Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 6/2013

Open Access 01-12-2013

Long Noncoding RNA: a New Player of Heart Failure?

Authors: Roberto Papait, Paolo Kunderfranco, Giuliano Giuseppe Stirparo, Michael V. G. Latronico, Gianluigi Condorelli

Published in: Journal of Cardiovascular Translational Research | Issue 6/2013

Login to get access

Abstract

One the most important discoveries of the post-genomic era is that a large fraction of the genome transcribes a heterogeneous population of noncoding RNAs (ncRNA). ncRNAs shorter than 200 nucleotides are usually identified as short/small ncRNAs—examples include PIWI-interacting RNAs, small interfering RNAs, and microRNAs (miRNAs)—whereas those longer than 200 nucleotides are classified as long ncRNAs (lncRNAs). These molecules are emerging as important regulators of cellular process, such as development, differentiation, and metabolism. Not surprisingly, ncRNAs are involved also in human diseases, such as cancer and metabolic and neuronal disorders. Although the role of miRNAs is being largely investigated in cardiovascular biology, little is known about other classes of ncRNA in this field. However, recent reports have started to reveal the importance of lncRNA in heart development and suggest also an involvement in heart failure. Here, we will discuss these reports and the therapeutic potential of lncRNA for heart failure.
Literature
1.
go back to reference McMurray, J. J. (2010). Systolic heart failure. Clinical practice. The New England Journal of Medicine, 362(3), 228–238. McMurray, J. J. (2010). Systolic heart failure. Clinical practice. The New England Journal of Medicine, 362(3), 228–238.
2.
go back to reference Lompre, A. M., Schwartz, K., D'albis, A., Lacombe, G., Van Thiem, N., & Swynghedauw, B. (1979). Myosin isoenzyme redistribution in chronic heart overload. Nature, 282, 105–107.PubMedCrossRef Lompre, A. M., Schwartz, K., D'albis, A., Lacombe, G., Van Thiem, N., & Swynghedauw, B. (1979). Myosin isoenzyme redistribution in chronic heart overload. Nature, 282, 105–107.PubMedCrossRef
3.
go back to reference Izumo, S., Nadal-Ginard, B., & Mahdavi, V. (1988). Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 85, 339–343.PubMedCrossRef Izumo, S., Nadal-Ginard, B., & Mahdavi, V. (1988). Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 85, 339–343.PubMedCrossRef
4.
go back to reference Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. The New England Journal of Medicine, 341, 1276–1283.PubMedCrossRef Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. The New England Journal of Medicine, 341, 1276–1283.PubMedCrossRef
5.
go back to reference Han, P., Hang, C. T., Yang, J., & Chang, C. P. (2011). Chromatin remodeling in cardiovascular development and physiology. Circulation Research, 108, 378–396.PubMedCrossRef Han, P., Hang, C. T., Yang, J., & Chang, C. P. (2011). Chromatin remodeling in cardiovascular development and physiology. Circulation Research, 108, 378–396.PubMedCrossRef
6.
go back to reference Qureshi, I. A., & Mehler, M. F. (2012). Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nature Reviews Neuroscience, 13, 528–541.PubMedCrossRef Qureshi, I. A., & Mehler, M. F. (2012). Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nature Reviews Neuroscience, 13, 528–541.PubMedCrossRef
7.
go back to reference Mitra, S. A., Mitra, A. P., & Triche, T. J. (2012). A central role for long non-coding RNA in cancer. Frontiers in Genetics, 3, 17.PubMedCrossRef Mitra, S. A., Mitra, A. P., & Triche, T. J. (2012). A central role for long non-coding RNA in cancer. Frontiers in Genetics, 3, 17.PubMedCrossRef
8.
go back to reference Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43, 904–914.PubMedCrossRef Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43, 904–914.PubMedCrossRef
9.
go back to reference Saxena, A., & Carninci, P. (2011). Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33, 830–839.CrossRef Saxena, A., & Carninci, P. (2011). Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33, 830–839.CrossRef
10.
go back to reference Latronico, M. V., & Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nature Reviews Cardiology, 6, 419–429.PubMedCrossRef Latronico, M. V., & Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nature Reviews Cardiology, 6, 419–429.PubMedCrossRef
11.
go back to reference Batista, P. J., & Chang, H. Y. (2013). Long noncoding RNAs: cellular address codes in development and disease. Cell, 152, 1298–1307.PubMedCrossRef Batista, P. J., & Chang, H. Y. (2013). Long noncoding RNAs: cellular address codes in development and disease. Cell, 152, 1298–1307.PubMedCrossRef
12.
go back to reference Cabili, M. N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25, 1915–1927.CrossRef Cabili, M. N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25, 1915–1927.CrossRef
13.
go back to reference Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22, 1775–1789.PubMedCrossRef Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22, 1775–1789.PubMedCrossRef
14.
go back to reference Wutz, A., & Gribnau, J. (2007). X inactivation Xplained. Current Opinion in Genetics & Development, 17, 387–393.CrossRef Wutz, A., & Gribnau, J. (2007). X inactivation Xplained. Current Opinion in Genetics & Development, 17, 387–393.CrossRef
15.
go back to reference Heard, E., Rougeulle, C., Arnaud, D., Avner, P., Allis, C. D., & Spector, D. L. (2001). Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell, 107, 727–738.PubMedCrossRef Heard, E., Rougeulle, C., Arnaud, D., Avner, P., Allis, C. D., & Spector, D. L. (2001). Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell, 107, 727–738.PubMedCrossRef
16.
go back to reference Reik, W., & Murrell, A. (2000). Genomic imprinting. Silence across the border. Nature, 405, 408–409.PubMedCrossRef Reik, W., & Murrell, A. (2000). Genomic imprinting. Silence across the border. Nature, 405, 408–409.PubMedCrossRef
17.
go back to reference Bond, C. S., & Fox, A. H. (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. The Journal of Cell Biology, 186, 637–644.PubMedCrossRef Bond, C. S., & Fox, A. H. (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. The Journal of Cell Biology, 186, 637–644.PubMedCrossRef
18.
go back to reference Hu, W., Alvarez-Dominguez, J. R., & Lodish, H. F. (2012). Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Reports, 13, 971–983.PubMedCrossRef Hu, W., Alvarez-Dominguez, J. R., & Lodish, H. F. (2012). Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Reports, 13, 971–983.PubMedCrossRef
19.
go back to reference Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., et al. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147, 358–369.PubMedCrossRef Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., et al. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147, 358–369.PubMedCrossRef
20.
go back to reference Hutchinson, J. N., Ensminger, A. W., Clemson, C. M., Lynch, C. R., Lawrence, J. B., & Chess, A. (2007). A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8, 39.PubMedCrossRef Hutchinson, J. N., Ensminger, A. W., Clemson, C. M., Lynch, C. R., Lawrence, J. B., & Chess, A. (2007). A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8, 39.PubMedCrossRef
21.
go back to reference Lin, R., Roychowdhury-Saha, M., Black, C., Watt, A. T., Marcusson, E. G., Freier, S. M., et al. (2011). Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Letters, 585, 671–676.PubMedCrossRef Lin, R., Roychowdhury-Saha, M., Black, C., Watt, A. T., Marcusson, E. G., Freier, S. M., et al. (2011). Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Letters, 585, 671–676.PubMedCrossRef
22.
go back to reference Terranova, R., Yokobayashi, S., Stadler, M. B., Otte, A. P., Van Lohuizen, M., Orkin, S. H., et al. (2008). Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Developmental Cell, 15, 668–679.PubMedCrossRef Terranova, R., Yokobayashi, S., Stadler, M. B., Otte, A. P., Van Lohuizen, M., Orkin, S. H., et al. (2008). Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Developmental Cell, 15, 668–679.PubMedCrossRef
23.
go back to reference Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32, 232–246.PubMedCrossRef Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32, 232–246.PubMedCrossRef
24.
go back to reference Orom, U. A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., et al. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell, 143, 46–58.PubMedCrossRef Orom, U. A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., et al. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell, 143, 46–58.PubMedCrossRef
25.
go back to reference Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., et al. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316, 1484–1488.PubMedCrossRef Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., et al. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316, 1484–1488.PubMedCrossRef
26.
go back to reference Mohammad, F., Mondal, T., & Kanduri, C. (2009). Epigenetics of imprinted long noncoding RNAs. Epigenetics: Official Journal of the DNA Methylation Society, 4, 277–286.CrossRef Mohammad, F., Mondal, T., & Kanduri, C. (2009). Epigenetics of imprinted long noncoding RNAs. Epigenetics: Official Journal of the DNA Methylation Society, 4, 277–286.CrossRef
27.
go back to reference Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39, 925–938.PubMedCrossRef Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39, 925–938.PubMedCrossRef
28.
go back to reference Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472, 120–124.PubMedCrossRef Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472, 120–124.PubMedCrossRef
29.
go back to reference Collins, K. (2008). Physiological assembly and activity of human telomerase complexes. Mechanisms of Ageing and Development, 129, 91–98.PubMedCrossRef Collins, K. (2008). Physiological assembly and activity of human telomerase complexes. Mechanisms of Ageing and Development, 129, 91–98.PubMedCrossRef
30.
go back to reference Lin, M., Pedrosa, E., Shah, A., Hrabovsky, A., Maqbool, S., Zheng, D., et al. (2011). RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PloS One, 6, e23356.PubMedCrossRef Lin, M., Pedrosa, E., Shah, A., Hrabovsky, A., Maqbool, S., Zheng, D., et al. (2011). RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PloS One, 6, e23356.PubMedCrossRef
31.
go back to reference Kung, J. T., Colognori, D., & Lee, J. T. (2013). Long noncoding RNAs: past, present, and future. Genetics, 193, 651–669.PubMedCrossRef Kung, J. T., Colognori, D., & Lee, J. T. (2013). Long noncoding RNAs: past, present, and future. Genetics, 193, 651–669.PubMedCrossRef
32.
go back to reference Deuve, J. L., & Avner, P. (2011). The coupling of X-chromosome inactivation to pluripotency. Annual Review of Cell and Developmental Biology, 27, 611–629.PubMedCrossRef Deuve, J. L., & Avner, P. (2011). The coupling of X-chromosome inactivation to pluripotency. Annual Review of Cell and Developmental Biology, 27, 611–629.PubMedCrossRef
33.
go back to reference Guttman, M., Donaghey, J., Carey, B. W., Garber, M., Grenier, J. K., Munson, G., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295–300.PubMedCrossRef Guttman, M., Donaghey, J., Carey, B. W., Garber, M., Grenier, J. K., Munson, G., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295–300.PubMedCrossRef
34.
go back to reference Grote, P., Wittler, L., Hendrix, D., Koch, F., Wahrisch, S., Beisaw, A., et al. (2013). The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Developmental Cell, 24, 206–214.PubMedCrossRef Grote, P., Wittler, L., Hendrix, D., Koch, F., Wahrisch, S., Beisaw, A., et al. (2013). The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Developmental Cell, 24, 206–214.PubMedCrossRef
35.
go back to reference Klattenhoff, C. A., Scheuermann, J. C., Surface, L. E., Bradley, R. K., Fields, P. A., Steinhauser, M. L., et al. (2013). Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 152, 570–583.PubMedCrossRef Klattenhoff, C. A., Scheuermann, J. C., Surface, L. E., Bradley, R. K., Fields, P. A., Steinhauser, M. L., et al. (2013). Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 152, 570–583.PubMedCrossRef
36.
go back to reference Ishii, N., Ozaki, K., Sato, H., Mizuno, H., Saito, S., Takahashi, A., et al. (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of Human Genetics, 51, 1087–1099.PubMedCrossRef Ishii, N., Ozaki, K., Sato, H., Mizuno, H., Saito, S., Takahashi, A., et al. (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of Human Genetics, 51, 1087–1099.PubMedCrossRef
37.
go back to reference Lee, J. H., Gao, C., Peng, G., Greer, C., Ren, S., Wang, Y., et al. (2011). Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circulation Research, 109, 1332–1341.PubMedCrossRef Lee, J. H., Gao, C., Peng, G., Greer, C., Ren, S., Wang, Y., et al. (2011). Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circulation Research, 109, 1332–1341.PubMedCrossRef
38.
go back to reference Korostowski, L., Sedlak, N., & Engel, N. (2012). The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genetics, 8, e1002956.PubMedCrossRef Korostowski, L., Sedlak, N., & Engel, N. (2012). The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genetics, 8, e1002956.PubMedCrossRef
39.
go back to reference Mcpherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–1491.PubMedCrossRef Mcpherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–1491.PubMedCrossRef
40.
go back to reference Yap, K. L., Li, S., Muñoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.PubMedCrossRef Yap, K. L., Li, S., Muñoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.PubMedCrossRef
41.
go back to reference Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef
42.
go back to reference Van Rooij, E., Marshall, W. S., & Olson, E. N. (2008). Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circulation Research, 103, 919–928.PubMedCrossRef Van Rooij, E., Marshall, W. S., & Olson, E. N. (2008). Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circulation Research, 103, 919–928.PubMedCrossRef
43.
go back to reference Turro, E., Su, S. Y., Goncalves, A., Coin, L. J., Richardson, S., & Lewin, A. (2011). Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome Biology, 12, R13.PubMedCrossRef Turro, E., Su, S. Y., Goncalves, A., Coin, L. J., Richardson, S., & Lewin, A. (2011). Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome Biology, 12, R13.PubMedCrossRef
44.
go back to reference Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515.PubMedCrossRef Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515.PubMedCrossRef
45.
go back to reference Sabarinathan, R., Tafer, H., Seemann, S. E., Hofacker, I. L., Stadler, P. F., & Gorodkin, J. (2013). The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Research. Sabarinathan, R., Tafer, H., Seemann, S. E., Hofacker, I. L., Stadler, P. F., & Gorodkin, J. (2013). The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Research.
46.
go back to reference Wenzel, A., Akbasli, E., & Gorodkin, J. (2012). RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics, 28, 2738–2746.PubMedCrossRef Wenzel, A., Akbasli, E., & Gorodkin, J. (2012). RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics, 28, 2738–2746.PubMedCrossRef
47.
go back to reference Gruber, A. R., Neubock, R., Hofacker, I. L., & Washietl, S. (2007). The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Research, 35, W335–W338.PubMedCrossRef Gruber, A. R., Neubock, R., Hofacker, I. L., & Washietl, S. (2007). The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Research, 35, W335–W338.PubMedCrossRef
48.
go back to reference Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques, 28(1102), 1104. Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques, 28(1102), 1104.
49.
go back to reference Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., et al. (2012). The Pfam protein families database. Nucleic Acids Research, 40, D290–D301.PubMedCrossRef Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., et al. (2012). The Pfam protein families database. Nucleic Acids Research, 40, D290–D301.PubMedCrossRef
50.
go back to reference Burge, S. W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki, E. P., et al. (2013). Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 41, D226–D232.PubMedCrossRef Burge, S. W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki, E. P., et al. (2013). Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 41, D226–D232.PubMedCrossRef
Metadata
Title
Long Noncoding RNA: a New Player of Heart Failure?
Authors
Roberto Papait
Paolo Kunderfranco
Giuliano Giuseppe Stirparo
Michael V. G. Latronico
Gianluigi Condorelli
Publication date
01-12-2013
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 6/2013
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9488-6

Other articles of this Issue 6/2013

Journal of Cardiovascular Translational Research 6/2013 Go to the issue