Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 9/2015

01-12-2015

Linking Genes to Cardiovascular Diseases: Gene Action and Gene–Environment Interactions

Author: Ares Pasipoularides

Published in: Journal of Cardiovascular Translational Research | Issue 9/2015

Login to get access

Abstract

A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the “post-genomic” era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how “modifier genes” influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many—practitioners and investigators—to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wallace, B. (1992). The search for the gene. Ithaca: Cornell University Press. Wallace, B. (1992). The search for the gene. Ithaca: Cornell University Press.
2.
go back to reference Pasipoularides, A. (2010). Heart's vortex: intracardiac blood flow phenomena. Shelton: People's Medical Publishing House. 960 p. Pasipoularides, A. (2010). Heart's vortex: intracardiac blood flow phenomena. Shelton: People's Medical Publishing House. 960 p.
3.
go back to reference Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–469.PubMed Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–469.PubMed
5.
6.
go back to reference Lunkenheimer, P. P., Niederer, P., Sanchez-Quintana, D., Murillo, M., & Smerup, M. (2013). Models of ventricular structure and function reviewed for clinical cardiologists. Journal of Cardiovascular Translational Research, 6, 176–186.PubMedCrossRef Lunkenheimer, P. P., Niederer, P., Sanchez-Quintana, D., Murillo, M., & Smerup, M. (2013). Models of ventricular structure and function reviewed for clinical cardiologists. Journal of Cardiovascular Translational Research, 6, 176–186.PubMedCrossRef
7.
go back to reference Johannsen, W. (1909). Elemente der exakten Erblichkeitslehre. Jena: Gustav Fischer. Johannsen, W. (1909). Elemente der exakten Erblichkeitslehre. Jena: Gustav Fischer.
8.
go back to reference Larribe, F., & Fearnhead, P. (2011). On composite likelihoods in statistical genetics. Stat Sinica, 21, 43–69. Larribe, F., & Fearnhead, P. (2011). On composite likelihoods in statistical genetics. Stat Sinica, 21, 43–69.
9.
go back to reference Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMedCrossRef Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMedCrossRef
10.
go back to reference International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRef International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRef
11.
go back to reference International Human Genome Mapping Consortium. (2001). A physical map of the human genome. Nature, 409, 934–941.CrossRef International Human Genome Mapping Consortium. (2001). A physical map of the human genome. Nature, 409, 934–941.CrossRef
12.
go back to reference International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRef International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRef
13.
go back to reference Glotov, A. S., Kazakov, S. V., Zhukova, E. A., et al. (2015). Targeted next-generation sequencing (NGS) of nine candidate genes with custom AmpliSeq in patients and a cardiomyopathy risk group. Clinica Chimica Acta, 446, 132–140.CrossRef Glotov, A. S., Kazakov, S. V., Zhukova, E. A., et al. (2015). Targeted next-generation sequencing (NGS) of nine candidate genes with custom AmpliSeq in patients and a cardiomyopathy risk group. Clinica Chimica Acta, 446, 132–140.CrossRef
14.
go back to reference Stakos, D. A., & Boudoulas, H. (2002). Pharmacogenetics and pharmacogenomics in cardiology. Hellenic Journal of Cardiology, 43, 1–15. Stakos, D. A., & Boudoulas, H. (2002). Pharmacogenetics and pharmacogenomics in cardiology. Hellenic Journal of Cardiology, 43, 1–15.
15.
go back to reference Wheeler, M. T., Ho, M., Knowles, J. W., Pavlovic, A., & Ashley, E. A. (2008). Pharmacogenetics of heart failure: evidence, opportunities, and challenges for cardiovascular pharmacogenomics. Journal of Cardiovascular Translational Research, 1, 25–36.PubMedCrossRef Wheeler, M. T., Ho, M., Knowles, J. W., Pavlovic, A., & Ashley, E. A. (2008). Pharmacogenetics of heart failure: evidence, opportunities, and challenges for cardiovascular pharmacogenomics. Journal of Cardiovascular Translational Research, 1, 25–36.PubMedCrossRef
16.
go back to reference Ware, J. S., John, S., Roberts, A. M., et al. (2013). Next generation diagnostics in inherited arrhythmia syndromes : a comparison of two approaches. Journal of Cardiovascular Translational Research, 6, 94–103.PubMedCentralPubMedCrossRef Ware, J. S., John, S., Roberts, A. M., et al. (2013). Next generation diagnostics in inherited arrhythmia syndromes : a comparison of two approaches. Journal of Cardiovascular Translational Research, 6, 94–103.PubMedCentralPubMedCrossRef
17.
go back to reference Matkovich, S. J., Van Booven, D. J., Hindes, A., et al. (2010). Cardiac signaling genes exhibit unexpected sequence diversity in sporadic cardiomyopathy, revealing HSPB7 polymorphisms associated with disease. Journal of Clinical Investigation, 120, 280–289.PubMedCentralPubMedCrossRef Matkovich, S. J., Van Booven, D. J., Hindes, A., et al. (2010). Cardiac signaling genes exhibit unexpected sequence diversity in sporadic cardiomyopathy, revealing HSPB7 polymorphisms associated with disease. Journal of Clinical Investigation, 120, 280–289.PubMedCentralPubMedCrossRef
18.
go back to reference Sakharkar, M. K., Chow, V. T., & Kangueane, P. (2004). Distributions of exons and introns in the human genome. In Silico Biology, 4(4), 387–393.PubMed Sakharkar, M. K., Chow, V. T., & Kangueane, P. (2004). Distributions of exons and introns in the human genome. In Silico Biology, 4(4), 387–393.PubMed
19.
go back to reference Watson, J. D., Gilman, M., Witkowski, J., & Zoller, M. (1992). Recombinant DNA (2dth ed.). New York: WH Freeman and Company, Scientific American Books. Watson, J. D., Gilman, M., Witkowski, J., & Zoller, M. (1992). Recombinant DNA (2dth ed.). New York: WH Freeman and Company, Scientific American Books.
21.
go back to reference de Klerk, E., & 't Hoen, P. A. (2015). Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends in Genetics, 31, 128–139.PubMedCrossRef de Klerk, E., & 't Hoen, P. A. (2015). Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends in Genetics, 31, 128–139.PubMedCrossRef
22.
go back to reference Pan, Q., Shai, O., Lee, L. J., Frey, B. J., & Blencowe, B. J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 40, 1413–1415.PubMedCrossRef Pan, Q., Shai, O., Lee, L. J., Frey, B. J., & Blencowe, B. J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 40, 1413–1415.PubMedCrossRef
23.
25.
go back to reference Celotto, A. M., & Graveley, B. R. (2001). Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics, 159, 599–608.PubMedCentralPubMed Celotto, A. M., & Graveley, B. R. (2001). Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics, 159, 599–608.PubMedCentralPubMed
26.
go back to reference Boley, N., Stoiber, M. H., Booth, B. W., et al. (2014). Genome-guided transcript assembly by integrative analysis of RNA sequence data. Nature Biotechnology, 32(4), 341–346.PubMedCentralPubMedCrossRef Boley, N., Stoiber, M. H., Booth, B. W., et al. (2014). Genome-guided transcript assembly by integrative analysis of RNA sequence data. Nature Biotechnology, 32(4), 341–346.PubMedCentralPubMedCrossRef
27.
go back to reference Nadal-Ginard, B. (1990). Muscle cell differentiation and alternative splicing. Current Opinion in Cell Biology, 2, 1058–1064.PubMedCrossRef Nadal-Ginard, B. (1990). Muscle cell differentiation and alternative splicing. Current Opinion in Cell Biology, 2, 1058–1064.PubMedCrossRef
28.
go back to reference Lara-Pezzi, E., Gómez-Salinero, J., Gatto, A., & García-Pavía, P. (2013). The alternative heart: impact of alternative splicing in heart disease. Journal of Cardiovascular Translational Research, 6, 945–955.PubMedCrossRef Lara-Pezzi, E., Gómez-Salinero, J., Gatto, A., & García-Pavía, P. (2013). The alternative heart: impact of alternative splicing in heart disease. Journal of Cardiovascular Translational Research, 6, 945–955.PubMedCrossRef
29.
go back to reference Weeland, C. J., van den Hoogenhof, M. M., Beqqali, A., & Creemers, E. E. (2015). Insights into alternative splicing of sarcomeric genes in the heart. Journal of Molecular and Cellular Cardiology, 81, 107–113.PubMedCrossRef Weeland, C. J., van den Hoogenhof, M. M., Beqqali, A., & Creemers, E. E. (2015). Insights into alternative splicing of sarcomeric genes in the heart. Journal of Molecular and Cellular Cardiology, 81, 107–113.PubMedCrossRef
30.
31.
go back to reference Hudson, J. E., & Porrello, E. R. (2013). The non-coding road towards cardiac regeneration. Journal of Cardiovascular Translational Research, 6, 909–923.PubMedCrossRef Hudson, J. E., & Porrello, E. R. (2013). The non-coding road towards cardiac regeneration. Journal of Cardiovascular Translational Research, 6, 909–923.PubMedCrossRef
32.
go back to reference Bernal, J. A. (2013). RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. Journal of Cardiovascular Translational Research, 6, 956–968.PubMedCentralPubMedCrossRef Bernal, J. A. (2013). RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. Journal of Cardiovascular Translational Research, 6, 956–968.PubMedCentralPubMedCrossRef
33.
go back to reference Maurano, M. T., Humbert, R., Rynes, E., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science, 337, 1190–1195.PubMedCentralPubMedCrossRef Maurano, M. T., Humbert, R., Rynes, E., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science, 337, 1190–1195.PubMedCentralPubMedCrossRef
35.
go back to reference Neph, S., Stergachis, A. B., Reynolds, A., Sandstrom, R., Borenstein, E., & Stamatoyannopoulos, J. A. (2012). Circuitry and dynamics of human transcription factor regulatory networks. Cell, 150, 1274–1286.PubMedCentralPubMedCrossRef Neph, S., Stergachis, A. B., Reynolds, A., Sandstrom, R., Borenstein, E., & Stamatoyannopoulos, J. A. (2012). Circuitry and dynamics of human transcription factor regulatory networks. Cell, 150, 1274–1286.PubMedCentralPubMedCrossRef
36.
go back to reference Deddens, J. C., Colijn, J. M., Oerlemans, M. I., et al. (2013). Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome. Journal of Cardiovascular Translational Research, 6, 884–898.PubMedCrossRef Deddens, J. C., Colijn, J. M., Oerlemans, M. I., et al. (2013). Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome. Journal of Cardiovascular Translational Research, 6, 884–898.PubMedCrossRef
37.
go back to reference Papait, R., Kunderfranco, P., Stirparo, G. G., Latronico, M. V., & Condorelli, G. (2013). Long noncoding RNA: a new player of heart failure? Journal of Cardiovascular Translational Research, 6, 876–883.PubMedCentralPubMedCrossRef Papait, R., Kunderfranco, P., Stirparo, G. G., Latronico, M. V., & Condorelli, G. (2013). Long noncoding RNA: a new player of heart failure? Journal of Cardiovascular Translational Research, 6, 876–883.PubMedCentralPubMedCrossRef
38.
go back to reference Terwilliger, J. D., & Hiekkalinna, T. (2006). An utter refutation of the “Fundamental Theorem of the HapMap.”. European Journal of Human Genetics, 14, 426–437.PubMedCrossRef Terwilliger, J. D., & Hiekkalinna, T. (2006). An utter refutation of the “Fundamental Theorem of the HapMap.”. European Journal of Human Genetics, 14, 426–437.PubMedCrossRef
40.
go back to reference Cohen, J. C., Kiss, R. S., Pertsemlidis, A., Marcel, Y. L., McPherson, R., & Hobbs, H. H. (2004). Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science, 305, 869–872.PubMedCrossRef Cohen, J. C., Kiss, R. S., Pertsemlidis, A., Marcel, Y. L., McPherson, R., & Hobbs, H. H. (2004). Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science, 305, 869–872.PubMedCrossRef
41.
go back to reference Glass, D. J. (2010). A critique of the hypothesis, and a defense of the question, as a framework for experimentation. Clinical Chemistry, 56, 1080–1085.PubMedCrossRef Glass, D. J. (2010). A critique of the hypothesis, and a defense of the question, as a framework for experimentation. Clinical Chemistry, 56, 1080–1085.PubMedCrossRef
42.
go back to reference Harrington, E. D., Jensen, L. J., & Bork, P. (2008). Predicting biological networks from genomic data. FEBS Letters, 582, 1251–1258.PubMedCrossRef Harrington, E. D., Jensen, L. J., & Bork, P. (2008). Predicting biological networks from genomic data. FEBS Letters, 582, 1251–1258.PubMedCrossRef
43.
go back to reference Diez, D., Wheelock, A. M., Goto, S., et al. (2010). The use of network analyses for elucidating mechanisms in cardiovascular disease. Molecular BioSystems, 6, 289–304.PubMedCrossRef Diez, D., Wheelock, A. M., Goto, S., et al. (2010). The use of network analyses for elucidating mechanisms in cardiovascular disease. Molecular BioSystems, 6, 289–304.PubMedCrossRef
44.
go back to reference Cordeddu, V., Di Schiavi, E., Pennacchio, L. A., Ma'ayan, A., et al. (2009). Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nature Genetics, 41, 1022–1026.PubMedCentralPubMedCrossRef Cordeddu, V., Di Schiavi, E., Pennacchio, L. A., Ma'ayan, A., et al. (2009). Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nature Genetics, 41, 1022–1026.PubMedCentralPubMedCrossRef
45.
go back to reference Berger, S., Posner, J., & Ma'ayan, A. (2007). Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinformatics, 8(1), 372.PubMedCentralPubMedCrossRef Berger, S., Posner, J., & Ma'ayan, A. (2007). Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinformatics, 8(1), 372.PubMedCentralPubMedCrossRef
46.
go back to reference Schmitt, T., Ogris, C., & Sonnhammer, E. L. (2013). FunCoup 3.0: database of genome-wide functional coupling networks. Nucleic Acids Research, 42(Database issue), D380–D388.PubMedCentralPubMed Schmitt, T., Ogris, C., & Sonnhammer, E. L. (2013). FunCoup 3.0: database of genome-wide functional coupling networks. Nucleic Acids Research, 42(Database issue), D380–D388.PubMedCentralPubMed
47.
go back to reference Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.PubMedCentralPubMedCrossRef Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.PubMedCentralPubMedCrossRef
48.
go back to reference Moreno-Moral, A., Mancini, M., D'Amati, G., Camici, P., & Petretto, E. (2013). Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling. Journal of Cardiovascular Translational Research, 6, 931–944.PubMedCrossRef Moreno-Moral, A., Mancini, M., D'Amati, G., Camici, P., & Petretto, E. (2013). Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling. Journal of Cardiovascular Translational Research, 6, 931–944.PubMedCrossRef
49.
go back to reference Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12, 56–68.PubMedCentralPubMedCrossRef Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12, 56–68.PubMedCentralPubMedCrossRef
50.
go back to reference Fuxman Bass, J. I., Sahni, N., Shrestha, S., et al. (2015). Human gene-centered transcription factor networks for enhancers and disease variants. Cell, 161, 661–673.PubMedCrossRef Fuxman Bass, J. I., Sahni, N., Shrestha, S., et al. (2015). Human gene-centered transcription factor networks for enhancers and disease variants. Cell, 161, 661–673.PubMedCrossRef
51.
go back to reference Beyer, A., Bandyopadhyay, S., & Ideker, T. (2007). Integrating physical and genetic maps: from genomes to interaction networks. Nature Reviews Genetics, 8, 699–710.PubMedCentralPubMedCrossRef Beyer, A., Bandyopadhyay, S., & Ideker, T. (2007). Integrating physical and genetic maps: from genomes to interaction networks. Nature Reviews Genetics, 8, 699–710.PubMedCentralPubMedCrossRef
53.
go back to reference Beadle, G. W., & Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 27, 499–506.PubMedCentralPubMedCrossRef Beadle, G. W., & Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 27, 499–506.PubMedCentralPubMedCrossRef
54.
go back to reference Mason, P. H. (2010). Degeneracy at multiple levels of complexity. Biological Theory, 5, 277–288.CrossRef Mason, P. H. (2010). Degeneracy at multiple levels of complexity. Biological Theory, 5, 277–288.CrossRef
55.
go back to reference Moffatt, J. D. (2005). What targets have knockouts revealed in asthma? Pharmacology and Therapeutics, 107, 343–357.PubMedCrossRef Moffatt, J. D. (2005). What targets have knockouts revealed in asthma? Pharmacology and Therapeutics, 107, 343–357.PubMedCrossRef
56.
go back to reference Baldwin, H. S. (1999). Advances in understanding the molecular regulation of cardiac development. Current Opinion in Pediatrics, 11, 413–418.PubMedCrossRef Baldwin, H. S. (1999). Advances in understanding the molecular regulation of cardiac development. Current Opinion in Pediatrics, 11, 413–418.PubMedCrossRef
57.
go back to reference Goh, K. I., Cusick, M. E., Valle, D., et al. (2007). The human disease network. Proceedings of the National Academy of Sciences of the United States of America, 104, 8685–8690.PubMedCentralPubMedCrossRef Goh, K. I., Cusick, M. E., Valle, D., et al. (2007). The human disease network. Proceedings of the National Academy of Sciences of the United States of America, 104, 8685–8690.PubMedCentralPubMedCrossRef
59.
go back to reference Pasipoularides, A. (2014). Galen, father of systematic medicine. An essay on the evolution of modern medicine and cardiology. International Journal of Cardiology, 172, 47–58.PubMedCrossRef Pasipoularides, A. (2014). Galen, father of systematic medicine. An essay on the evolution of modern medicine and cardiology. International Journal of Cardiology, 172, 47–58.PubMedCrossRef
60.
go back to reference Pasipoularides, A. (2014). Historical continuity in the methodology of modern medical science: Leonardo leads the way. International Journal of Cardiology, 171, 103–115.PubMedCrossRef Pasipoularides, A. (2014). Historical continuity in the methodology of modern medical science: Leonardo leads the way. International Journal of Cardiology, 171, 103–115.PubMedCrossRef
61.
go back to reference Pasipoularides, A. (2013). Greek underpinnings to his methodology in unraveling De motu cordis and what Harvey has to teach us still today. International Journal of Cardiology, 168, 3173–3182.PubMedCrossRef Pasipoularides, A. (2013). Greek underpinnings to his methodology in unraveling De motu cordis and what Harvey has to teach us still today. International Journal of Cardiology, 168, 3173–3182.PubMedCrossRef
62.
go back to reference Pasipoularides, A. (2013). Harvey's epoch-making discovery of the Circulation, its historical antecedents, and some initial consequences on medical practice. Journal of Applied Physiology, 114, 1493–1503.PubMedCrossRef Pasipoularides, A. (2013). Harvey's epoch-making discovery of the Circulation, its historical antecedents, and some initial consequences on medical practice. Journal of Applied Physiology, 114, 1493–1503.PubMedCrossRef
63.
go back to reference Moss, L. (2003). What genes can't do. Cambridge: MIT Press/Bradford Books. Moss, L. (2003). What genes can't do. Cambridge: MIT Press/Bradford Books.
64.
go back to reference Teekakirikul, P., Kelly, M. A., Rehm, H. L., Lakdawala, N. K., & Funke, B. H. (2013). Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. Journal of Molecular Diagnostics, 15, 158–170.PubMedCrossRef Teekakirikul, P., Kelly, M. A., Rehm, H. L., Lakdawala, N. K., & Funke, B. H. (2013). Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. Journal of Molecular Diagnostics, 15, 158–170.PubMedCrossRef
65.
go back to reference Friede, K. A., Ginsburg, G. S., & Voora, D. (2015). Gene expression signatures and the spectrum of coronary artery disease. Journal of Cardiovascular Translational Research, 8, 339–352.PubMedCrossRef Friede, K. A., Ginsburg, G. S., & Voora, D. (2015). Gene expression signatures and the spectrum of coronary artery disease. Journal of Cardiovascular Translational Research, 8, 339–352.PubMedCrossRef
66.
go back to reference Su, Z., Ning, B., Fang, H., et al. (2011). Next-generation sequencing and its applications in molecular diagnostics. Expert Review of Molecular Diagnostics, 11, 333–343.PubMed Su, Z., Ning, B., Fang, H., et al. (2011). Next-generation sequencing and its applications in molecular diagnostics. Expert Review of Molecular Diagnostics, 11, 333–343.PubMed
67.
go back to reference Antonarakis, S. E., & Beckmann, J. S. (2006). Mendelian disorders deserve more attention. Nature Reviews Genetics, 7, 277–282.PubMedCrossRef Antonarakis, S. E., & Beckmann, J. S. (2006). Mendelian disorders deserve more attention. Nature Reviews Genetics, 7, 277–282.PubMedCrossRef
68.
go back to reference Steinberg, M. H., Forget, P. G., Higgs, D. R., & Nagel, R. L. (Eds.). (2001). Disorders of hemoglobin : genetics, pathophysiology, and clinical management. Cambridge: Cambridge University Press. Steinberg, M. H., Forget, P. G., Higgs, D. R., & Nagel, R. L. (Eds.). (2001). Disorders of hemoglobin : genetics, pathophysiology, and clinical management. Cambridge: Cambridge University Press.
70.
go back to reference The International HapMap Consortium. (2003). The International HapMap Project. Nature, 426, 789–796.CrossRef The International HapMap Consortium. (2003). The International HapMap Project. Nature, 426, 789–796.CrossRef
71.
go back to reference Hall, J. L. (2008). Building a program in translational genomics. Journal of Cardiovascular Translational Research, 1, 283–287.PubMedCrossRef Hall, J. L. (2008). Building a program in translational genomics. Journal of Cardiovascular Translational Research, 1, 283–287.PubMedCrossRef
72.
73.
go back to reference Rosendaal, F. R. (1993). Venous thrombosis: a multicausal disease. Lancet, 353, 1167–1173.CrossRef Rosendaal, F. R. (1993). Venous thrombosis: a multicausal disease. Lancet, 353, 1167–1173.CrossRef
74.
go back to reference Van Berlo, J. H., Maillet, M., & Molkentin, J. D. (2013). Signaling effectors underlying pathologic growth and remodeling of the heart. Journal of Clinical Investigation, 123, 37–45.PubMedCentralPubMedCrossRef Van Berlo, J. H., Maillet, M., & Molkentin, J. D. (2013). Signaling effectors underlying pathologic growth and remodeling of the heart. Journal of Clinical Investigation, 123, 37–45.PubMedCentralPubMedCrossRef
75.
go back to reference Kimura, A. (2010). Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond. Journal of Human Genetics, 55, 81–90.PubMedCrossRef Kimura, A. (2010). Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond. Journal of Human Genetics, 55, 81–90.PubMedCrossRef
76.
go back to reference Hershberger, R. E., Lindenfeld, J., Mestroni, L., Seidman, C. E., Taylor, M. R., & Towbin, J. A. (2009). Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. Journal of Cardiac Failure, 15, 83–97.PubMedCrossRef Hershberger, R. E., Lindenfeld, J., Mestroni, L., Seidman, C. E., Taylor, M. R., & Towbin, J. A. (2009). Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. Journal of Cardiac Failure, 15, 83–97.PubMedCrossRef
77.
go back to reference Gelb, B. D., & Chung, W. K. (2014). Complex genetics and the etiology of human congenital heart disease. Cold Spring Harbor Perspectives in Medicine, 4(7), a013953.PubMedCentralPubMedCrossRef Gelb, B. D., & Chung, W. K. (2014). Complex genetics and the etiology of human congenital heart disease. Cold Spring Harbor Perspectives in Medicine, 4(7), a013953.PubMedCentralPubMedCrossRef
78.
go back to reference Sturm, A. C. (2013). Genetic testing in the contemporary diagnosis of cardiomyopathy. Current Heart Failure Reports, 10, 63–72.PubMedCrossRef Sturm, A. C. (2013). Genetic testing in the contemporary diagnosis of cardiomyopathy. Current Heart Failure Reports, 10, 63–72.PubMedCrossRef
80.
go back to reference Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., & Smoller, J. W. (2013). Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics, 14, 483–495.PubMedCentralPubMedCrossRef Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., & Smoller, J. W. (2013). Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics, 14, 483–495.PubMedCentralPubMedCrossRef
81.
go back to reference Kamisago, M., Sharma, S. D., DePalma, S. R., et al. (2000). Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. New England Journal of Medicine, 343, 1688–1696.PubMedCrossRef Kamisago, M., Sharma, S. D., DePalma, S. R., et al. (2000). Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. New England Journal of Medicine, 343, 1688–1696.PubMedCrossRef
82.
go back to reference Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. Journal of the American College of Cardiology, 15, 859–882.PubMedCrossRef Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. Journal of the American College of Cardiology, 15, 859–882.PubMedCrossRef
83.
go back to reference Georgiadis, J., Wang, M., & Pasipoularides, A. (1992). Computational fluid dynamics of ventricular ejection with and without outflow stenosis. Annals of Biomedical Engineering, 20, 81–97.PubMedCrossRef Georgiadis, J., Wang, M., & Pasipoularides, A. (1992). Computational fluid dynamics of ventricular ejection with and without outflow stenosis. Annals of Biomedical Engineering, 20, 81–97.PubMedCrossRef
84.
go back to reference Pasipoularides, A. (2007). Complementarity and competitiveness of the intrinsic and extrinsic components of the total ventricular load: demonstration after valve replacement in aortic stenosis. American Heart Journal, 153, 4–6.PubMedCrossRef Pasipoularides, A. (2007). Complementarity and competitiveness of the intrinsic and extrinsic components of the total ventricular load: demonstration after valve replacement in aortic stenosis. American Heart Journal, 153, 4–6.PubMedCrossRef
85.
go back to reference Pasipoularides, A., Shu, M., Shah, A., Womack, M. S., & Glower, D. D. (2003). Diastolic right ventricular filling vortex in normal and volume overload states. American Journal of Physiology - Heart and Circulatory Physiology, 284, H1064–H1072.PubMedCrossRef Pasipoularides, A., Shu, M., Shah, A., Womack, M. S., & Glower, D. D. (2003). Diastolic right ventricular filling vortex in normal and volume overload states. American Journal of Physiology - Heart and Circulatory Physiology, 284, H1064–H1072.PubMedCrossRef
86.
go back to reference Pasipoularides, A., Shu, M., Shah, A., Tucconi, A., & Glower, D. D. (2003). RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. American Journal of Physiology - Heart and Circulatory Physiology, 285, H1956–H1965.PubMedCrossRef Pasipoularides, A., Shu, M., Shah, A., Tucconi, A., & Glower, D. D. (2003). RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. American Journal of Physiology - Heart and Circulatory Physiology, 285, H1956–H1965.PubMedCrossRef
88.
go back to reference Pasipoularides, A. (2013). RV/LV diastolic flow field: why are measured intraventricular pressure gradients small? Revista Española de Cardiología, 66, 337–341.PubMedCrossRef Pasipoularides, A. (2013). RV/LV diastolic flow field: why are measured intraventricular pressure gradients small? Revista Española de Cardiología, 66, 337–341.PubMedCrossRef
89.
90.
go back to reference Pasipoularides, A. (2015). Fluid dynamics of ventricular filling in heart failure: overlooked problems of RV/LV chamber dilatation. Hellenic Journal of Cardiology, 56, 85–95.PubMedPubMedCentral Pasipoularides, A. (2015). Fluid dynamics of ventricular filling in heart failure: overlooked problems of RV/LV chamber dilatation. Hellenic Journal of Cardiology, 56, 85–95.PubMedPubMedCentral
91.
go back to reference Pasipoularides, A., Murgo, J. P., Miller, J. W., & Craig, W. E. (1987). Nonobstructive left ventricular ejection pressure gradients in man. Circulation Research, 61, 220–227.PubMedCrossRef Pasipoularides, A., Murgo, J. P., Miller, J. W., & Craig, W. E. (1987). Nonobstructive left ventricular ejection pressure gradients in man. Circulation Research, 61, 220–227.PubMedCrossRef
92.
go back to reference Shim, Y., Hampton, T. G., Straley, C. A., Harrison, J. K., Spero, L. A., Bashore, T. M., & Pasipoularides, A. D. (1992). Ejection load changes in aortic stenosis: observations made following balloon aortic valvuloplasty. Circulation Research, 71, 1174–1184.PubMedCrossRef Shim, Y., Hampton, T. G., Straley, C. A., Harrison, J. K., Spero, L. A., Bashore, T. M., & Pasipoularides, A. D. (1992). Ejection load changes in aortic stenosis: observations made following balloon aortic valvuloplasty. Circulation Research, 71, 1174–1184.PubMedCrossRef
93.
go back to reference Isaaz, K., & Pasipoularides, A. (1991). Noninvasive assessment of intrinsic ventricular load dynamics in dilated cardiomyopathy. Journal of the American College of Cardiology, 17, 112–121.PubMedCrossRef Isaaz, K., & Pasipoularides, A. (1991). Noninvasive assessment of intrinsic ventricular load dynamics in dilated cardiomyopathy. Journal of the American College of Cardiology, 17, 112–121.PubMedCrossRef
94.
go back to reference Bird, J. J., Murgo, J. P., & Pasipoularides, A. (1982). Fluid dynamics of aortic stenosis: subvalvular gradients without subvalvular obstruction. Circulation, 66, 835–840.PubMedCrossRef Bird, J. J., Murgo, J. P., & Pasipoularides, A. (1982). Fluid dynamics of aortic stenosis: subvalvular gradients without subvalvular obstruction. Circulation, 66, 835–840.PubMedCrossRef
95.
go back to reference Pasipoularides, A., Murgo, J. P., Bird, J. J., & Craig, W. E. (1984). Fluid dynamics of aortic stenosis: mechanisms for the presence of subvalvular pressure gradients. American Journal of Physiology, 246, H542–H550.PubMed Pasipoularides, A., Murgo, J. P., Bird, J. J., & Craig, W. E. (1984). Fluid dynamics of aortic stenosis: mechanisms for the presence of subvalvular pressure gradients. American Journal of Physiology, 246, H542–H550.PubMed
96.
go back to reference Pasipoularides, A. (1992). Cardiac Mechanics: basic and clinical contemporary research. Annals of Biomedical Engineering, 20, 3–17.PubMedCrossRef Pasipoularides, A. (1992). Cardiac Mechanics: basic and clinical contemporary research. Annals of Biomedical Engineering, 20, 3–17.PubMedCrossRef
97.
go back to reference Kassem, H. S., Azer, R. S., Saber-Ayad, M., et al. (2013). Early results of sarcomeric gene screening from the Egyptian National BA-HCM Program. Journal of Cardiovascular Translational Research, 6, 65–80.PubMedCentralPubMedCrossRef Kassem, H. S., Azer, R. S., Saber-Ayad, M., et al. (2013). Early results of sarcomeric gene screening from the Egyptian National BA-HCM Program. Journal of Cardiovascular Translational Research, 6, 65–80.PubMedCentralPubMedCrossRef
98.
go back to reference Pasipoularides, A. (2011). Fluid dynamic aspects of ejection in hypertrophic cardiomyopathy. Hellenic Journal of Cardiology, 52, 416–426.PubMed Pasipoularides, A. (2011). Fluid dynamic aspects of ejection in hypertrophic cardiomyopathy. Hellenic Journal of Cardiology, 52, 416–426.PubMed
99.
go back to reference Bateman, M. G., Quill, J. L., Hill, A. J., & Iaizzo, P. A. (2013). The clinical anatomy and pathology of the human atrioventricular valves: implications for repair or replacement. Journal of Cardiovascular Translational Research, 6, 155–165.PubMedCrossRef Bateman, M. G., Quill, J. L., Hill, A. J., & Iaizzo, P. A. (2013). The clinical anatomy and pathology of the human atrioventricular valves: implications for repair or replacement. Journal of Cardiovascular Translational Research, 6, 155–165.PubMedCrossRef
100.
go back to reference Pasipoularides, A. (2011). LV twisting-and-untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. [Progress in Cardiology]. American Heart Journal, 162, 798–810.PubMedCrossRef Pasipoularides, A. (2011). LV twisting-and-untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. [Progress in Cardiology]. American Heart Journal, 162, 798–810.PubMedCrossRef
101.
go back to reference Craig, W. E., Murgo, J. P., & Pasipoularides, A. (1987). Evaluation of time course of left ventricular isovolumic relaxation in humans. In W. Grossman & B. Lorell (Eds.), Diastolic relaxation of the heart (pp. 125–132). The Hague, Boston: Martinus Nijhoff.CrossRef Craig, W. E., Murgo, J. P., & Pasipoularides, A. (1987). Evaluation of time course of left ventricular isovolumic relaxation in humans. In W. Grossman & B. Lorell (Eds.), Diastolic relaxation of the heart (pp. 125–132). The Hague, Boston: Martinus Nijhoff.CrossRef
102.
go back to reference Mirsky, I., & Pasipoularides, A. (1990). Clinical assessment of diastolic function. Progress Cardiovascular Diseases, 32, 291–318.CrossRef Mirsky, I., & Pasipoularides, A. (1990). Clinical assessment of diastolic function. Progress Cardiovascular Diseases, 32, 291–318.CrossRef
103.
go back to reference Weiner, R. B., & Baggish, A. L. (2014). Acute versus chronic exercise-induced left-ventricular remodeling. Expert Review of Cardiovascular Therapy, 12, 1243–1246.PubMedCrossRef Weiner, R. B., & Baggish, A. L. (2014). Acute versus chronic exercise-induced left-ventricular remodeling. Expert Review of Cardiovascular Therapy, 12, 1243–1246.PubMedCrossRef
104.
go back to reference Mirsky, I., & Pasipoularides, A. (1980). Elastic properties of normal and hypertrophied cardiac muscle. Federation Proceedings, 39, 156–161.PubMed Mirsky, I., & Pasipoularides, A. (1980). Elastic properties of normal and hypertrophied cardiac muscle. Federation Proceedings, 39, 156–161.PubMed
105.
go back to reference Pasipoularides, A. (2013). Right and left ventricular diastolic pressure–volume relations: a comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–252.PubMedCentralPubMedCrossRef Pasipoularides, A. (2013). Right and left ventricular diastolic pressure–volume relations: a comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–252.PubMedCentralPubMedCrossRef
106.
go back to reference Pasipoularides, A., Mirsky, I., Hess, O. M., Grimm, J., & Krayenbuehl, H. P. (1986). Myocardial relaxation and passive diastolic properties in man. Circulation, 74, 991–1001.PubMedCrossRef Pasipoularides, A., Mirsky, I., Hess, O. M., Grimm, J., & Krayenbuehl, H. P. (1986). Myocardial relaxation and passive diastolic properties in man. Circulation, 74, 991–1001.PubMedCrossRef
107.
go back to reference Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., & Gonzalez-Quintana, J. (2010). Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circulation Cardiovascular Genetics, 3, 155–161.PubMedCentralPubMedCrossRef Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., & Gonzalez-Quintana, J. (2010). Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circulation Cardiovascular Genetics, 3, 155–161.PubMedCentralPubMedCrossRef
108.
go back to reference Moller, D. V., Andersen, P. S., Hedley, P., et al. (2009). The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy. European Journal of Human Genetics, 17, 1241–1249.PubMedCentralPubMedCrossRef Moller, D. V., Andersen, P. S., Hedley, P., et al. (2009). The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy. European Journal of Human Genetics, 17, 1241–1249.PubMedCentralPubMedCrossRef
109.
go back to reference Marston, S. B. (2011). How do mutations in contractile proteins cause the primary familial cardiomyopathies? Journal of Cardiovascular Translational Research, 4, 245–255.PubMedCrossRef Marston, S. B. (2011). How do mutations in contractile proteins cause the primary familial cardiomyopathies? Journal of Cardiovascular Translational Research, 4, 245–255.PubMedCrossRef
110.
go back to reference Robinson, P., Griffiths, P. J., Watkins, H., & Redwood, C. S. (2007). Dilated and hypertrophic cardiomyopathy mutations in troponin and a-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circulation Research, 101, 1266–1273.PubMedCrossRef Robinson, P., Griffiths, P. J., Watkins, H., & Redwood, C. S. (2007). Dilated and hypertrophic cardiomyopathy mutations in troponin and a-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circulation Research, 101, 1266–1273.PubMedCrossRef
111.
go back to reference Haldane, J. (1941). The relative importance of principal and modifying genes in determining some human diseases. Journal of Genetics, 41, 149–157.CrossRef Haldane, J. (1941). The relative importance of principal and modifying genes in determining some human diseases. Journal of Genetics, 41, 149–157.CrossRef
112.
go back to reference Chen, J., & Chien, K. R. (1999). Complexity in simplicity: monogenic disorders and complex cardiomyopathies. Journal of Clinical Investigation, 103, 1483–1485.PubMedCentralPubMedCrossRef Chen, J., & Chien, K. R. (1999). Complexity in simplicity: monogenic disorders and complex cardiomyopathies. Journal of Clinical Investigation, 103, 1483–1485.PubMedCentralPubMedCrossRef
113.
go back to reference Cooper, D. N., Krawczak, M., Polychronakos, C., Tyler-Smith, C., & Kehrer-Sawatzki, H. (2013). Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Human Genetics, 132, 1077–1130.PubMedCentralPubMedCrossRef Cooper, D. N., Krawczak, M., Polychronakos, C., Tyler-Smith, C., & Kehrer-Sawatzki, H. (2013). Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Human Genetics, 132, 1077–1130.PubMedCentralPubMedCrossRef
114.
go back to reference Génin, E., Feingold, J., & Clerget-darpoux, F. (2008). Identifying modifier genes of monogenic disease: strategies and difficulties. Human Genetics, 124, 357–368.PubMedCentralPubMedCrossRef Génin, E., Feingold, J., & Clerget-darpoux, F. (2008). Identifying modifier genes of monogenic disease: strategies and difficulties. Human Genetics, 124, 357–368.PubMedCentralPubMedCrossRef
115.
go back to reference Risch, N. J. (2000). Searching for genetic determinants in the new millennium. Nature, 405, 847–856.PubMedCrossRef Risch, N. J. (2000). Searching for genetic determinants in the new millennium. Nature, 405, 847–856.PubMedCrossRef
116.
go back to reference Rao, D. C. (2008). An overview of the genetic dissection of complex traits. Advances in Genetics, 60, 3–34.PubMedCrossRef Rao, D. C. (2008). An overview of the genetic dissection of complex traits. Advances in Genetics, 60, 3–34.PubMedCrossRef
117.
go back to reference Phillips, P. C. (2008). Epistasis--the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics, 9, 855–867.PubMedCentralPubMedCrossRef Phillips, P. C. (2008). Epistasis--the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics, 9, 855–867.PubMedCentralPubMedCrossRef
118.
go back to reference Marian, A. J., & Roberts, R. (2001). The molecular genetic basis for hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 33, 655–670.PubMedCentralPubMedCrossRef Marian, A. J., & Roberts, R. (2001). The molecular genetic basis for hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 33, 655–670.PubMedCentralPubMedCrossRef
119.
go back to reference Ooi, C. H., & Tan, P. (2003). Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics, 19, 37–44.PubMedCrossRef Ooi, C. H., & Tan, P. (2003). Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics, 19, 37–44.PubMedCrossRef
120.
go back to reference Draghici, S. (2003). Data analysis tools for DNA microarrays. Boca Raton: Chapman & Hall.CrossRef Draghici, S. (2003). Data analysis tools for DNA microarrays. Boca Raton: Chapman & Hall.CrossRef
121.
go back to reference Bandyopadhyay, S., Maulik, U., & Wang, J. T. L. (Eds.). (2007). Analysis of biological data: a soft computing approach. Singapore/Hackensack: World Scientific. Bandyopadhyay, S., Maulik, U., & Wang, J. T. L. (Eds.). (2007). Analysis of biological data: a soft computing approach. Singapore/Hackensack: World Scientific.
122.
go back to reference Wakabayashi I, Groschner K (editors). Interdisciplinary concepts in cardiovascular health Volume I: Primary risk factors. Wien/ New York: Springer-Verlag, 2013. Wakabayashi I, Groschner K (editors). Interdisciplinary concepts in cardiovascular health Volume I: Primary risk factors. Wien/ New York: Springer-Verlag, 2013.
123.
go back to reference Bevilacqua, V., Mastronardi, G., Menolascina, F., Paradiso, A., & Tommasi, S. (2006). Genetic algorithms and artificial neural networks in microarray data analysis: a distributed approach. Engineering Letters, 13, 335–343. Bevilacqua, V., Mastronardi, G., Menolascina, F., Paradiso, A., & Tommasi, S. (2006). Genetic algorithms and artificial neural networks in microarray data analysis: a distributed approach. Engineering Letters, 13, 335–343.
124.
go back to reference Lawrence, J. (1994). Introduction to neural networks: design, theory, and applications (6th ed.). Nevada City: California Scientific Software. Lawrence, J. (1994). Introduction to neural networks: design, theory, and applications (6th ed.). Nevada City: California Scientific Software.
125.
go back to reference Tarasov, K. V., Brugh, S. A., Tarasova, Y. S., & Boheler, K. R. (2007). Serial analysis of gene expression (SAGE): a useful tool to analyze the cardiac transcriptome. Methods in Molecular Biology, 366, 41–59.PubMedCrossRef Tarasov, K. V., Brugh, S. A., Tarasova, Y. S., & Boheler, K. R. (2007). Serial analysis of gene expression (SAGE): a useful tool to analyze the cardiac transcriptome. Methods in Molecular Biology, 366, 41–59.PubMedCrossRef
126.
go back to reference Kraus, W. E., Granger, C. B., Sketch, M. H., Jr., et al. (2015). A guide for a cardiovascular genomics biorepository: the CATHGEN experience. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-015-9648-y.PubMed Kraus, W. E., Granger, C. B., Sketch, M. H., Jr., et al. (2015). A guide for a cardiovascular genomics biorepository: the CATHGEN experience. Journal of Cardiovascular Translational Research. doi:10.​1007/​s12265-015-9648-y.PubMed
127.
go back to reference Douglas, P. S., & Ginsburg, G. S. (2008). Clinical genomic testing: getting it right. Journal of Cardiovascular Translational Research, 1, 17–20.PubMedCrossRef Douglas, P. S., & Ginsburg, G. S. (2008). Clinical genomic testing: getting it right. Journal of Cardiovascular Translational Research, 1, 17–20.PubMedCrossRef
128.
go back to reference Bodi, V., Marrachelli, V. G., Husser, O., Chorro, F. J., Viña, J. R., & Monleon, D. (2013). Metabolomics in the diagnosis of acute myocardial ischemia. Journal of Cardiovascular Translational Research, 6, 808–815.PubMedCrossRef Bodi, V., Marrachelli, V. G., Husser, O., Chorro, F. J., Viña, J. R., & Monleon, D. (2013). Metabolomics in the diagnosis of acute myocardial ischemia. Journal of Cardiovascular Translational Research, 6, 808–815.PubMedCrossRef
129.
go back to reference Krishnamoorthy, P., Gupta, D., Chatterjee, S., Huston, J., & Ryan, J. J. (2014). A review of the role of electronic health record in genomic research. Journal of Cardiovascular Translational Research, 7, 692–700.PubMedCrossRef Krishnamoorthy, P., Gupta, D., Chatterjee, S., Huston, J., & Ryan, J. J. (2014). A review of the role of electronic health record in genomic research. Journal of Cardiovascular Translational Research, 7, 692–700.PubMedCrossRef
130.
131.
go back to reference McKernan, K. J., Peckham, H. E., Costa, G. L., et al. (2009). Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Research, 19, 1527–1541.PubMedCentralPubMedCrossRef McKernan, K. J., Peckham, H. E., Costa, G. L., et al. (2009). Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Research, 19, 1527–1541.PubMedCentralPubMedCrossRef
132.
go back to reference Dalton, L., Ballarin, V., & Brun, M. (2009). Clustering algorithms: on learning, validation, performance, and applications to genomics. Current Genomics, 10, 430–445.PubMedCentralPubMedCrossRef Dalton, L., Ballarin, V., & Brun, M. (2009). Clustering algorithms: on learning, validation, performance, and applications to genomics. Current Genomics, 10, 430–445.PubMedCentralPubMedCrossRef
133.
go back to reference Bittner, M., Meltzer, P., & Trent, J. (1999). Data analysis and integration: of steps and arrows. Nature Genetics, 22, 213–215.PubMedCrossRef Bittner, M., Meltzer, P., & Trent, J. (1999). Data analysis and integration: of steps and arrows. Nature Genetics, 22, 213–215.PubMedCrossRef
134.
go back to reference Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: a survey. IEEE Transactions on Computational Biology and Bioinformatics, 1, 24–45.PubMedCrossRef Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: a survey. IEEE Transactions on Computational Biology and Bioinformatics, 1, 24–45.PubMedCrossRef
135.
go back to reference Baldi, P., & Hatfield, G. W. (2002). DNA microarrays and gene expression: from experiments to data analysis and modelling. Cambridge: Cambridge Univ. Press.CrossRef Baldi, P., & Hatfield, G. W. (2002). DNA microarrays and gene expression: from experiments to data analysis and modelling. Cambridge: Cambridge Univ. Press.CrossRef
136.
go back to reference Klugar, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions,”. Genome Research, 13, 703–716.CrossRef Klugar, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions,”. Genome Research, 13, 703–716.CrossRef
137.
go back to reference Nührenberg, T. G., Langwieser, N., Binder, H., et al. (2013). Transcriptome analysis in patients with progressive coronary artery disease: identification of differential gene expression in peripheral blood. Journal of Cardiovascular Translational Research, 6, 81–93.PubMedCrossRef Nührenberg, T. G., Langwieser, N., Binder, H., et al. (2013). Transcriptome analysis in patients with progressive coronary artery disease: identification of differential gene expression in peripheral blood. Journal of Cardiovascular Translational Research, 6, 81–93.PubMedCrossRef
140.
go back to reference Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.PubMedCrossRef Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.PubMedCrossRef
141.
go back to reference Kauffman, S. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224, 177–178.PubMedCrossRef Kauffman, S. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224, 177–178.PubMedCrossRef
142.
go back to reference Kitano, H. (2001). Foundations of systems biology. Cambridge: MIT Press. Kitano, H. (2001). Foundations of systems biology. Cambridge: MIT Press.
143.
go back to reference Evans, G. A. (2000). Designer science and the ‘omic’ revolution. Nature Biotechnology, 18, 127.PubMedCrossRef Evans, G. A. (2000). Designer science and the ‘omic’ revolution. Nature Biotechnology, 18, 127.PubMedCrossRef
144.
go back to reference Noble, D. (2013). A biological relativity view of the relationships between genomes and phenotypes. Progress in Biophysics and Molecular Biology, 111, 59–65.PubMedCrossRef Noble, D. (2013). A biological relativity view of the relationships between genomes and phenotypes. Progress in Biophysics and Molecular Biology, 111, 59–65.PubMedCrossRef
145.
go back to reference King, M. C., & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188, 107–116.PubMedCrossRef King, M. C., & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188, 107–116.PubMedCrossRef
146.
go back to reference Enard, W., Khaitovich, P., Klose, J., et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, 296, 340–343.PubMedCrossRef Enard, W., Khaitovich, P., Klose, J., et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, 296, 340–343.PubMedCrossRef
147.
go back to reference Cheung, V. G., & Spielman, R. S. (2002). The genetics of variation in gene expression. Nature Genetics, 32(Suppl), 522–525.PubMedCrossRef Cheung, V. G., & Spielman, R. S. (2002). The genetics of variation in gene expression. Nature Genetics, 32(Suppl), 522–525.PubMedCrossRef
148.
go back to reference Arnaudo, A. M., & Garcia, B. A. (2013). Proteomic characterization of novel histone post-translational modifications. Epigenetics and Chromatin, 6, 24.PubMedCentralPubMedCrossRef Arnaudo, A. M., & Garcia, B. A. (2013). Proteomic characterization of novel histone post-translational modifications. Epigenetics and Chromatin, 6, 24.PubMedCentralPubMedCrossRef
149.
go back to reference Jones, M. J., Fejes, A. P., & Kobor, M. S. (2013). DNA methylation, genotype and gene expression: who is driving and who is along for the ride? Genome Biology, 14(7), 126.PubMedCentralPubMedCrossRef Jones, M. J., Fejes, A. P., & Kobor, M. S. (2013). DNA methylation, genotype and gene expression: who is driving and who is along for the ride? Genome Biology, 14(7), 126.PubMedCentralPubMedCrossRef
Metadata
Title
Linking Genes to Cardiovascular Diseases: Gene Action and Gene–Environment Interactions
Author
Ares Pasipoularides
Publication date
01-12-2015
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 9/2015
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-015-9658-9

Other articles of this Issue 9/2015

Journal of Cardiovascular Translational Research 9/2015 Go to the issue