Journal of the American College of Cardiology, 61(16), 1679–1685.PubMedCrossRef
17.
go back to reference Tardif, J. C., et al. (2019). Efficacy and safety of low-dose colchicine after myocardial infarction. The New England Journal of Medicine, 381(26), 2497–2505.PubMedCrossRef Tardif, J. C., et al. (2019). Efficacy and safety of low-dose colchicine after myocardial infarction. The New England Journal of Medicine, 381(26), 2497–2505.PubMedCrossRef
18.
go back to reference Bhattacharyya, B., et al. (2008). Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Medicinal Research Reviews, 28(1), 155–183.PubMedCrossRef Bhattacharyya, B., et al. (2008). Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Medicinal Research Reviews, 28(1), 155–183.PubMedCrossRef
19.
go back to reference Ganguly, A., et al. (2013). Microtubule dynamics control tail retraction in migrating vascular endothelial cells. Molecular Cancer Therapeutics, 12(12), 2837–2846.PubMedPubMedCentralCrossRef Ganguly, A., et al. (2013). Microtubule dynamics control tail retraction in migrating vascular endothelial cells. Molecular Cancer Therapeutics, 12(12), 2837–2846.PubMedPubMedCentralCrossRef
20.
go back to reference Paschke, S., et al. (2013). Technical advance: inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. Journal of Leukocyte Biology, 94(5), 1091–1096.PubMedCrossRef Paschke, S., et al. (2013). Technical advance: inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. Journal of Leukocyte Biology, 94(5), 1091–1096.PubMedCrossRef
21.
go back to reference Peachman, K. K., et al. (2004). Functional microtubules are required for antigen processing by macrophages and dendritic cells. Immunology Letters, 95(1), 13–24.PubMedCrossRef Peachman, K. K., et al. (2004). Functional microtubules are required for antigen processing by macrophages and dendritic cells. Immunology Letters, 95(1), 13–24.PubMedCrossRef
22.
go back to reference Sullivan, D. P., & Muller, W. A. (2014). Neutrophil and monocyte recruitment by PECAM, CD99, and other molecules via the LBRC. Seminars in Immunopathology, 36(2), 193–209.PubMedCrossRef Sullivan, D. P., & Muller, W. A. (2014). Neutrophil and monocyte recruitment by PECAM, CD99, and other molecules via the LBRC. Seminars in Immunopathology, 36(2), 193–209.PubMedCrossRef
23.
go back to reference Martinon, F., et al. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440(7081), 237–241.PubMedCrossRef Martinon, F., et al. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440(7081), 237–241.PubMedCrossRef
24.
go back to reference Pope, R. M., & Tschopp, J. (2007). The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis and Rheumatism, 56(10), 3183–3188.PubMedCrossRef Pope, R. M., & Tschopp, J. (2007). The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis and Rheumatism, 56(10), 3183–3188.PubMedCrossRef
25.
go back to reference Cimmino, G., et al. (2018). Colchicine reduces platelet aggregation by modulating cytoskeleton rearrangement via inhibition of cofilin and LIM domain kinase 1. Vascular Pharmacology, 111, 62–70.PubMedCrossRef Cimmino, G., et al. (2018). Colchicine reduces platelet aggregation by modulating cytoskeleton rearrangement via inhibition of cofilin and LIM domain kinase 1. Vascular Pharmacology, 111, 62–70.PubMedCrossRef
26.
27.
go back to reference Phinikaridou, A., et al. (2010). In vivo detection of vulnerable atherosclerotic plaque by MRI in a rabbit model. Circulation. Cardiovascular Imaging, 3(3), 323–332.PubMedCrossRef Phinikaridou, A., et al. (2010). In vivo detection of vulnerable atherosclerotic plaque by MRI in a rabbit model. Circulation. Cardiovascular Imaging, 3(3), 323–332.PubMedCrossRef
28.
go back to reference Schroeder, S., et al. (2001). Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. Journal of the American College of Cardiology, 37(5), 1430–1435.PubMedCrossRef Schroeder, S., et al. (2001). Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. Journal of the American College of Cardiology, 37(5), 1430–1435.PubMedCrossRef
29.
go back to reference Yla-Herttuala, S., et al. (2013). Stabilization of atherosclerotic plaques: an update. European Heart Journal, 34(42), 3251–3258.PubMedCrossRef Yla-Herttuala, S., et al. (2013). Stabilization of atherosclerotic plaques: an update. European Heart Journal, 34(42), 3251–3258.PubMedCrossRef
30.
go back to reference Stone, G. W., et al. (2011). A prospective natural-history study of coronary atherosclerosis. The New England Journal of Medicine, 364(3), 226–235.PubMedCrossRef Stone, G. W., et al. (2011). A prospective natural-history study of coronary atherosclerosis. The New England Journal of Medicine, 364(3), 226–235.PubMedCrossRef
31.
go back to reference Naghavi, M., et al. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation, 108(15), 1772–1778.PubMedCrossRef Naghavi, M., et al. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation, 108(15), 1772–1778.PubMedCrossRef
32.
go back to reference Arbab-Zadeh, A., & Fuster, V. (2015). The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. Journal of the American College of Cardiology, 65(8), 846–855.PubMedPubMedCentralCrossRef Arbab-Zadeh, A., & Fuster, V. (2015). The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. Journal of the American College of Cardiology, 65(8), 846–855.PubMedPubMedCentralCrossRef
33.
go back to reference Chiu, B., et al. (2011). Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation. Medical Physics, 38(10), 5370–5384.PubMedPubMedCentralCrossRef Chiu, B., et al. (2011). Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation. Medical Physics, 38(10), 5370–5384.PubMedPubMedCentralCrossRef
35.
go back to reference Vaidya, K., et al. (2018). Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study. JACC: Cardiovascular Imaging, 11(2 Pt 2), 305–316.PubMed Vaidya, K., et al. (2018). Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study. JACC: Cardiovascular Imaging, 11(2 Pt 2), 305–316.PubMed
36.
go back to reference Bauriedel, G., et al. (1994). Colchicine antagonizes the activity of human smooth muscle cells cultivated from arteriosclerotic lesions after atherectomy. Coronary Artery Disease, 5(6), 531–539.PubMed Bauriedel, G., et al. (1994). Colchicine antagonizes the activity of human smooth muscle cells cultivated from arteriosclerotic lesions after atherectomy. Coronary Artery Disease, 5(6), 531–539.PubMed
37.
go back to reference Tatsumi, M., et al. (2003). Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology, 229(3), 831–837.PubMedCrossRef Tatsumi, M., et al. (2003). Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology, 229(3), 831–837.PubMedCrossRef
38.
go back to reference Tawakol, A., et al. (2005). Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. Journal of Nuclear Cardiology, 12(3), 294–301.PubMedCrossRef Tawakol, A., et al. (2005). Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. Journal of Nuclear Cardiology, 12(3), 294–301.PubMedCrossRef
39.
go back to reference Ishii, H., et al. (2010). Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled for percutaneous coronary intervention. Clinical Therapeutics, 32(14), 2337–2347.PubMedCrossRef Ishii, H., et al. (2010). Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled for percutaneous coronary intervention. Clinical Therapeutics, 32(14), 2337–2347.PubMedCrossRef
40.
go back to reference Vucic, E., et al. (2011). Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC: Cardiovascular Imaging, 4(10), 1100–1109.PubMed Vucic, E., et al. (2011). Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC: Cardiovascular Imaging, 4(10), 1100–1109.PubMed
41.
go back to reference Martinez, G. J., Celermajer, D. S., & Patel, S. (2018). The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis, 269, 262–271.PubMedCrossRef Martinez, G. J., Celermajer, D. S., & Patel, S. (2018). The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis, 269, 262–271.PubMedCrossRef
42.
go back to reference Martinez, G. J., et al. (2015). Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. Journal of the American Heart Association, 4(8), e002128.PubMedPubMedCentralCrossRef Martinez, G. J., et al. (2015). Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. Journal of the American Heart Association, 4(8), e002128.PubMedPubMedCentralCrossRef
43.
go back to reference Yabushita, H., et al. (2002). Characterization of human atherosclerosis by optical coherence tomography. Circulation, 106(13), 1640–1645.PubMedCrossRef Yabushita, H., et al. (2002). Characterization of human atherosclerosis by optical coherence tomography. Circulation, 106(13), 1640–1645.PubMedCrossRef
44.
go back to reference Rodriguez-Granillo, G. A., et al. (2005). New insights towards catheter-based identification of vulnerable plaque. Revista Española de Cardiología, 58(10), 1197–1206.PubMedCrossRef Rodriguez-Granillo, G. A., et al. (2005). New insights towards catheter-based identification of vulnerable plaque. Revista Española de Cardiología, 58(10), 1197–1206.PubMedCrossRef
45.
go back to reference Puri, R., et al. (2015). Impact of statins on serial coronary calcification during atheroma progression and regression. Journal of the American College of Cardiology, 65(13), 1273–1282.PubMedCrossRef Puri, R., et al. (2015). Impact of statins on serial coronary calcification during atheroma progression and regression. Journal of the American College of Cardiology, 65(13), 1273–1282.PubMedCrossRef
46.
go back to reference Kaminiotis, V. V., et al. (2017). Per os colchicine administration in cholesterol fed rabbits: triglycerides lowering effects without affecting atherosclerosis progress. Lipids in Health and Disease, 16(1), 184.PubMedPubMedCentralCrossRef Kaminiotis, V. V., et al. (2017). Per os colchicine administration in cholesterol fed rabbits: triglycerides lowering effects without affecting atherosclerosis progress. Lipids in Health and Disease, 16(1), 184.PubMedPubMedCentralCrossRef
47.
go back to reference Wojcicki, J., et al. (1986). The effect of colchicine on the development of experimental atherosclerosis in rabbits. Polish Journal of Pharmacology and Pharmacy, 38(4), 343–348.PubMed Wojcicki, J., et al. (1986). The effect of colchicine on the development of experimental atherosclerosis in rabbits. Polish Journal of Pharmacology and Pharmacy, 38(4), 343–348.PubMed
48.
go back to reference Brooks, P. M., Burton, D., & Forrest, M. J. (1987). Crystal-induced inflammation in the rat subcutaneous air-pouch. British Journal of Pharmacology, 90(2), 413–419.PubMedPubMedCentralCrossRef Brooks, P. M., Burton, D., & Forrest, M. J. (1987). Crystal-induced inflammation in the rat subcutaneous air-pouch. British Journal of Pharmacology, 90(2), 413–419.PubMedPubMedCentralCrossRef
49.
go back to reference Maduri, S., & Atla, V. R. (2012). Formulation of colchicine ointment for the treatment of acute gout. Singapore Medical Journal, 53(11), 750–754.PubMed Maduri, S., & Atla, V. R. (2012). Formulation of colchicine ointment for the treatment of acute gout. Singapore Medical Journal, 53(11), 750–754.PubMed
50.
go back to reference Marcovici, I., et al. (1993). Colchicine and post-inflammatory adhesions in a rabbit model: a dose-response study. Obstetrics and Gynecology, 82(2), 216–218.PubMed Marcovici, I., et al. (1993). Colchicine and post-inflammatory adhesions in a rabbit model: a dose-response study. Obstetrics and Gynecology, 82(2), 216–218.PubMed
51.
go back to reference Angelidis, C., et al. (2018). Colchicine pharmacokinetics and mechanism of action. Current Pharmaceutical Design, 24(6), 659–663.PubMedCrossRef Angelidis, C., et al. (2018). Colchicine pharmacokinetics and mechanism of action. Current Pharmaceutical Design, 24(6), 659–663.PubMedCrossRef
Metadata
Title
Effects of Colchicine on Atherosclerotic Plaque Stabilization: a Multimodality Imaging Study in an Animal Model
Authors
Alberto Cecconi
Jean Paul Vilchez-Tschischke
Jesus Mateo
Javier Sanchez-Gonzalez
Samuel España
Rodrigo Fernandez-Jimenez
Beatriz Lopez-Melgar
Leticia Fernández Friera
Gonzalo J López-Martín
Valentin Fuster
Jesus Ruiz-Cabello
Borja Ibañez
Publication date
01-02-2021
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2021
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-020-09974-7

Other articles of this Issue 1/2021

Journal of Cardiovascular Translational Research 1/2021 Go to the issue