Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 6/2013

01-12-2013

Electrical Stimulation Promotes Maturation of Cardiomyocytes Derived from Human Embryonic Stem Cells

Authors: Yau-Chi Chan, Sherwin Ting, Yee-Ki Lee, Kwong-Man Ng, Jiao Zhang, Zi Chen, Chung-Wah Siu, Steve K. W. Oh, Hung-Fat Tse

Published in: Journal of Cardiovascular Translational Research | Issue 6/2013

Login to get access

Abstract

While human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes, their immature phenotypes limit their therapeutic application for myocardial regeneration. We sought to determine whether electrical stimulation could enhance the differentiation and maturation of hESC-derived cardiomyocytes. Cardiac differentiation was induced in a HES3 hESC line via embryoid bodies formation treated with a p38 MAP kinase inhibitor. Detailed molecular and functional analysis were performed in those hESC-derived cardiomyocytes cultured for 4 days in the absence or presence of electrical field stimulation (6.6 V/cm, 1 Hz, and 2 ms pulses) using an eight-channel C-Pace stimulator (Ion-Optics Co., MA). Upon electrical stimulation, quantitative polymerase chain reaction demonstrated significant upregulation of cardiac-specific gene expression including HCN1, MLC2V, SCN5A, SERCA, Kv4.3, and GATA4; immunostaining and flow cytometry analysis revealed cellular elongation and an increased proportion of troponin-T positive cells (6.3 ± 1.2 % vs. 15.8 ± 2.1 %; n = 3, P < 0.01). Electrophysiological studies showed an increase in the proportion of ventricular-like hESC-derived cardiomyocytes (48 vs. 29 %, P < 0.05) with lengthening of their action potential duration at 90 % repolarization (387.7 ± 35.35; n = 11 vs. 291.8 ± 20.82; n = 10, P < 0.05) and 50 % repolarization (313.9 ± 27.94; n = 11 vs. 234.0 ± 16.10; n = 10, P < 0.05) after electrical stimulation. Nonetheless, the membrane diastolic potentials and action potential upstrokes of different hESC-derived cardiomyocyte phenotypes, and the overall beating rate remained unchanged (all P > 0.05). Fluorescence confocal imaging revealed that electrical stimulation significantly increased both spontaneous and caffeine-induced calcium flux in the hESC-derived cardiomyocytes (approximately 1.6-fold for both cases; P < 0.01). In conclusion, electrical field stimulation increased the expression of cardiac-specific genes and the yield of differentiation, promoted ventricular-like phenotypes, and improved the calcium handling of hESC-derived cardiomyocytes.
Literature
1.
go back to reference Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., et al. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432), 433–436.PubMedCrossRef Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., et al. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432), 433–436.PubMedCrossRef
2.
go back to reference Siu, C. W., & Tse, H. F. (2012). Cardiac regeneration: messages from CADUCEUS. Lancet, 379(9819), 870–871.PubMedCrossRef Siu, C. W., & Tse, H. F. (2012). Cardiac regeneration: messages from CADUCEUS. Lancet, 379(9819), 870–871.PubMedCrossRef
3.
go back to reference Liao, S. Y., Liu, Y., Siu, C. W., Zhang, Y., Lai, W. H., Au, K. W., et al. (2010). Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm, 7(12), 1852–1859.PubMedCrossRef Liao, S. Y., Liu, Y., Siu, C. W., Zhang, Y., Lai, W. H., Au, K. W., et al. (2010). Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm, 7(12), 1852–1859.PubMedCrossRef
4.
go back to reference Liao, S. Y., Tse, H. F., Chan, Y. C., Mei-Chu Yip, P., Zhang, Y., Liu, Y., et al. (2013). Overexpression of Kir2.1 channel in embryonic stem cell-derived cardiomyocytes attenuates posttransplantation proarrhythmic risk in myocardial infarction. Heart Rhythm, 10(2), 273–282.PubMedCrossRef Liao, S. Y., Tse, H. F., Chan, Y. C., Mei-Chu Yip, P., Zhang, Y., Liu, Y., et al. (2013). Overexpression of Kir2.1 channel in embryonic stem cell-derived cardiomyocytes attenuates posttransplantation proarrhythmic risk in myocardial infarction. Heart Rhythm, 10(2), 273–282.PubMedCrossRef
5.
go back to reference Ng, K. M., Lee, Y. K., Chan, Y. C., Lai, W. H., Fung, M. L., Li, R. A., et al. (2010). Exogenous expression of HIF-1 alpha promotes cardiac differentiation of embryonic stem cells. Journal of Molecular and Cellular Cardiology, 48(6), 1129–1137.PubMedCrossRef Ng, K. M., Lee, Y. K., Chan, Y. C., Lai, W. H., Fung, M. L., Li, R. A., et al. (2010). Exogenous expression of HIF-1 alpha promotes cardiac differentiation of embryonic stem cells. Journal of Molecular and Cellular Cardiology, 48(6), 1129–1137.PubMedCrossRef
6.
go back to reference Ng, K. M., Chan, Y. C., Lee, Y. K., Lai, W. H., Au, K. W., Fung, M. L., et al. (2011). Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level. Cellular Reprogramming, 13(6), 527–537.PubMed Ng, K. M., Chan, Y. C., Lee, Y. K., Lai, W. H., Au, K. W., Fung, M. L., et al. (2011). Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level. Cellular Reprogramming, 13(6), 527–537.PubMed
7.
go back to reference Cameron, I. L., Hardman, W. E., Winters, W. D., Zimmerman, S., & Zimmerman, A. M. (1993). Environmental magnetic fields: influences on early embryogenesis. Journal of Cellular Biochemistry, 51(4), 417–425.PubMed Cameron, I. L., Hardman, W. E., Winters, W. D., Zimmerman, S., & Zimmerman, A. M. (1993). Environmental magnetic fields: influences on early embryogenesis. Journal of Cellular Biochemistry, 51(4), 417–425.PubMed
8.
go back to reference Robinson, K. R. (1985). The responses of cells to electrical fields: a review. The Journal of Cell Biology, 101(6), 2023–2027.PubMedCrossRef Robinson, K. R. (1985). The responses of cells to electrical fields: a review. The Journal of Cell Biology, 101(6), 2023–2027.PubMedCrossRef
9.
go back to reference Chen, M. Q., Xie, X., Hollis Whittington, R., Kovacs, G. T., Wu, J. C., & Giovangrandi, L. (2008). Cardiac differentiation of embryonic stem cells with point-source electrical stimulation. Conference Proceedings, IEEE Engineering in Medicine and Biology Society, 2008, 1729–1732. Chen, M. Q., Xie, X., Hollis Whittington, R., Kovacs, G. T., Wu, J. C., & Giovangrandi, L. (2008). Cardiac differentiation of embryonic stem cells with point-source electrical stimulation. Conference Proceedings, IEEE Engineering in Medicine and Biology Society, 2008, 1729–1732.
10.
go back to reference Sauer, H., Rahimi, G., Hescheler, J., & Wartenberg, M. (1999). Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. Journal of Cellular Biochemistry, 75(4), 710–723.PubMedCrossRef Sauer, H., Rahimi, G., Hescheler, J., & Wartenberg, M. (1999). Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. Journal of Cellular Biochemistry, 75(4), 710–723.PubMedCrossRef
11.
go back to reference Serena, E., Figallo, E., Tandon, N., Cannizzaro, C., Gerecht, S., Elvassore, N., et al. (2009). Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 315(20), 3611–3619.PubMedCrossRef Serena, E., Figallo, E., Tandon, N., Cannizzaro, C., Gerecht, S., Elvassore, N., et al. (2009). Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 315(20), 3611–3619.PubMedCrossRef
12.
go back to reference Choo, A., Padmanabhan, J., Chin, A., Fong, W. J., & Oh, S. K. (2006). Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. Journal of Biotechnology, 122(1), 130–141.PubMedCrossRef Choo, A., Padmanabhan, J., Chin, A., Fong, W. J., & Oh, S. K. (2006). Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. Journal of Biotechnology, 122(1), 130–141.PubMedCrossRef
13.
go back to reference Ting, S., Lecina, M., Reuveny, S., & Oh, S. (2012). Differentiation of human embryonic stem cells to cardiomyocytes on microcarrier cultures. Current Protocols in Stem Cell Biology, Chapter 1, Unit1D 7. Ting, S., Lecina, M., Reuveny, S., & Oh, S. (2012). Differentiation of human embryonic stem cells to cardiomyocytes on microcarrier cultures. Current Protocols in Stem Cell Biology, Chapter 1, Unit1D 7.
14.
go back to reference Lecina, M., Ting, S., Choo, A., Reuveny, S., & Oh, S. (2010). Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Engineering. Part C, Methods, 16(6), 1609–1619.PubMedCrossRef Lecina, M., Ting, S., Choo, A., Reuveny, S., & Oh, S. (2010). Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Engineering. Part C, Methods, 16(6), 1609–1619.PubMedCrossRef
15.
go back to reference Chan, Y. C., Siu, C. W., Lau, Y. M., Lau, C. P., Li, R. A., & Tse, H. F. (2009). Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity. Journal of Cardiovascular Electrophysiology, 20(9), 1048–1054.PubMedCrossRef Chan, Y. C., Siu, C. W., Lau, Y. M., Lau, C. P., Li, R. A., & Tse, H. F. (2009). Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity. Journal of Cardiovascular Electrophysiology, 20(9), 1048–1054.PubMedCrossRef
16.
go back to reference Tandon, N., Cannizzaro, C., Chao, P. H., Maidhof, R., Marsano, A., Au, H. T., et al. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173.PubMedCrossRef Tandon, N., Cannizzaro, C., Chao, P. H., Maidhof, R., Marsano, A., Au, H. T., et al. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173.PubMedCrossRef
17.
go back to reference Pu, W. T., Ishiwata, T., Juraszek, A. L., Ma, Q., & Izumo, S. (2004). GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Biology, 275(1), 235–244. Pu, W. T., Ishiwata, T., Juraszek, A. L., Ma, Q., & Izumo, S. (2004). GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Biology, 275(1), 235–244.
18.
go back to reference Zeisberg, E. M., Ma, Q., Juraszek, A. L., Moses, K., Schwartz, R. J., Izumo, S., et al. (2005). Morphogenesis of the right ventricle requires myocardial expression of Gata4. Journal of Clinical Investigation, 115(6), 1522–1531.PubMedCrossRef Zeisberg, E. M., Ma, Q., Juraszek, A. L., Moses, K., Schwartz, R. J., Izumo, S., et al. (2005). Morphogenesis of the right ventricle requires myocardial expression of Gata4. Journal of Clinical Investigation, 115(6), 1522–1531.PubMedCrossRef
19.
go back to reference Charpentier, F., Merot, J., Loussouarn, G., & Baro, I. (2010). Delayed rectifier K(+) currents and cardiac repolarization. Journal of Molecular and Cellular Cardiology, 48(1), 37–44.PubMedCrossRef Charpentier, F., Merot, J., Loussouarn, G., & Baro, I. (2010). Delayed rectifier K(+) currents and cardiac repolarization. Journal of Molecular and Cellular Cardiology, 48(1), 37–44.PubMedCrossRef
20.
go back to reference Ravens, U., & Wettwer, E. (1998). Electrophysiological aspects of changes in heart rate. Basic Research in Cardiology, 93(Suppl 1), 60–65.PubMedCrossRef Ravens, U., & Wettwer, E. (1998). Electrophysiological aspects of changes in heart rate. Basic Research in Cardiology, 93(Suppl 1), 60–65.PubMedCrossRef
21.
go back to reference Qu, Z., & Chung, D. (2012). Mechanisms and determinants of ultralong action potential duration and slow rate-dependence in cardiac myocytes. PLoS One, 7(8), e43587.PubMedCrossRef Qu, Z., & Chung, D. (2012). Mechanisms and determinants of ultralong action potential duration and slow rate-dependence in cardiac myocytes. PLoS One, 7(8), e43587.PubMedCrossRef
22.
go back to reference Genovese, J. A., Spadaccio, C., Chachques, E., Schussler, O., Carpentier, A., Chachques, J. C., et al. (2009). Cardiac pre-differentiation of human mesenchymal stem cells by electrostimulation. Frontiers in Bioscience, 14, 2996–3002.CrossRef Genovese, J. A., Spadaccio, C., Chachques, E., Schussler, O., Carpentier, A., Chachques, J. C., et al. (2009). Cardiac pre-differentiation of human mesenchymal stem cells by electrostimulation. Frontiers in Bioscience, 14, 2996–3002.CrossRef
23.
go back to reference Genovese, J. A., Spadaccio, C., Langer, J., Habe, J., Jackson, J., & Patel, A. N. (2008). Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts. Biochemical and Biophysical Research Communications, 370(3), 450–455.PubMedCrossRef Genovese, J. A., Spadaccio, C., Langer, J., Habe, J., Jackson, J., & Patel, A. N. (2008). Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts. Biochemical and Biophysical Research Communications, 370(3), 450–455.PubMedCrossRef
24.
go back to reference Gamry Instruments. (2005). Electrochemical impedance spectroscopy theory: a primer. Gamry Instruments. (2005). Electrochemical impedance spectroscopy theory: a primer.
25.
go back to reference Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. J., & Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Journal of Biological Chemistry, 278(5), 3170–3175.PubMedCrossRef Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. J., & Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Journal of Biological Chemistry, 278(5), 3170–3175.PubMedCrossRef
26.
go back to reference Sauer, H., & Wartenberg, M. (2005). Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxidants and Redox Signaling, 7(11–12), 1423–1434.PubMedCrossRef Sauer, H., & Wartenberg, M. (2005). Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxidants and Redox Signaling, 7(11–12), 1423–1434.PubMedCrossRef
27.
go back to reference Puceat, M., Travo, P., Quinn, M. T., & Fort, P. (2003). A dual role of the GTPase Rac in cardiac differentiation of stem cells. Molecular Biology of the Cell, 14(7), 2781–2792.PubMedCrossRef Puceat, M., Travo, P., Quinn, M. T., & Fort, P. (2003). A dual role of the GTPase Rac in cardiac differentiation of stem cells. Molecular Biology of the Cell, 14(7), 2781–2792.PubMedCrossRef
28.
go back to reference Puceat, M. (2005). Role of Rac-GTPase and reactive oxygen species in cardiac differentiation of stem cells. Antioxidants and Redox Signaling, 7(11–12), 1435–1439.PubMedCrossRef Puceat, M. (2005). Role of Rac-GTPase and reactive oxygen species in cardiac differentiation of stem cells. Antioxidants and Redox Signaling, 7(11–12), 1435–1439.PubMedCrossRef
29.
go back to reference Cannizzaro, C., Tandon, N., Figallo, E., Park, H., Gerecht, S., Radisic, M., et al. (2007). Practical aspects of cardiac tissue engineering with electrical stimulation. Methods in Molecular Medicine, 140, 291–307.PubMedCrossRef Cannizzaro, C., Tandon, N., Figallo, E., Park, H., Gerecht, S., Radisic, M., et al. (2007). Practical aspects of cardiac tissue engineering with electrical stimulation. Methods in Molecular Medicine, 140, 291–307.PubMedCrossRef
30.
go back to reference Huang, J. Z. C., Zhang, W., & Zhou, X. (1997). Application of a platinum dual-disk microelectrode to measurement of the electron transfer number of dioxygen reduction. Journal of Electroanalytical Chemistry, 433, 33–39.CrossRef Huang, J. Z. C., Zhang, W., & Zhou, X. (1997). Application of a platinum dual-disk microelectrode to measurement of the electron transfer number of dioxygen reduction. Journal of Electroanalytical Chemistry, 433, 33–39.CrossRef
31.
go back to reference Li, J., Stouffs, M., Serrander, L., Banfi, B., Bettiol, E., Charnay, Y., et al. (2006). The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Molecular Biology of the Cell, 17(9), 3978–3988.PubMedCrossRef Li, J., Stouffs, M., Serrander, L., Banfi, B., Bettiol, E., Charnay, Y., et al. (2006). The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Molecular Biology of the Cell, 17(9), 3978–3988.PubMedCrossRef
32.
go back to reference Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.PubMedCrossRef Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.PubMedCrossRef
33.
go back to reference Satin, J., Itzhaki, I., Rapoport, S., Schroder, E. A., Izu, L., Arbel, G., et al. (2008). Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells, 26(8), 1961–1972.PubMedCrossRef Satin, J., Itzhaki, I., Rapoport, S., Schroder, E. A., Izu, L., Arbel, G., et al. (2008). Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells, 26(8), 1961–1972.PubMedCrossRef
34.
go back to reference Burridge, P. W., Keller, G., Gold, J. D., & Wu, J. C. (2012). Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 10(1), 16–28.PubMedCrossRef Burridge, P. W., Keller, G., Gold, J. D., & Wu, J. C. (2012). Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 10(1), 16–28.PubMedCrossRef
35.
go back to reference Loeb, G. E., Zamin, C. J., Schulman, J. H., & Troyk, P. R. (1991). Injectable microstimulator for functional electrical stimulation. Medical & Biological Engineering & Computing, 29(6), NS13–19.CrossRef Loeb, G. E., Zamin, C. J., Schulman, J. H., & Troyk, P. R. (1991). Injectable microstimulator for functional electrical stimulation. Medical & Biological Engineering & Computing, 29(6), NS13–19.CrossRef
36.
go back to reference Tandon, N., Goh, B., Marsano, A., Chao, P. H., Montouri-Sorrentino, C., Gimble, J., et al. (2009). Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conference Proceedings, IEEE Engineering in Medicine and Biology Society, 2009, 6517–6521. Tandon, N., Goh, B., Marsano, A., Chao, P. H., Montouri-Sorrentino, C., Gimble, J., et al. (2009). Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conference Proceedings, IEEE Engineering in Medicine and Biology Society, 2009, 6517–6521.
37.
go back to reference Levin, M. (2003). Motor protein control of ion flux is an early step in embryonic left-right asymmetry. Bioessays, 25(10), 1002–1010.PubMedCrossRef Levin, M. (2003). Motor protein control of ion flux is an early step in embryonic left-right asymmetry. Bioessays, 25(10), 1002–1010.PubMedCrossRef
38.
go back to reference Donaldson, N. D., & Donaldson, P. E. (1986). When are actively balanced biphasic (‘lilly’) stimulating pulses necessary in a neurological prosthesis? I. Historical background; Pt resting potential; Q studies. Medical & Biological Engineering & Computing, 24, 41–49.CrossRef Donaldson, N. D., & Donaldson, P. E. (1986). When are actively balanced biphasic (‘lilly’) stimulating pulses necessary in a neurological prosthesis? I. Historical background; Pt resting potential; Q studies. Medical & Biological Engineering & Computing, 24, 41–49.CrossRef
Metadata
Title
Electrical Stimulation Promotes Maturation of Cardiomyocytes Derived from Human Embryonic Stem Cells
Authors
Yau-Chi Chan
Sherwin Ting
Yee-Ki Lee
Kwong-Man Ng
Jiao Zhang
Zi Chen
Chung-Wah Siu
Steve K. W. Oh
Hung-Fat Tse
Publication date
01-12-2013
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 6/2013
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9510-z

Other articles of this Issue 6/2013

Journal of Cardiovascular Translational Research 6/2013 Go to the issue