Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2019

01-02-2019 | Original Article

Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression

Authors: Yang Liu, Zhuyuan Liu, Yuan Xie, Cuimei Zhao, Jiahong Xu

Published in: Journal of Cardiovascular Translational Research | Issue 1/2019

Login to get access

Abstract

Extracellular vesicles (EVs) are small-sized membrane-surrounded structures released from cells into the blood, which play important roles in regulating various biological processes. However, the role of EVs in Doxorubicin (DOX)-induced cardiomyocytes senescence remains elusive. In this study, we found that human serum EVs inhibited DOX-induced senescence in H9C2 cells, which was abolished by miR-34a mimic. Our study also proved that miR-34a mediated DOX-induced H9C2 cell senescence by targeting phosphatase 1 nuclear targeting subunit (PNUTS). In addition to the downregulation of miR-34a, EVs could upregulate the expression of PNUTS. Moreover, the inhibitory effect of serum EVs on DOX-induced H9C2 cell senescence was also impeded by PNUTS siRNA. In conclusion, our study suggests that serum EVs retard H9C2 cell senescence through the miR-34a/PNUTS pathway, providing a potential therapy for cardiac aging.
Literature
1.
go back to reference Agarwal, U., George, A., Bhutani, S., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., et al. (2017). Experimental, systems, and computational approaches to understanding the MicroRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circulation Research, 120(4), 701–712.CrossRefPubMed Agarwal, U., George, A., Bhutani, S., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., et al. (2017). Experimental, systems, and computational approaches to understanding the MicroRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circulation Research, 120(4), 701–712.CrossRefPubMed
2.
go back to reference Angelini, F., Ionta, V., Rossi, F., Pagano, F., Chimenti, I., Messina, E., et al. (2016). Exosomes isolation protocols: facts and artifacts for cardiac regeneration. Frontiers in Bioscience (Scholar Edition), 8, 303–311.CrossRef Angelini, F., Ionta, V., Rossi, F., Pagano, F., Chimenti, I., Messina, E., et al. (2016). Exosomes isolation protocols: facts and artifacts for cardiac regeneration. Frontiers in Bioscience (Scholar Edition), 8, 303–311.CrossRef
3.
go back to reference Schageman, J., Zeringer, E., Li, M., Barta, T., Lea, K., Gu, J., et al. (2013). The complete exosome workflow solution: from isolation to characterization of RNA cargo. BioMed Research International, 2013, 253957.CrossRefPubMedPubMedCentral Schageman, J., Zeringer, E., Li, M., Barta, T., Lea, K., Gu, J., et al. (2013). The complete exosome workflow solution: from isolation to characterization of RNA cargo. BioMed Research International, 2013, 253957.CrossRefPubMedPubMedCentral
4.
go back to reference Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38(3), 212–215.PubMed Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38(3), 212–215.PubMed
5.
go back to reference Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.CrossRefPubMed Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.CrossRefPubMed
6.
go back to reference Song, J., Chen, X., Wang, M., Xing, Y., Zheng, Z., & Hu, S. (2014). Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Scientific Reports, 4, 7583.CrossRefPubMedPubMedCentral Song, J., Chen, X., Wang, M., Xing, Y., Zheng, Z., & Hu, S. (2014). Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Scientific Reports, 4, 7583.CrossRefPubMedPubMedCentral
7.
go back to reference Wang, C., Zhang, C., Liu, L., A, X., Chen, B., Li, Y., et al. (2017). Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy, 25(1), 192–204.CrossRefPubMedPubMedCentral Wang, C., Zhang, C., Liu, L., A, X., Chen, B., Li, Y., et al. (2017). Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy, 25(1), 192–204.CrossRefPubMedPubMedCentral
8.
9.
go back to reference Zhang, Y., Kim, M. S., Jia, B., Yan, J., Zuniga-Hertz, J. P., Han, C., et al. (2017). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548(7665), 52–57.CrossRefPubMedPubMedCentral Zhang, Y., Kim, M. S., Jia, B., Yan, J., Zuniga-Hertz, J. P., Han, C., et al. (2017). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548(7665), 52–57.CrossRefPubMedPubMedCentral
10.
go back to reference Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., et al. (2013). Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature, 497(7448), 211–216.CrossRefPubMedPubMedCentral Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., et al. (2013). Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature, 497(7448), 211–216.CrossRefPubMedPubMedCentral
11.
go back to reference Zhang, Y., & Kalderon, D. (2001). Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature, 410(6828), 599–604.CrossRefPubMed Zhang, Y., & Kalderon, D. (2001). Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature, 410(6828), 599–604.CrossRefPubMed
12.
go back to reference Politano, G., Logrand, F., Brancaccio, M., & Di Carlo, S. (2017). In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. Methods, 124, 57–68.CrossRefPubMed Politano, G., Logrand, F., Brancaccio, M., & Di Carlo, S. (2017). In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. Methods, 124, 57–68.CrossRefPubMed
13.
go back to reference Dimitrakopoulos, G. N., Dimitrakopoulou, K., Maraziotis, I. A., Sgarbas, K., & Bezerianos, A. (2014). Supervised method for construction of microRNA-mRNA networks: application in cardiac tissue aging dataset. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, 318–321. Dimitrakopoulos, G. N., Dimitrakopoulou, K., Maraziotis, I. A., Sgarbas, K., & Bezerianos, A. (2014). Supervised method for construction of microRNA-mRNA networks: application in cardiac tissue aging dataset. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, 318–321.
14.
go back to reference Chiao, Y. A. (2013). MicroRNA-34a: a new piece in the cardiac aging puzzle. Circulation. Cardiovascular Genetics, 6(4), 437–438.CrossRefPubMed Chiao, Y. A. (2013). MicroRNA-34a: a new piece in the cardiac aging puzzle. Circulation. Cardiovascular Genetics, 6(4), 437–438.CrossRefPubMed
15.
go back to reference Jazbutyte, V., Fiedler, J., Kneitz, S., Galuppo, P., Just, A., Holzmann, A., et al. (2013). MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordrecht, Netherlands), 35(3), 747–762.CrossRef Jazbutyte, V., Fiedler, J., Kneitz, S., Galuppo, P., Just, A., Holzmann, A., et al. (2013). MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordrecht, Netherlands), 35(3), 747–762.CrossRef
16.
go back to reference Christoffersen, N. R., Shalgi, R., Frankel, L. B., Leucci, E., Lees, M., Klausen, M., et al. (2010). p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation, 17(2), 236–245.CrossRefPubMed Christoffersen, N. R., Shalgi, R., Frankel, L. B., Leucci, E., Lees, M., Klausen, M., et al. (2010). p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation, 17(2), 236–245.CrossRefPubMed
17.
go back to reference Boon, R. A., Seeger, T., Heydt, S., Fischer, A., Hergenreider, E., Horrevoets, A. J., et al. (2011). MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circulation Research, 109(10), 1115–1119.CrossRefPubMed Boon, R. A., Seeger, T., Heydt, S., Fischer, A., Hergenreider, E., Horrevoets, A. J., et al. (2011). MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circulation Research, 109(10), 1115–1119.CrossRefPubMed
18.
go back to reference Boon, R. A., Iekushi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature, 495(7439), 107–110.CrossRef Boon, R. A., Iekushi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature, 495(7439), 107–110.CrossRef
19.
go back to reference Bei, Y., Wu, X., Cretoiu, D., Shi, J., Zhou, Q., Lin, S., et al. (2018). miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. Journal of Molecular and Cellular Cardiology, 115, 130–141.CrossRefPubMed Bei, Y., Wu, X., Cretoiu, D., Shi, J., Zhou, Q., Lin, S., et al. (2018). miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. Journal of Molecular and Cellular Cardiology, 115, 130–141.CrossRefPubMed
20.
go back to reference Maejima, Y., Adachi, S., Ito, H., Hirao, K., & Isobe, M. (2008). Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell, 7(2), 125–136.CrossRefPubMed Maejima, Y., Adachi, S., Ito, H., Hirao, K., & Isobe, M. (2008). Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell, 7(2), 125–136.CrossRefPubMed
21.
go back to reference Liu, Z., Zhang, Z., Yao, J., Xie, Y., Dai, Q., Zhang, Y., et al. (2018). Serum extracellular vesicles promote proliferation of H9C2 cardiomyocytes by increasing miR-17-3p. Biochemical and Biophysical Research Communications, 499(3), 441–446.CrossRefPubMed Liu, Z., Zhang, Z., Yao, J., Xie, Y., Dai, Q., Zhang, Y., et al. (2018). Serum extracellular vesicles promote proliferation of H9C2 cardiomyocytes by increasing miR-17-3p. Biochemical and Biophysical Research Communications, 499(3), 441–446.CrossRefPubMed
22.
go back to reference Guo, Y., Li, P., Gao, L., Zhang, J., Yang, Z., Bledsoe, G., et al. (2017). Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell, 16(4), 837–846.CrossRefPubMedPubMedCentral Guo, Y., Li, P., Gao, L., Zhang, J., Yang, Z., Bledsoe, G., et al. (2017). Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell, 16(4), 837–846.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Ong, S. G., & Wu, J. C. (2015). Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circulation Research, 117(1), 7–9.CrossRefPubMedPubMedCentral Ong, S. G., & Wu, J. C. (2015). Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circulation Research, 117(1), 7–9.CrossRefPubMedPubMedCentral
25.
go back to reference Peche, H., Renaudin, K., Beriou, G., Merieau, E., Amigorena, S., & Cuturi, M. C. (2006). Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation, 6(7), 1541–1550.CrossRefPubMed Peche, H., Renaudin, K., Beriou, G., Merieau, E., Amigorena, S., & Cuturi, M. C. (2006). Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation, 6(7), 1541–1550.CrossRefPubMed
26.
go back to reference Pironti, G., Strachan, R. T., Abraham, D., Mon-Wei Yu, S., Chen, M., Chen, W., et al. (2015). Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation, 131(24), 2120–2130.CrossRefPubMedPubMedCentral Pironti, G., Strachan, R. T., Abraham, D., Mon-Wei Yu, S., Chen, M., Chen, W., et al. (2015). Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation, 131(24), 2120–2130.CrossRefPubMedPubMedCentral
27.
go back to reference Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91.CrossRefPubMedCentral Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91.CrossRefPubMedCentral
28.
go back to reference Emanueli, C., Shearn, A. I., Laftah, A., Fiorentino, F., Reeves, B. C., Beltrami, C., et al. (2016). Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One, 11(4), e0154274.CrossRefPubMedPubMedCentral Emanueli, C., Shearn, A. I., Laftah, A., Fiorentino, F., Reeves, B. C., Beltrami, C., et al. (2016). Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One, 11(4), e0154274.CrossRefPubMedPubMedCentral
29.
go back to reference Looze, C., Yui, D., Leung, L., Ingham, M., Kaler, M., Yao, X., et al. (2009). Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochemical and Biophysical Research Communications, 378(3), 433–438.CrossRefPubMed Looze, C., Yui, D., Leung, L., Ingham, M., Kaler, M., Yao, X., et al. (2009). Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochemical and Biophysical Research Communications, 378(3), 433–438.CrossRefPubMed
30.
go back to reference Moldovan, L., Batte, K., Wang, Y., Wisler, J., & Piper, M. (2013). Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods in Molecular Biology, 1024, 129–145.CrossRefPubMed Moldovan, L., Batte, K., Wang, Y., Wisler, J., & Piper, M. (2013). Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods in Molecular Biology, 1024, 129–145.CrossRefPubMed
31.
go back to reference Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.CrossRefPubMed Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.CrossRefPubMed
32.
go back to reference Ye, W., Tang, X., Yang, Z., Liu, C., Zhang, X., Jin, J., et al. (2017). Plasma-derived exosomes contribute to inflammation via the TLR9-NF-kappaB pathway in chronic heart failure patients. Molecular Immunology, 87, 114–121.CrossRefPubMed Ye, W., Tang, X., Yang, Z., Liu, C., Zhang, X., Jin, J., et al. (2017). Plasma-derived exosomes contribute to inflammation via the TLR9-NF-kappaB pathway in chronic heart failure patients. Molecular Immunology, 87, 114–121.CrossRefPubMed
33.
go back to reference Kim, H., Lee, O. H., Xin, H., Chen, L. Y., Qin, J., Chae, H. K., et al. (2009). TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nature Structural & Molecular Biology, 16(4), 372–379.CrossRef Kim, H., Lee, O. H., Xin, H., Chen, L. Y., Qin, J., Chae, H. K., et al. (2009). TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nature Structural & Molecular Biology, 16(4), 372–379.CrossRef
34.
go back to reference Landsverk, H. B., Mora-Bermudez, F., Landsverk, O. J., Hasvold, G., Naderi, S., Bakke, O., et al. (2010). The protein phosphatase 1 regulator PNUTS is a new component of the DNA damage response. EMBO Reports, 11(11), 868–875.CrossRefPubMedPubMedCentral Landsverk, H. B., Mora-Bermudez, F., Landsverk, O. J., Hasvold, G., Naderi, S., Bakke, O., et al. (2010). The protein phosphatase 1 regulator PNUTS is a new component of the DNA damage response. EMBO Reports, 11(11), 868–875.CrossRefPubMedPubMedCentral
35.
go back to reference Loffredo, F. S., Pancoast, J. R., & Lee, R. T. (2013). Keep PNUTS in your heart. Circulation Research, 113(2), 97–99.CrossRefPubMed Loffredo, F. S., Pancoast, J. R., & Lee, R. T. (2013). Keep PNUTS in your heart. Circulation Research, 113(2), 97–99.CrossRefPubMed
Metadata
Title
Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression
Authors
Yang Liu
Zhuyuan Liu
Yuan Xie
Cuimei Zhao
Jiahong Xu
Publication date
01-02-2019
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2019
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9847-4

Other articles of this Issue 1/2019

Journal of Cardiovascular Translational Research 1/2019 Go to the issue