Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 6/2012

01-12-2012

The Actin–MRTF–SRF Gene Regulatory Axis and Myofibroblast Differentiation

Author: Eric M. Small

Published in: Journal of Cardiovascular Translational Research | Issue 6/2012

Login to get access

Abstract

Cardiac fibroblasts are responsible for necrotic tissue replacement and scar formation after myocardial infarction (MI) and contribute to remodeling in response to pathological stimuli. This response to insult or injury is largely due to the phenotypic plasticity of fibroblasts. When fibroblasts encounter environmental disturbances, whether biomechanical or humoral, they often transform into smooth muscle-like, contractile cells called “myofibroblasts.” The signals that control myofibroblast differentiation include the transforming growth factor (TGF)-β1–Smad pathway and Rho GTPase-dependent actin polymerization. Recent evidence implicates serum response factor (SRF) and the myocardin-related transcription factors (MRTFs) as key mediators of the contractile gene program in response to TGF-β1 or RhoA signaling. This review highlights the function of myofibroblasts in cardiac remodeling and the role of the actin–MRTF–SRF signaling axis in regulating this process.
Literature
2.
go back to reference Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiological Reviews, 79(1), 215–262.PubMed Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiological Reviews, 79(1), 215–262.PubMed
4.
go back to reference Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circulation Research, 91(12), 1103–1113.PubMed Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circulation Research, 91(12), 1103–1113.PubMed
5.
go back to reference Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5), 349–363.PubMed Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5), 349–363.PubMed
6.
go back to reference Teekakirikul, P., Eminaga, S., Toka, O., Alcalai, R., Wang, L., Wakimoto, H., et al. (2010). Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. The Journal of Clinical Investigation, 120(10), 3520–3529. doi:10.1172/JCI42028.PubMed Teekakirikul, P., Eminaga, S., Toka, O., Alcalai, R., Wang, L., Wakimoto, H., et al. (2010). Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. The Journal of Clinical Investigation, 120(10), 3520–3529. doi:10.​1172/​JCI42028.PubMed
7.
go back to reference Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127(3), 526–537.PubMed Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127(3), 526–537.PubMed
8.
go back to reference Serini, G., & Gabbiani, G. (1999). Mechanisms of myofibroblast activity and phenotypic modulation. Experimental Cell Research, 250(2), 273–283.PubMed Serini, G., & Gabbiani, G. (1999). Mechanisms of myofibroblast activity and phenotypic modulation. Experimental Cell Research, 250(2), 273–283.PubMed
9.
go back to reference Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of Cell Biology, 122(1), 103–111.PubMed Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of Cell Biology, 122(1), 103–111.PubMed
10.
go back to reference Mayer, D. C., & Leinwand, L. A. (1997). Sarcomeric gene expression and contractility in myofibroblasts. The Journal of Cell Biology, 139(6), 1477–1484.PubMed Mayer, D. C., & Leinwand, L. A. (1997). Sarcomeric gene expression and contractility in myofibroblasts. The Journal of Cell Biology, 139(6), 1477–1484.PubMed
11.
go back to reference Desmouliere, A., Darby, I. A., & Gabbiani, G. (2003). Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Laboratory Investigation, 83(12), 1689–1707.PubMed Desmouliere, A., Darby, I. A., & Gabbiani, G. (2003). Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Laboratory Investigation, 83(12), 1689–1707.PubMed
12.
go back to reference Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74(2), 184–195.PubMed Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74(2), 184–195.PubMed
13.
go back to reference Bujak, M., Ren, G., Kweon, H. J., Dobaczewski, M., Reddy, A., Taffet, G., et al. (2007). Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 116(19), 2127–2138.PubMed Bujak, M., Ren, G., Kweon, H. J., Dobaczewski, M., Reddy, A., Taffet, G., et al. (2007). Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 116(19), 2127–2138.PubMed
14.
go back to reference Norman, C., Runswick, M., Pollock, R., & Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 55(6), 989–1003.PubMed Norman, C., Runswick, M., Pollock, R., & Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 55(6), 989–1003.PubMed
15.
go back to reference Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., & Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. The EMBO Journal, 17(21), 6289–6299. doi:10.1093/emboj/17.21.6289.PubMed Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., & Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. The EMBO Journal, 17(21), 6289–6299. doi:10.​1093/​emboj/​17.​21.​6289.PubMed
17.
go back to reference Parlakian, A., Tuil, D., Hamard, G., Tavernier, G., Hentzen, D., Concordet, J. P., et al. (2004). Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Molecular and Cellular Biology, 24(12), 5281–5289. doi:10.1128/MCB.24.12.5281-5289.2004.PubMed Parlakian, A., Tuil, D., Hamard, G., Tavernier, G., Hentzen, D., Concordet, J. P., et al. (2004). Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Molecular and Cellular Biology, 24(12), 5281–5289. doi:10.​1128/​MCB.​24.​12.​5281-5289.​2004.PubMed
18.
go back to reference Miano, J. M., Ramanan, N., Georger, M. A., de Mesy Bentley, K. L., Emerson, R. L., Balza, R. O., Jr., et al. (2004). Restricted inactivation of serum response factor to the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17132–17137. doi:10.1073/pnas.0406041101.PubMed Miano, J. M., Ramanan, N., Georger, M. A., de Mesy Bentley, K. L., Emerson, R. L., Balza, R. O., Jr., et al. (2004). Restricted inactivation of serum response factor to the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17132–17137. doi:10.​1073/​pnas.​0406041101.PubMed
19.
go back to reference Niu, Z., Iyer, D., Conway, S. J., Martin, J. F., Ivey, K., Srivastava, D., et al. (2008). Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17824–17829. doi:10.1073/pnas.0805491105.PubMed Niu, Z., Iyer, D., Conway, S. J., Martin, J. F., Ivey, K., Srivastava, D., et al. (2008). Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17824–17829. doi:10.​1073/​pnas.​0805491105.PubMed
20.
go back to reference Niu, Z., Yu, W., Zhang, S. X., Barron, M., Belaguli, N. S., Schneider, M. D., et al. (2005). Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. Journal of Biological Chemistry, 280(37), 32531–32538. doi:10.1074/jbc.M501372200.PubMed Niu, Z., Yu, W., Zhang, S. X., Barron, M., Belaguli, N. S., Schneider, M. D., et al. (2005). Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. Journal of Biological Chemistry, 280(37), 32531–32538. doi:10.​1074/​jbc.​M501372200.PubMed
21.
go back to reference Parlakian, A., Charvet, C., Escoubet, B., Mericskay, M., Molkentin, J. D., Gary-Bobo, G., et al. (2005). Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation, 112(19), 2930–2939. doi:10.1161/CIRCULATIONAHA.105.533778.PubMed Parlakian, A., Charvet, C., Escoubet, B., Mericskay, M., Molkentin, J. D., Gary-Bobo, G., et al. (2005). Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation, 112(19), 2930–2939. doi:10.​1161/​CIRCULATIONAHA.​105.​533778.PubMed
22.
go back to reference Gary-Bobo, G., Parlakian, A., Escoubet, B., Franco, C. A., Clement, S., Bruneval, P., et al. (2008). Mosaic inactivation of the serum response factor gene in the myocardium induces focal lesions and heart failure. European Journal of Heart Failure, 10(7), 635–645. doi:10.1016/j.ejheart.2008.04.014.PubMed Gary-Bobo, G., Parlakian, A., Escoubet, B., Franco, C. A., Clement, S., Bruneval, P., et al. (2008). Mosaic inactivation of the serum response factor gene in the myocardium induces focal lesions and heart failure. European Journal of Heart Failure, 10(7), 635–645. doi:10.​1016/​j.​ejheart.​2008.​04.​014.PubMed
23.
go back to reference Treisman, R. (1986). Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell, 46(4), 567–574.PubMed Treisman, R. (1986). Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell, 46(4), 567–574.PubMed
24.
go back to reference Miano, J. M. (2003). Serum response factor: toggling between disparate programs of gene expression. Journal of Molecular and Cellular Cardiology, 35(6), 577–593.PubMed Miano, J. M. (2003). Serum response factor: toggling between disparate programs of gene expression. Journal of Molecular and Cellular Cardiology, 35(6), 577–593.PubMed
26.
go back to reference Shaw, P. E., Schroter, H., & Nordheim, A. (1989). The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell, 56(4), 563–572.PubMed Shaw, P. E., Schroter, H., & Nordheim, A. (1989). The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell, 56(4), 563–572.PubMed
27.
go back to reference Chang, P. S., Li, L., McAnally, J., & Olson, E. N. (2001). Muscle specificity encoded by specific serum response factor-binding sites. Journal of Biological Chemistry, 276(20), 17206–17212. doi:10.1074/jbc.M010983200.PubMed Chang, P. S., Li, L., McAnally, J., & Olson, E. N. (2001). Muscle specificity encoded by specific serum response factor-binding sites. Journal of Biological Chemistry, 276(20), 17206–17212. doi:10.​1074/​jbc.​M010983200.PubMed
28.
go back to reference Wang, D., Chang, P. S., Wang, Z., Sutherland, L., Richardson, J. A., Small, E., et al. (2001). Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 105(7), 851–862.PubMed Wang, D., Chang, P. S., Wang, Z., Sutherland, L., Richardson, J. A., Small, E., et al. (2001). Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 105(7), 851–862.PubMed
29.
go back to reference Du, K. L., Ip, H. S., Li, J., Chen, M., Dandre, F., Yu, W., et al. (2003). Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Molecular and Cellular Biology, 23(7), 2425–2437.PubMed Du, K. L., Ip, H. S., Li, J., Chen, M., Dandre, F., Yu, W., et al. (2003). Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Molecular and Cellular Biology, 23(7), 2425–2437.PubMed
30.
go back to reference Small, E. M., Warkman, A. S., Wang, D. Z., Sutherland, L. B., Olson, E. N., & Krieg, P. A. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development, 132(5), 987–997.PubMed Small, E. M., Warkman, A. S., Wang, D. Z., Sutherland, L. B., Olson, E. N., & Krieg, P. A. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development, 132(5), 987–997.PubMed
31.
go back to reference Li, S., Wang, D. Z., Wang, Z., Richardson, J. A., & Olson, E. N. (2003). The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9366–9370.PubMed Li, S., Wang, D. Z., Wang, Z., Richardson, J. A., & Olson, E. N. (2003). The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9366–9370.PubMed
32.
go back to reference Huang, J., Cheng, L., Li, J., Chen, M., Zhou, D., Lu, M. M., et al. (2008). Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. The Journal of Clinical Investigation, 118(2), 515–525. doi:10.1172/JCI33304.PubMed Huang, J., Cheng, L., Li, J., Chen, M., Zhou, D., Lu, M. M., et al. (2008). Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. The Journal of Clinical Investigation, 118(2), 515–525. doi:10.​1172/​JCI33304.PubMed
33.
go back to reference Hoofnagle, M. H., Neppl, R. L., Berzin, E. L., Teg Pipes, G. C., Olson, E. N., Wamhoff, B. W., et al. (2011). Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. American Journal of Physiology—Heart and Circulatory Physiology, 300(5), H1707–H1721. doi:10.1152/ajpheart.01192.2010.PubMed Hoofnagle, M. H., Neppl, R. L., Berzin, E. L., Teg Pipes, G. C., Olson, E. N., Wamhoff, B. W., et al. (2011). Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. American Journal of Physiology—Heart and Circulatory Physiology, 300(5), H1707–H1721. doi:10.​1152/​ajpheart.​01192.​2010.PubMed
34.
go back to reference Wang, D. Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. (2002). Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 14855–14860.PubMed Wang, D. Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. (2002). Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 14855–14860.PubMed
35.
go back to reference Miralles, F., Posern, G., Zaromytidou, A. I., & Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113(3), 329–342.PubMed Miralles, F., Posern, G., Zaromytidou, A. I., & Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113(3), 329–342.PubMed
36.
go back to reference Guettler, S., Vartiainen, M. K., Miralles, F., Larijani, B., & Treisman, R. (2008). RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding. Molecular and Cellular Biology, 28(2), 732–742.PubMed Guettler, S., Vartiainen, M. K., Miralles, F., Larijani, B., & Treisman, R. (2008). RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding. Molecular and Cellular Biology, 28(2), 732–742.PubMed
37.
go back to reference Mouilleron, S., Langer, C. A., Guettler, S., McDonald, N. Q., & Treisman, R. (2011). Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Science Signaling, 4(177), ra40. doi:10.1126/scisignal.2001750.PubMed Mouilleron, S., Langer, C. A., Guettler, S., McDonald, N. Q., & Treisman, R. (2011). Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Science Signaling, 4(177), ra40. doi:10.​1126/​scisignal.​2001750.PubMed
38.
go back to reference Cen, B., Selvaraj, A., Burgess, R. C., Hitzler, J. K., Ma, Z., Morris, S. W., et al. (2003). Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Molecular and Cellular Biology, 23(18), 6597–6608.PubMed Cen, B., Selvaraj, A., Burgess, R. C., Hitzler, J. K., Ma, Z., Morris, S. W., et al. (2003). Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Molecular and Cellular Biology, 23(18), 6597–6608.PubMed
39.
go back to reference Hinson, J. S., Medlin, M. D., Lockman, K., Taylor, J. M., & Mack, C. P. (2007). Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. American Journal of Physiology—Heart and Circulatory Physiology, 292(2), H1170–H1180. doi:10.1152/ajpheart.00864.2006.PubMed Hinson, J. S., Medlin, M. D., Lockman, K., Taylor, J. M., & Mack, C. P. (2007). Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. American Journal of Physiology—Heart and Circulatory Physiology, 292(2), H1170–H1180. doi:10.​1152/​ajpheart.​00864.​2006.PubMed
40.
go back to reference Vartiainen, M. K., Guettler, S., Larijani, B., & Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316(5832), 1749–1752. doi:10.1126/science.1141084.PubMed Vartiainen, M. K., Guettler, S., Larijani, B., & Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316(5832), 1749–1752. doi:10.​1126/​science.​1141084.PubMed
41.
go back to reference Selvaraj, A., & Prywes, R. (2004). Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Molecular Biology, 5, 13. doi:10.1186/1471-2199-5-13.PubMed Selvaraj, A., & Prywes, R. (2004). Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Molecular Biology, 5, 13. doi:10.​1186/​1471-2199-5-13.PubMed
42.
go back to reference Olson, E. N., & Nordheim, A. (2010). Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Reviews Molecular Cell Biology, 11(5), 353–365. doi:10.1038/nrm2890.PubMed Olson, E. N., & Nordheim, A. (2010). Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Reviews Molecular Cell Biology, 11(5), 353–365. doi:10.​1038/​nrm2890.PubMed
45.
go back to reference Small, E. M., Thatcher, J. E., Sutherland, L. B., Kinoshita, H., Gerard, R. D., Richardson, J. A., et al. (2010). Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circulation Research, 107(2), 294–304. doi:10.1161/CIRCRESAHA.110.223172.PubMed Small, E. M., Thatcher, J. E., Sutherland, L. B., Kinoshita, H., Gerard, R. D., Richardson, J. A., et al. (2010). Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circulation Research, 107(2), 294–304. doi:10.​1161/​CIRCRESAHA.​110.​223172.PubMed
46.
go back to reference Tomasek, J. J., McRae, J., Owens, G. K., & Haaksma, C. J. (2005). Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. American Journal of Pathology, 166(5), 1343–1351.PubMed Tomasek, J. J., McRae, J., Owens, G. K., & Haaksma, C. J. (2005). Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. American Journal of Pathology, 166(5), 1343–1351.PubMed
47.
go back to reference Tomasek, J. J., Vaughan, M. B., Kropp, B. P., Gabbiani, G., Martin, M. D., Haaksma, C. J., et al. (2006). Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 14(3), 313–320. doi:10.1111/j.1743-6109.2006.00126.x. Tomasek, J. J., Vaughan, M. B., Kropp, B. P., Gabbiani, G., Martin, M. D., Haaksma, C. J., et al. (2006). Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 14(3), 313–320. doi:10.​1111/​j.​1743-6109.​2006.​00126.​x.
48.
go back to reference Crider, B. J., Risinger, G. M., Jr., Haaksma, C. J., Howard, E. W., & Tomasek, J. J. (2011). Myocardin-related transcription factors A and B are key regulators of TGF-beta1-induced fibroblast to myofibroblast differentiation. The Journal of Investigative Dermatology, 131(12), 2378–2385. doi:10.1038/jid.2011.219.PubMed Crider, B. J., Risinger, G. M., Jr., Haaksma, C. J., Howard, E. W., & Tomasek, J. J. (2011). Myocardin-related transcription factors A and B are key regulators of TGF-beta1-induced fibroblast to myofibroblast differentiation. The Journal of Investigative Dermatology, 131(12), 2378–2385. doi:10.​1038/​jid.​2011.​219.PubMed
49.
go back to reference Sun, Q., Taurin, S., Sethakorn, N., Long, X., Imamura, M., Wang, D. Z., et al. (2009). Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. Journal of Biological Chemistry, 284(47), 32582–32590. doi:10.1074/jbc.M109.033910.PubMed Sun, Q., Taurin, S., Sethakorn, N., Long, X., Imamura, M., Wang, D. Z., et al. (2009). Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. Journal of Biological Chemistry, 284(47), 32582–32590. doi:10.​1074/​jbc.​M109.​033910.PubMed
50.
go back to reference Sandbo, N., Kregel, S., Taurin, S., Bhorade, S., & Dulin, N. O. (2009). Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta. American Journal of Respiratory Cell and Molecular Biology, 41(3), 332–338. doi:10.1165/rcmb.2008-0288OC.PubMed Sandbo, N., Kregel, S., Taurin, S., Bhorade, S., & Dulin, N. O. (2009). Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta. American Journal of Respiratory Cell and Molecular Biology, 41(3), 332–338. doi:10.​1165/​rcmb.​2008-0288OC.PubMed
51.
go back to reference Luchsinger, L. L., Patenaude, C. A., Smith, B. D., & Layne, M. D. (2011). Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. Journal of Biological Chemistry, 286(51), 44116–44125. doi:10.1074/jbc.M111.276931.PubMed Luchsinger, L. L., Patenaude, C. A., Smith, B. D., & Layne, M. D. (2011). Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. Journal of Biological Chemistry, 286(51), 44116–44125. doi:10.​1074/​jbc.​M111.​276931.PubMed
52.
go back to reference Sebe, A., Erdei, Z., Varga, K., Bodor, C., Mucsi, I., & Rosivall, L. (2010). Cdc42 regulates myocardin-related transcription factor nuclear shuttling and alpha-smooth muscle actin promoter activity during renal tubular epithelial-mesenchymal transition. Nephron Experimental Nephrology, 114(3), e117–e125. doi:10.1159/000265550.PubMed Sebe, A., Erdei, Z., Varga, K., Bodor, C., Mucsi, I., & Rosivall, L. (2010). Cdc42 regulates myocardin-related transcription factor nuclear shuttling and alpha-smooth muscle actin promoter activity during renal tubular epithelial-mesenchymal transition. Nephron Experimental Nephrology, 114(3), e117–e125. doi:10.​1159/​000265550.PubMed
53.
go back to reference Masszi, A., Fan, L., Rosivall, L., McCulloch, C. A., Rotstein, O. D., Mucsi, I., et al. (2004). Integrity of cell–cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. American Journal of Pathology, 165(6), 1955–1967.PubMed Masszi, A., Fan, L., Rosivall, L., McCulloch, C. A., Rotstein, O. D., Mucsi, I., et al. (2004). Integrity of cell–cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. American Journal of Pathology, 165(6), 1955–1967.PubMed
54.
go back to reference Fan, L., Sebe, A., Peterfi, Z., Masszi, A., Thirone, A. C., Rotstein, O. D., et al. (2007). Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Molecular Biology of the Cell, 18(3), 1083–1097.PubMed Fan, L., Sebe, A., Peterfi, Z., Masszi, A., Thirone, A. C., Rotstein, O. D., et al. (2007). Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Molecular Biology of the Cell, 18(3), 1083–1097.PubMed
55.
go back to reference Elberg, G., Chen, L., Elberg, D., Chan, M. D., Logan, C. J., & Turman, M. A. (2008). MKL1 mediates TGF-beta1-induced alpha-smooth muscle actin expression in human renal epithelial cells. American Journal of Physiology. Renal Physiology, 294(5), F1116–F1128.PubMed Elberg, G., Chen, L., Elberg, D., Chan, M. D., Logan, C. J., & Turman, M. A. (2008). MKL1 mediates TGF-beta1-induced alpha-smooth muscle actin expression in human renal epithelial cells. American Journal of Physiology. Renal Physiology, 294(5), F1116–F1128.PubMed
56.
go back to reference Busche, S., Descot, A., Julien, S., Genth, H., & Posern, G. (2008). Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling. Journal of Cell Science, 121(Pt 7), 1025–1035. doi:10.1242/jcs.014456.PubMed Busche, S., Descot, A., Julien, S., Genth, H., & Posern, G. (2008). Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling. Journal of Cell Science, 121(Pt 7), 1025–1035. doi:10.​1242/​jcs.​014456.PubMed
57.
go back to reference Busche, S., Kremmer, E., & Posern, G. (2010). E-cadherin regulates MAL-SRF-mediated transcription in epithelial cells. Journal of Cell Science, 123(Pt 16), 2803–2809. doi:10.1242/jcs.061887.PubMed Busche, S., Kremmer, E., & Posern, G. (2010). E-cadherin regulates MAL-SRF-mediated transcription in epithelial cells. Journal of Cell Science, 123(Pt 16), 2803–2809. doi:10.​1242/​jcs.​061887.PubMed
58.
go back to reference Charbonney, E., Speight, P., Masszi, A., Nakano, H., & Kapus, A. (2011). β-Catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial–myofibroblast transition. Molecular Biology of the Cell, 22(23), 4472–4485. doi:10.1091/mbc.E11-04-0335.PubMed Charbonney, E., Speight, P., Masszi, A., Nakano, H., & Kapus, A. (2011). β-Catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial–myofibroblast transition. Molecular Biology of the Cell, 22(23), 4472–4485. doi:10.​1091/​mbc.​E11-04-0335.PubMed
59.
go back to reference Kuwahara, K., Kinoshita, H., Kuwabara, Y., Nakagawa, Y., Usami, S., Minami, T., et al. (2010). Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Molecular and Cellular Biology, 30(17), 4134–4148. doi:10.1128/MCB.00154-10.PubMed Kuwahara, K., Kinoshita, H., Kuwabara, Y., Nakagawa, Y., Usami, S., Minami, T., et al. (2010). Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Molecular and Cellular Biology, 30(17), 4134–4148. doi:10.​1128/​MCB.​00154-10.PubMed
60.
go back to reference McGee, K. M., Vartiainen, M. K., Khaw, P. T., Treisman, R., & Bailly, M. (2011). Nuclear transport of the serum response factor coactivator MRTF-A is downregulated at tensional homeostasis. EMBO Reports, 12(9), 963–970. doi:10.1038/embor.2011.141.PubMed McGee, K. M., Vartiainen, M. K., Khaw, P. T., Treisman, R., & Bailly, M. (2011). Nuclear transport of the serum response factor coactivator MRTF-A is downregulated at tensional homeostasis. EMBO Reports, 12(9), 963–970. doi:10.​1038/​embor.​2011.​141.PubMed
61.
go back to reference Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961.PubMed Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961.PubMed
62.
go back to reference Humphreys, B. D., Lin, S. L., Kobayashi, A., Hudson, T. E., Nowlin, B. T., Bonventre, J. V., et al. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. American Journal of Pathology, 176(1), 85–97. doi:10.2353/ajpath.2010.090517.PubMed Humphreys, B. D., Lin, S. L., Kobayashi, A., Hudson, T. E., Nowlin, B. T., Bonventre, J. V., et al. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. American Journal of Pathology, 176(1), 85–97. doi:10.​2353/​ajpath.​2010.​090517.PubMed
63.
go back to reference Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P., & Owens, G. K. (2001). Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. Journal of Biological Chemistry, 276(1), 341–347.PubMed Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P., & Owens, G. K. (2001). Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. Journal of Biological Chemistry, 276(1), 341–347.PubMed
64.
go back to reference Liu, H. W., Halayko, A. J., Fernandes, D. J., Harmon, G. S., McCauley, J. A., Kocieniewski, P., et al. (2003). The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. American Journal of Respiratory Cell and Molecular Biology, 29(1), 39–47. doi:10.1165/rcmb.2002-0206OC.PubMed Liu, H. W., Halayko, A. J., Fernandes, D. J., Harmon, G. S., McCauley, J. A., Kocieniewski, P., et al. (2003). The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. American Journal of Respiratory Cell and Molecular Biology, 29(1), 39–47. doi:10.​1165/​rcmb.​2002-0206OC.PubMed
65.
go back to reference Sotiropoulos, A., Gineitis, D., Copeland, J., & Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98(2), 159–169.PubMed Sotiropoulos, A., Gineitis, D., Copeland, J., & Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98(2), 159–169.PubMed
66.
go back to reference Chan, M. W., Chaudary, F., Lee, W., Copeland, J. W., & McCulloch, C. A. (2010). Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). Journal of Biological Chemistry, 285(12), 9273–9281. doi:10.1074/jbc.M109.075218.PubMed Chan, M. W., Chaudary, F., Lee, W., Copeland, J. W., & McCulloch, C. A. (2010). Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). Journal of Biological Chemistry, 285(12), 9273–9281. doi:10.​1074/​jbc.​M109.​075218.PubMed
67.
go back to reference Wang, J., Chen, H., Seth, A., & McCulloch, C. A. (2003). Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. American Journal of Physiology—Heart and Circulatory Physiology, 285(5), H1871–H1881.PubMed Wang, J., Chen, H., Seth, A., & McCulloch, C. A. (2003). Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. American Journal of Physiology—Heart and Circulatory Physiology, 285(5), H1871–H1881.PubMed
68.
go back to reference Zhao, X. H., Laschinger, C., Arora, P., Szaszi, K., Kapus, A., & McCulloch, C. A. (2007). Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. Journal of Cell Science, 120(Pt 10), 1801–1809.PubMed Zhao, X. H., Laschinger, C., Arora, P., Szaszi, K., Kapus, A., & McCulloch, C. A. (2007). Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. Journal of Cell Science, 120(Pt 10), 1801–1809.PubMed
69.
go back to reference Kuwahara, K., Barrientos, T., Pipes, G. C., Li, S., & Olson, E. N. (2005). Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Molecular and Cellular Biology, 25(8), 3173–3181.PubMed Kuwahara, K., Barrientos, T., Pipes, G. C., Li, S., & Olson, E. N. (2005). Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Molecular and Cellular Biology, 25(8), 3173–3181.PubMed
70.
go back to reference Kuwahara, K., Teg Pipes, G. C., McAnally, J., Richardson, J. A., Hill, J. A., Bassel-Duby, R., et al. (2007). Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. The Journal of Clinical Investigation, 117(5), 1324–1334.PubMed Kuwahara, K., Teg Pipes, G. C., McAnally, J., Richardson, J. A., Hill, J. A., Bassel-Duby, R., et al. (2007). Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. The Journal of Clinical Investigation, 117(5), 1324–1334.PubMed
71.
go back to reference Hao, J., Ju, H., Zhao, S., Junaid, A., Scammell-La Fleur, T., & Dixon, I. M. (1999). Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. Journal of Molecular and Cellular Cardiology, 31(3), 667–678.PubMed Hao, J., Ju, H., Zhao, S., Junaid, A., Scammell-La Fleur, T., & Dixon, I. M. (1999). Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. Journal of Molecular and Cellular Cardiology, 31(3), 667–678.PubMed
72.
go back to reference Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X. F., et al. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circulation Research, 107(3), 418–428. doi:10.1161/CIRCRESAHA.109.216101.PubMed Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X. F., et al. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circulation Research, 107(3), 418–428. doi:10.​1161/​CIRCRESAHA.​109.​216101.PubMed
73.
go back to reference Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95(3), 253–260.PubMed Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95(3), 253–260.PubMed
74.
go back to reference Qiu, P., Feng, X. H., & Li, L. (2003). Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 35(12), 1407–1420.PubMed Qiu, P., Feng, X. H., & Li, L. (2003). Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 35(12), 1407–1420.PubMed
75.
go back to reference Qiu, P., Ritchie, R. P., Fu, Z., Cao, D., Cumming, J., Miano, J. M., et al. (2005). Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: smad-binding element is an important cis element for SM22alpha transcription in vivo. Circulation Research, 97(10), 983–991.PubMed Qiu, P., Ritchie, R. P., Fu, Z., Cao, D., Cumming, J., Miano, J. M., et al. (2005). Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: smad-binding element is an important cis element for SM22alpha transcription in vivo. Circulation Research, 97(10), 983–991.PubMed
76.
go back to reference Morita, T., Mayanagi, T., & Sobue, K. (2007). Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. The Journal of Cell Biology, 179(5), 1027–1042.PubMed Morita, T., Mayanagi, T., & Sobue, K. (2007). Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. The Journal of Cell Biology, 179(5), 1027–1042.PubMed
77.
go back to reference Masszi, A., Speight, P., Charbonney, E., Lodyga, M., Nakano, H., Szaszi, K., et al. (2010). Fate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3. The Journal of Cell Biology, 188(3), 383–399. doi:10.1083/jcb.200906155.PubMed Masszi, A., Speight, P., Charbonney, E., Lodyga, M., Nakano, H., Szaszi, K., et al. (2010). Fate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3. The Journal of Cell Biology, 188(3), 383–399. doi:10.​1083/​jcb.​200906155.PubMed
78.
go back to reference Muehlich, S., Wang, R., Lee, S. M., Lewis, T. C., Dai, C., & Prywes, R. (2008). Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Molecular and Cellular Biology, 28(20), 6302–6313. doi:10.1128/MCB.00427-08.PubMed Muehlich, S., Wang, R., Lee, S. M., Lewis, T. C., Dai, C., & Prywes, R. (2008). Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Molecular and Cellular Biology, 28(20), 6302–6313. doi:10.​1128/​MCB.​00427-08.PubMed
79.
go back to reference Nakagawa, K., & Kuzumaki, N. (2005). Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 10(8), 835–850. doi:10.1111/j.1365-2443.2005.00880.x. Nakagawa, K., & Kuzumaki, N. (2005). Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 10(8), 835–850. doi:10.​1111/​j.​1365-2443.​2005.​00880.​x.
80.
go back to reference Hinson, J. S., Medlin, M. D., Taylor, J. M., & Mack, C. P. (2008). Regulation of myocardin factor protein stability by the LIM-only protein FHL2. American Journal of Physiology—Heart and Circulatory Physiology, 295(3), H1067–H1075. doi:10.1152/ajpheart.91421.2007.PubMed Hinson, J. S., Medlin, M. D., Taylor, J. M., & Mack, C. P. (2008). Regulation of myocardin factor protein stability by the LIM-only protein FHL2. American Journal of Physiology—Heart and Circulatory Physiology, 295(3), H1067–H1075. doi:10.​1152/​ajpheart.​91421.​2007.PubMed
81.
go back to reference Wixler, V., Hirner, S., Muller, J. M., Gullotti, L., Will, C., Kirfel, J., et al. (2007). Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. The Journal of Cell Biology, 177(1), 163–172. doi:10.1083/jcb.200606043.PubMed Wixler, V., Hirner, S., Muller, J. M., Gullotti, L., Will, C., Kirfel, J., et al. (2007). Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. The Journal of Cell Biology, 177(1), 163–172. doi:10.​1083/​jcb.​200606043.PubMed
82.
go back to reference Philippar, U., Schratt, G., Dieterich, C., Muller, J. M., Galgoczy, P., Engel, F. B., et al. (2004). The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Molecular Cell, 16(6), 867–880.PubMed Philippar, U., Schratt, G., Dieterich, C., Muller, J. M., Galgoczy, P., Engel, F. B., et al. (2004). The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Molecular Cell, 16(6), 867–880.PubMed
83.
go back to reference Sepulveda, J. L., Vlahopoulos, S., Iyer, D., Belaguli, N., & Schwartz, R. J. (2002). Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. Journal of Biological Chemistry, 277(28), 25775–25782. doi:10.1074/jbc.M203122200.PubMed Sepulveda, J. L., Vlahopoulos, S., Iyer, D., Belaguli, N., & Schwartz, R. J. (2002). Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. Journal of Biological Chemistry, 277(28), 25775–25782. doi:10.​1074/​jbc.​M203122200.PubMed
85.
go back to reference Martin, K. A., Gualberto, A., Kolman, M. F., Lowry, J., & Walsh, K. (1997). A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. DNA and Cell Biology, 16(5), 653–661.PubMed Martin, K. A., Gualberto, A., Kolman, M. F., Lowry, J., & Walsh, K. (1997). A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. DNA and Cell Biology, 16(5), 653–661.PubMed
86.
go back to reference Chen, C. Y., & Schwartz, R. J. (1997). Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Molecular Endocrinology, 11(6), 812–822.PubMed Chen, C. Y., & Schwartz, R. J. (1997). Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Molecular Endocrinology, 11(6), 812–822.PubMed
87.
go back to reference Ellis, P. D., Martin, K. M., Rickman, C., Metcalfe, J. C., & Kemp, P. R. (2002). Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1. The Biochemical Journal, 364(Pt 2), 547–554. doi:10.1042/BJ20020269.PubMed Ellis, P. D., Martin, K. M., Rickman, C., Metcalfe, J. C., & Kemp, P. R. (2002). Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1. The Biochemical Journal, 364(Pt 2), 547–554. doi:10.​1042/​BJ20020269.PubMed
89.
go back to reference Han, Z., Li, X., Wu, J., & Olson, E. N. (2004). A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12567–12572. doi:10.1073/pnas.0405085101.PubMed Han, Z., Li, X., Wu, J., & Olson, E. N. (2004). A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12567–12572. doi:10.​1073/​pnas.​0405085101.PubMed
90.
go back to reference Li, J., Zhu, X., Chen, M., Cheng, L., Zhou, D., Lu, M. M., et al. (2005). Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8916–8921. doi:10.1073/pnas.0503741102.PubMed Li, J., Zhu, X., Chen, M., Cheng, L., Zhou, D., Lu, M. M., et al. (2005). Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8916–8921. doi:10.​1073/​pnas.​0503741102.PubMed
91.
go back to reference Oh, J., Richardson, J. A., & Olson, E. N. (2005). Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15122–15127.PubMed Oh, J., Richardson, J. A., & Olson, E. N. (2005). Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15122–15127.PubMed
92.
go back to reference Mokalled, M. H., Johnson, A., Kim, Y., Oh, J., & Olson, E. N. (2010). Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development, 137(14), 2365–2374. doi:10.1242/dev.047605.PubMed Mokalled, M. H., Johnson, A., Kim, Y., Oh, J., & Olson, E. N. (2010). Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development, 137(14), 2365–2374. doi:10.​1242/​dev.​047605.PubMed
93.
go back to reference Li, S., Chang, S., Qi, X., Richardson, J. A., & Olson, E. N. (2006). Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Molecular and Cellular Biology, 26(15), 5797–5808.PubMed Li, S., Chang, S., Qi, X., Richardson, J. A., & Olson, E. N. (2006). Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Molecular and Cellular Biology, 26(15), 5797–5808.PubMed
94.
go back to reference Sun, Y., Boyd, K., Xu, W., Ma, J., Jackson, C. W., Fu, A., et al. (2006). Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Molecular and Cellular Biology, 26(15), 5809–5826. doi:10.1128/MCB.00024-06.PubMed Sun, Y., Boyd, K., Xu, W., Ma, J., Jackson, C. W., Fu, A., et al. (2006). Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Molecular and Cellular Biology, 26(15), 5809–5826. doi:10.​1128/​MCB.​00024-06.PubMed
95.
go back to reference Rikitake, Y., Oyama, N., Wang, C. Y., Noma, K., Satoh, M., Kim, H. H., et al. (2005). Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/− haploinsufficient mice. Circulation, 112(19), 2959–2965. doi:10.1161/CIRCULATIONAHA.105.584623.PubMed Rikitake, Y., Oyama, N., Wang, C. Y., Noma, K., Satoh, M., Kim, H. H., et al. (2005). Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/− haploinsufficient mice. Circulation, 112(19), 2959–2965. doi:10.​1161/​CIRCULATIONAHA.​105.​584623.PubMed
96.
go back to reference Haudek, S. B., Gupta, D., Dewald, O., Schwartz, R. J., Wei, L., Trial, J., et al. (2009). Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovascular Research, 83(3), 511–518. doi:10.1093/cvr/cvp135.PubMed Haudek, S. B., Gupta, D., Dewald, O., Schwartz, R. J., Wei, L., Trial, J., et al. (2009). Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovascular Research, 83(3), 511–518. doi:10.​1093/​cvr/​cvp135.PubMed
97.
go back to reference Hamid, S. A., Bower, H. S., & Baxter, G. F. (2007). Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American Journal of Physiology—Heart and Circulatory Physiology, 292(6), H2598–H2606.PubMed Hamid, S. A., Bower, H. S., & Baxter, G. F. (2007). Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American Journal of Physiology—Heart and Circulatory Physiology, 292(6), H2598–H2606.PubMed
98.
go back to reference Zhang, Y. M., Bo, J., Taffet, G. E., Chang, J., Shi, J., Reddy, A. K., et al. (2006). Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. The FASEB Journal, 20(7), 916–925. Zhang, Y. M., Bo, J., Taffet, G. E., Chang, J., Shi, J., Reddy, A. K., et al. (2006). Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. The FASEB Journal, 20(7), 916–925.
99.
go back to reference Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi:10.1073/pnas.0608799103.PubMed Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi:10.​1073/​pnas.​0608799103.PubMed
100.
go back to reference Allingham, J. S., Klenchin, V. A., & Rayment, I. (2006). Actin-targeting natural products: structures, properties and mechanisms of action. Cellular and Molecular Life Sciences: CMLS, 63(18), 2119–2134. doi:10.1007/s00018-006-6157-9.PubMed Allingham, J. S., Klenchin, V. A., & Rayment, I. (2006). Actin-targeting natural products: structures, properties and mechanisms of action. Cellular and Molecular Life Sciences: CMLS, 63(18), 2119–2134. doi:10.​1007/​s00018-006-6157-9.PubMed
101.
go back to reference Hattori, T., Shimokawa, H., Higashi, M., Hiroki, J., Mukai, Y., Tsutsui, H., et al. (2004). Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation, 109(18), 2234–2239.PubMed Hattori, T., Shimokawa, H., Higashi, M., Hiroki, J., Mukai, Y., Tsutsui, H., et al. (2004). Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation, 109(18), 2234–2239.PubMed
102.
go back to reference Satoh, S., Ikegaki, I., Toshima, Y., Watanabe, A., Asano, T., & Shimokawa, H. (2002). Effects of Rho-kinase inhibitor on vasopressin-induced chronic myocardial damage in rats. Life Sciences, 72(1), 103–112.PubMed Satoh, S., Ikegaki, I., Toshima, Y., Watanabe, A., Asano, T., & Shimokawa, H. (2002). Effects of Rho-kinase inhibitor on vasopressin-induced chronic myocardial damage in rats. Life Sciences, 72(1), 103–112.PubMed
103.
go back to reference Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R., & Dagenais, G. (2000). Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. The New England Journal of Medicine, 342(3), 145–153.PubMed Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R., & Dagenais, G. (2000). Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. The New England Journal of Medicine, 342(3), 145–153.PubMed
105.
go back to reference Fukumoto, Y., Matoba, T., Ito, A., Tanaka, H., Kishi, T., Hayashidani, S., et al. (2005). Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart, 91(3), 391–392.PubMed Fukumoto, Y., Matoba, T., Ito, A., Tanaka, H., Kishi, T., Hayashidani, S., et al. (2005). Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart, 91(3), 391–392.PubMed
106.
go back to reference Kishi, T., Hirooka, Y., Masumoto, A., Ito, K., Kimura, Y., Inokuchi, K., et al. (2005). Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation, 111(21), 2741–2747.PubMed Kishi, T., Hirooka, Y., Masumoto, A., Ito, K., Kimura, Y., Inokuchi, K., et al. (2005). Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation, 111(21), 2741–2747.PubMed
107.
go back to reference Masumoto, A., Mohri, M., Shimokawa, H., Urakami, L., Usui, M., & Takeshita, A. (2002). Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation, 105(13), 1545–1547.PubMed Masumoto, A., Mohri, M., Shimokawa, H., Urakami, L., Usui, M., & Takeshita, A. (2002). Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation, 105(13), 1545–1547.PubMed
108.
go back to reference Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16(2), 233–244. doi:10.1016/j.devcel.2008.12.007.PubMed Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16(2), 233–244. doi:10.​1016/​j.​devcel.​2008.​12.​007.PubMed
109.
go back to reference Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. doi:10.1038/nature11044. Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. doi:10.​1038/​nature11044.
110.
go back to reference Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485(7400), 599–604. doi:10.1038/nature11139.PubMed Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485(7400), 599–604. doi:10.​1038/​nature11139.PubMed
Metadata
Title
The Actin–MRTF–SRF Gene Regulatory Axis and Myofibroblast Differentiation
Author
Eric M. Small
Publication date
01-12-2012
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 6/2012
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9397-0

Other articles of this Issue 6/2012

Journal of Cardiovascular Translational Research 6/2012 Go to the issue