Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2011

01-08-2011

Emerging MRI Methods in Translational Cardiovascular Research

Authors: Moriel H. Vandsburger, Frederick H. Epstein

Published in: Journal of Cardiovascular Translational Research | Issue 4/2011

Login to get access

Abstract

Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside.
Literature
1.
go back to reference Bui, A., Horwich, T., & Fonarow, G. (2011). Epidemiology and risk profile of heart failure. Nature Reviews Cardiology, 8(1), 30–41.PubMedCrossRef Bui, A., Horwich, T., & Fonarow, G. (2011). Epidemiology and risk profile of heart failure. Nature Reviews Cardiology, 8(1), 30–41.PubMedCrossRef
2.
go back to reference Kearns-Jonker, M., & Dai, W. K. R. A. (2010). Stem cells for the treatment of heart failure. Current Opinion in Molecular Therapeutics, 12(4), 432–441.PubMed Kearns-Jonker, M., & Dai, W. K. R. A. (2010). Stem cells for the treatment of heart failure. Current Opinion in Molecular Therapeutics, 12(4), 432–441.PubMed
3.
go back to reference Boyle, A., McNiece, I., & Hare, J. (2010). Mesenchymal stem cell therapy for cardiac repair. Methods in Molecular Biology, 660, 65–84.PubMedCrossRef Boyle, A., McNiece, I., & Hare, J. (2010). Mesenchymal stem cell therapy for cardiac repair. Methods in Molecular Biology, 660, 65–84.PubMedCrossRef
4.
go back to reference Gepstein, L. (2010). Cell and gene therapy strategies for the treatment of postmyocardial infarction ventricular arrhythmias. Annals of the New York Academy of Sciences, 1188, 32–38.PubMedCrossRef Gepstein, L. (2010). Cell and gene therapy strategies for the treatment of postmyocardial infarction ventricular arrhythmias. Annals of the New York Academy of Sciences, 1188, 32–38.PubMedCrossRef
5.
go back to reference Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.PubMedCrossRef Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.PubMedCrossRef
6.
go back to reference Frost, R., & van Rooij, E. (2010). miRNAs as therapeutic targets in ischemic heart disease. Journal of Cardiovascular Translational Research, 3(3), 280–289.PubMedCrossRef Frost, R., & van Rooij, E. (2010). miRNAs as therapeutic targets in ischemic heart disease. Journal of Cardiovascular Translational Research, 3(3), 280–289.PubMedCrossRef
7.
go back to reference Dobrucki, L., & Sinusas, A. (2010). PET and SPECT in cardiovascular molecular imaging. Nature Reviews Cardiology, 7(1), 38–47.PubMedCrossRef Dobrucki, L., & Sinusas, A. (2010). PET and SPECT in cardiovascular molecular imaging. Nature Reviews Cardiology, 7(1), 38–47.PubMedCrossRef
9.
go back to reference Salerno, M., & Kramer, C. (2009). Advances in cardiovascular MRI for diagnostics: Applications in coronary artery disease and cardiomyopathies. Expert Opinion on Medical Diagnostics, 3(6), 673–687.PubMedCrossRef Salerno, M., & Kramer, C. (2009). Advances in cardiovascular MRI for diagnostics: Applications in coronary artery disease and cardiomyopathies. Expert Opinion on Medical Diagnostics, 3(6), 673–687.PubMedCrossRef
10.
go back to reference Epstein, F. H. (2007). MR in mouse models of cardiac disease. NMR in Biomedicine, 20(3), 238–255.PubMedCrossRef Epstein, F. H. (2007). MR in mouse models of cardiac disease. NMR in Biomedicine, 20(3), 238–255.PubMedCrossRef
11.
go back to reference Kramer, C., Rogers, W. J., Mankad, S., Theobald, T., Pakstis, D., & Hu, Y. (2000). Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. Journal of the American College of Cardiology, 36(6), 1835–1840.PubMedCrossRef Kramer, C., Rogers, W. J., Mankad, S., Theobald, T., Pakstis, D., & Hu, Y. (2000). Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. Journal of the American College of Cardiology, 36(6), 1835–1840.PubMedCrossRef
12.
go back to reference Rogers, W. J., Kramer, C., Geskin, G., Hu, Y., Theobald, T., Vido, D., et al. (1999). Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation, 99(6), 744–750.PubMed Rogers, W. J., Kramer, C., Geskin, G., Hu, Y., Theobald, T., Vido, D., et al. (1999). Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation, 99(6), 744–750.PubMed
13.
go back to reference Maron, M. (2009). The current and emerging role of cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy. Journal of Cardiovascular Translational Research, 2(4), 415–425.PubMedCrossRef Maron, M. (2009). The current and emerging role of cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy. Journal of Cardiovascular Translational Research, 2(4), 415–425.PubMedCrossRef
14.
go back to reference Epstein, F. H. (2007). MRI of left ventricular function. Journal of Nuclear Cardiology, 14(5), 729–744.PubMedCrossRef Epstein, F. H. (2007). MRI of left ventricular function. Journal of Nuclear Cardiology, 14(5), 729–744.PubMedCrossRef
15.
go back to reference Wu, K., Weiss, R., Thiemann, D., Kitagawa, K., Schmidt, A., Dalal, D., et al. (2008). Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. Journal of the American College of Cardiology, 51(25), 2414–2421.PubMedCrossRef Wu, K., Weiss, R., Thiemann, D., Kitagawa, K., Schmidt, A., Dalal, D., et al. (2008). Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. Journal of the American College of Cardiology, 51(25), 2414–2421.PubMedCrossRef
16.
go back to reference Power, T., Kramer, C., Shaffer, A., Theobald, T., Petruolo, S., Reichek, N., et al. (1997). Breath-hold dobutamine magnetic resonance myocardial tagging: Normal left ventricular response. The American Journal of Cardiology, 80(9), 1203–1207.PubMedCrossRef Power, T., Kramer, C., Shaffer, A., Theobald, T., Petruolo, S., Reichek, N., et al. (1997). Breath-hold dobutamine magnetic resonance myocardial tagging: Normal left ventricular response. The American Journal of Cardiology, 80(9), 1203–1207.PubMedCrossRef
17.
go back to reference Epstein, F. H., Yang, Z., Gilson, W. D., Berr, S. S., Kramer, C. M., & French, B. A. (2002). MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magnetic Resonance in Medicine, 48(2), 399–403.PubMedCrossRef Epstein, F. H., Yang, Z., Gilson, W. D., Berr, S. S., Kramer, C. M., & French, B. A. (2002). MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magnetic Resonance in Medicine, 48(2), 399–403.PubMedCrossRef
18.
go back to reference Kim, D., Gilson, W. D., Kramer, C. M., & Epstein, F. H. (2004). Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: Development and initial evaluation. Radiology, 230, 862–871.PubMedCrossRef Kim, D., Gilson, W. D., Kramer, C. M., & Epstein, F. H. (2004). Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: Development and initial evaluation. Radiology, 230, 862–871.PubMedCrossRef
19.
go back to reference Gilson, W. D., Yang, Z., French, B., & Epstein, F. (2004). Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magnetic Resonance in Medicine, 51(4), 744–752.PubMedCrossRef Gilson, W. D., Yang, Z., French, B., & Epstein, F. (2004). Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magnetic Resonance in Medicine, 51(4), 744–752.PubMedCrossRef
20.
go back to reference Gilson, W., Yang, Z., French, B., & Epstein, F. (2005). Measurement of myocardial mechanics in mice before and after infarction using multislice displacement-encoded MRI with 3D motion encoding. American Journal of Physiology. Heart and Circulatory Physiology, 288, H1491–H1497.PubMedCrossRef Gilson, W., Yang, Z., French, B., & Epstein, F. (2005). Measurement of myocardial mechanics in mice before and after infarction using multislice displacement-encoded MRI with 3D motion encoding. American Journal of Physiology. Heart and Circulatory Physiology, 288, H1491–H1497.PubMedCrossRef
21.
go back to reference Gilson, W. D., Epstein, F. H., Yang, Z., Xu, Y., Prasad, K.-M. R., Toufektsian, M.-C., et al. (2007). Borderzone contractile dysfunction is transiently attenuated and left ventricular structural remodeling is markedly reduced following reperfused myocardial infarction in inducible nitric oxide synthase knockout mice. Journal of the American College of Cardiology, 50(18), 1799–1807.PubMedCrossRef Gilson, W. D., Epstein, F. H., Yang, Z., Xu, Y., Prasad, K.-M. R., Toufektsian, M.-C., et al. (2007). Borderzone contractile dysfunction is transiently attenuated and left ventricular structural remodeling is markedly reduced following reperfused myocardial infarction in inducible nitric oxide synthase knockout mice. Journal of the American College of Cardiology, 50(18), 1799–1807.PubMedCrossRef
22.
go back to reference Zhong, X., Spottiswoode, B., Cowart, E., Gilson, W., & Epstein, F. H. (2006). Selective suppression of artifact-generating echoes in cine DENSE using through-plane dephasing. Magnetic Resonance in Medicine, 56(5), 1126–1131.PubMedCrossRef Zhong, X., Spottiswoode, B., Cowart, E., Gilson, W., & Epstein, F. H. (2006). Selective suppression of artifact-generating echoes in cine DENSE using through-plane dephasing. Magnetic Resonance in Medicine, 56(5), 1126–1131.PubMedCrossRef
23.
go back to reference Zhong, X., Helm, P., & Epstein, F. (2009). Balanced multipoint displacement encoding for DENSE MRI. Magnetic Resonance in Medicine, 61(4), 981–988.PubMedCrossRef Zhong, X., Helm, P., & Epstein, F. (2009). Balanced multipoint displacement encoding for DENSE MRI. Magnetic Resonance in Medicine, 61(4), 981–988.PubMedCrossRef
24.
go back to reference Zhong, X., Spottiswoode, B., Meyer, C., Kramer, C., & Epstein, F. H. (2010). Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magnetic Resonance in Medicine, 64(4), 1089–1097.PubMedCrossRef Zhong, X., Spottiswoode, B., Meyer, C., Kramer, C., & Epstein, F. H. (2010). Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magnetic Resonance in Medicine, 64(4), 1089–1097.PubMedCrossRef
25.
go back to reference Helm, P., Tseng, H., Younes, L., McVeigh, E., & Winslow, R. (2005). Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magnetic Resonance in Medicine, 54(4), 850–859.PubMedCrossRef Helm, P., Tseng, H., Younes, L., McVeigh, E., & Winslow, R. (2005). Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magnetic Resonance in Medicine, 54(4), 850–859.PubMedCrossRef
26.
go back to reference Sosnovik, D., Wang, R., Dai, G., Wang, T., Aikawa, E., Novikov, M., et al. (2009). Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circulation Cardiovascular Imaging, 2, 206–212.PubMedCrossRef Sosnovik, D., Wang, R., Dai, G., Wang, T., Aikawa, E., Novikov, M., et al. (2009). Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circulation Cardiovascular Imaging, 2, 206–212.PubMedCrossRef
27.
go back to reference Vandsburger, M. H., French, B. A., Helm, P. A., Roy, R. J., Kramer, C. M., Young, A. A., et al. (2007). Multi-parameter in vivo cardiac magnetic resonance imaging demonstrates normal perfusion reserve despite severely attenuated β-adrenergic functional response in neuronal nitric oxide synthase knockout mice. European Heart Journal, 28(22), 2792–2798.PubMedCrossRef Vandsburger, M. H., French, B. A., Helm, P. A., Roy, R. J., Kramer, C. M., Young, A. A., et al. (2007). Multi-parameter in vivo cardiac magnetic resonance imaging demonstrates normal perfusion reserve despite severely attenuated β-adrenergic functional response in neuronal nitric oxide synthase knockout mice. European Heart Journal, 28(22), 2792–2798.PubMedCrossRef
28.
go back to reference Kramer, C., Rogers, W., Theobald, T., Power, T., Geskin, G., & Reichek, N. (1997). Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. Journal of the American College of Cardiology, 30(7), 1625–1632.PubMedCrossRef Kramer, C., Rogers, W., Theobald, T., Power, T., Geskin, G., & Reichek, N. (1997). Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. Journal of the American College of Cardiology, 30(7), 1625–1632.PubMedCrossRef
29.
go back to reference Young, A., French, B., Yang, Z., Cowan, B., Gilson, W., Berr, S., et al. (2006). Reperfused myocardial infarction in mice: 3D mapping of late gadolinium enhancement and strain. Journal of Cardiovascular Magnetic Resonance, 8(5), 685–692.PubMedCrossRef Young, A., French, B., Yang, Z., Cowan, B., Gilson, W., Berr, S., et al. (2006). Reperfused myocardial infarction in mice: 3D mapping of late gadolinium enhancement and strain. Journal of Cardiovascular Magnetic Resonance, 8(5), 685–692.PubMedCrossRef
30.
go back to reference Hankiewicz, J., Goldspink, P., Buttrick, P., & Lewandowski, E. (2008). Principal strain changes precede ventricular wall thinning during transition to heart failure in a mouse model of dilated cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 204(1), H330–H336. Hankiewicz, J., Goldspink, P., Buttrick, P., & Lewandowski, E. (2008). Principal strain changes precede ventricular wall thinning during transition to heart failure in a mouse model of dilated cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 204(1), H330–H336.
31.
go back to reference Gerber, B., Darchis, J., le Polain de Waroux, J., Legros, G., Pouleur, A., Vancraeynest, D., et al. (2010). Relationship between transmural extent of necrosis and quantitative recovery of regional strains after revascularization. Journal of the American College of Cardiology Cardiovascular Imaging, 3(7), 720–730.PubMed Gerber, B., Darchis, J., le Polain de Waroux, J., Legros, G., Pouleur, A., Vancraeynest, D., et al. (2010). Relationship between transmural extent of necrosis and quantitative recovery of regional strains after revascularization. Journal of the American College of Cardiology Cardiovascular Imaging, 3(7), 720–730.PubMed
32.
go back to reference Bove, C. M., Gilson, W., Scott, C., Epstein, F., Yang, Z., DiMaria, J. M., et al. (2005). The angiotensin II type 2 receptor and improved adjacent region function post-MI. Journal of Magnetic Resonance Imaging, 7, 459–464. Bove, C. M., Gilson, W., Scott, C., Epstein, F., Yang, Z., DiMaria, J. M., et al. (2005). The angiotensin II type 2 receptor and improved adjacent region function post-MI. Journal of Magnetic Resonance Imaging, 7, 459–464.
33.
go back to reference Amado, L., Schuleri, K., Saliaris, A., Boyle, A., Helm, R., Oskouei, B., et al. (2006). Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. Journal of the American College of Cardiology, 48(10), 2116–2124.PubMedCrossRef Amado, L., Schuleri, K., Saliaris, A., Boyle, A., Helm, R., Oskouei, B., et al. (2006). Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. Journal of the American College of Cardiology, 48(10), 2116–2124.PubMedCrossRef
34.
go back to reference Schuleri, K., Feigenbaum, G., Centola, M., Weiss, E., Zimmet, J., Turney, J., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30(22), 2722–2732.PubMedCrossRef Schuleri, K., Feigenbaum, G., Centola, M., Weiss, E., Zimmet, J., Turney, J., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30(22), 2722–2732.PubMedCrossRef
35.
go back to reference Kramer, C., Rogers, W., Theobald, T., Power, T., Petruolo, S., & Reichek, N. (1996). Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation, 94(4), 660–666.PubMed Kramer, C., Rogers, W., Theobald, T., Power, T., Petruolo, S., & Reichek, N. (1996). Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation, 94(4), 660–666.PubMed
36.
go back to reference Liu, W., Ashford, M., Chen, J., Watkins, M., Williams, T., Wickline, S., et al. (2006). MR tagging demonstrates quantitative differences in regional ventricular wall motion in mice, rats, and men. American Journal of Physiology. Heart and Circulatory Physiology, 291(5), H2515–H2521.PubMedCrossRef Liu, W., Ashford, M., Chen, J., Watkins, M., Williams, T., Wickline, S., et al. (2006). MR tagging demonstrates quantitative differences in regional ventricular wall motion in mice, rats, and men. American Journal of Physiology. Heart and Circulatory Physiology, 291(5), H2515–H2521.PubMedCrossRef
37.
go back to reference Epstein, F. H., & Gilson, W. D. (2004). Displacement-encoded cardiac MRI using cosine and sine modulation to eliminate (CANSEL) artifact-generating echoes. Magnetic Resonance in Medicine, 52(4), 774–781.PubMedCrossRef Epstein, F. H., & Gilson, W. D. (2004). Displacement-encoded cardiac MRI using cosine and sine modulation to eliminate (CANSEL) artifact-generating echoes. Magnetic Resonance in Medicine, 52(4), 774–781.PubMedCrossRef
38.
go back to reference Spottiswoode, B., Zhong, X., Lorenz, C., Mayosi, B., Meintjes, E., & Epstein, F. (2008). 3D myocardial tissue tracking with slice followed cine DENSE MRI. Journal of Magnetic Resonance Imaging, 27(5), 1019–1027.PubMedCrossRef Spottiswoode, B., Zhong, X., Lorenz, C., Mayosi, B., Meintjes, E., & Epstein, F. (2008). 3D myocardial tissue tracking with slice followed cine DENSE MRI. Journal of Magnetic Resonance Imaging, 27(5), 1019–1027.PubMedCrossRef
39.
40.
go back to reference Daneshvar, D., Wei, J., Tolstrup, K., Thomson, L., Shufelt, C., & Merz, C. (2010). Diastolic dysfunction: Improved understanding using emerging imaging techniques. American Heart Journal, 160(3), 394–404.PubMedCrossRef Daneshvar, D., Wei, J., Tolstrup, K., Thomson, L., Shufelt, C., & Merz, C. (2010). Diastolic dysfunction: Improved understanding using emerging imaging techniques. American Heart Journal, 160(3), 394–404.PubMedCrossRef
41.
go back to reference Wagner, A., Mahrholdt, H., Thomson, L., Hager, S., Meinhardt, G., Rehwald, W., et al. (2006). Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. Journal of the American College of Cardiology, 47(10), 2027–2033.PubMedCrossRef Wagner, A., Mahrholdt, H., Thomson, L., Hager, S., Meinhardt, G., Rehwald, W., et al. (2006). Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. Journal of the American College of Cardiology, 47(10), 2027–2033.PubMedCrossRef
42.
go back to reference Vandsburger, M., Janiczek, R., Xu, Y., French, B., Meyer, C., Kramer, C., et al. (2010). Improved arterial spin labeling after myocardial infarction in mice using cardaic and respiratory gated Look–Locker imaging with fuzzy C-means clustering. Magnetic Resonance in Medicine, 63(3), 648–657.PubMedCrossRef Vandsburger, M., Janiczek, R., Xu, Y., French, B., Meyer, C., Kramer, C., et al. (2010). Improved arterial spin labeling after myocardial infarction in mice using cardaic and respiratory gated Look–Locker imaging with fuzzy C-means clustering. Magnetic Resonance in Medicine, 63(3), 648–657.PubMedCrossRef
43.
go back to reference Iles, L., Pfluger, H., Phrommintikul, A., Cherayath, J., Aksit, P., Gupta, S., et al. (2008). Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. Journal of the American College of Cardiology, 52(19), 1574–1580.PubMedCrossRef Iles, L., Pfluger, H., Phrommintikul, A., Cherayath, J., Aksit, P., Gupta, S., et al. (2008). Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. Journal of the American College of Cardiology, 52(19), 1574–1580.PubMedCrossRef
44.
go back to reference Babu-Narayan, S., Kilner, P., Li, W., Moon, J., Goktekin, O., Davlouros, P., et al. (2006). Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation, 113(3), 405–413.PubMedCrossRef Babu-Narayan, S., Kilner, P., Li, W., Moon, J., Goktekin, O., Davlouros, P., et al. (2006). Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation, 113(3), 405–413.PubMedCrossRef
45.
go back to reference Kehr, E., Sono, M., Chugh, S., & Jerosch-Herold, M. (2008). Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. The International Journal of Cardiovascular Imaging, 24(1), 61–68.PubMedCrossRef Kehr, E., Sono, M., Chugh, S., & Jerosch-Herold, M. (2008). Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. The International Journal of Cardiovascular Imaging, 24(1), 61–68.PubMedCrossRef
46.
go back to reference Gai, N., Turkbey, E., Nazarian, S., van der Geest, R., Liu, C., Lima, J., et al. (2010). T(1) mapping of the gadolinium-enhanced myocardium: Adjustment for factors affecting interpatient comparison. Magnetic Resonance in Medicine. doi:10.1002/mrm.22716. Gai, N., Turkbey, E., Nazarian, S., van der Geest, R., Liu, C., Lima, J., et al. (2010). T(1) mapping of the gadolinium-enhanced myocardium: Adjustment for factors affecting interpatient comparison. Magnetic Resonance in Medicine. doi:10.​1002/​mrm.​22716.
47.
go back to reference Broberg, C., Chugh, S., Conklin, C., Sahn, D., & Jerosch-Herold, M. (2010). Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circulation Cardiovascular Imaging, 3(6), 727–734.PubMedCrossRef Broberg, C., Chugh, S., Conklin, C., Sahn, D., & Jerosch-Herold, M. (2010). Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circulation Cardiovascular Imaging, 3(6), 727–734.PubMedCrossRef
48.
go back to reference Flacke, S., Fischer, S., & Lorenz, C. (2001). Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: Normal distribution and elevation in acute and chronic infarction. Radiology, 218, 703–710.PubMed Flacke, S., Fischer, S., & Lorenz, C. (2001). Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: Normal distribution and elevation in acute and chronic infarction. Radiology, 218, 703–710.PubMed
49.
go back to reference Raman, S., Simonetti, O., Winner, M., Dickerson, J., He, X., Mazzaferri, E., et al. (2010). Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. Journal of the American College of Cardiology, 55(22), 2480–2488.PubMedCrossRef Raman, S., Simonetti, O., Winner, M., Dickerson, J., He, X., Mazzaferri, E., et al. (2010). Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. Journal of the American College of Cardiology, 55(22), 2480–2488.PubMedCrossRef
50.
go back to reference West, A., & Kramer, C. (2010). Cardiovascular magnetic resonance imaging of myocardial infarction, viability, and cardiomyopathies. Current Problems in Cardiology, 35(4), 176–220.PubMedCrossRef West, A., & Kramer, C. (2010). Cardiovascular magnetic resonance imaging of myocardial infarction, viability, and cardiomyopathies. Current Problems in Cardiology, 35(4), 176–220.PubMedCrossRef
51.
go back to reference Berry, C., Kellman, P., Mancini, C., Chen, M., Bandettini, W., Lowrey, T., et al. (2010). Magnetic resonance imaging delineates the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction. Circulation Cardiovascular Imaging, 3(5), 527–535.PubMedCrossRef Berry, C., Kellman, P., Mancini, C., Chen, M., Bandettini, W., Lowrey, T., et al. (2010). Magnetic resonance imaging delineates the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction. Circulation Cardiovascular Imaging, 3(5), 527–535.PubMedCrossRef
52.
go back to reference Tilak, G., Hsu, L., Hoyt, R., & Arai, A. (2008). In vivo T2-weighted magnetic resonance imaging can accurately determine the ischemic area at risk for 2-day-old nonreperfused myocardial infarction. Investigative Radiology, 43, 7–15.PubMedCrossRef Tilak, G., Hsu, L., Hoyt, R., & Arai, A. (2008). In vivo T2-weighted magnetic resonance imaging can accurately determine the ischemic area at risk for 2-day-old nonreperfused myocardial infarction. Investigative Radiology, 43, 7–15.PubMedCrossRef
53.
go back to reference Aletras, A., Tilak, G., Natanzon, A., Hsu, L., Gonzalez, F., Hoyt, R., et al. (2006). Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: Histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation, 113, 1865–1870.PubMedCrossRef Aletras, A., Tilak, G., Natanzon, A., Hsu, L., Gonzalez, F., Hoyt, R., et al. (2006). Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: Histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation, 113, 1865–1870.PubMedCrossRef
54.
go back to reference Patel, A., Epstein, F., & Kramer, C. (2008). Evaluation of the microcirculation: Advances in cardiac magnetic resonance perfusion imaging. Journal of Nuclear Cardiology, 15(5), 698–708.PubMedCrossRef Patel, A., Epstein, F., & Kramer, C. (2008). Evaluation of the microcirculation: Advances in cardiac magnetic resonance perfusion imaging. Journal of Nuclear Cardiology, 15(5), 698–708.PubMedCrossRef
55.
go back to reference Gerber, B., Raman, S., Nayak, K., Epstein, F. H., Ferreira, P., Axel, L., et al. (2008). Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. Journal of Cardiovascular Magnetic Resonance, 10(18). Gerber, B., Raman, S., Nayak, K., Epstein, F. H., Ferreira, P., Axel, L., et al. (2008). Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. Journal of Cardiovascular Magnetic Resonance, 10(18).
56.
go back to reference Jerosch-Herold, M. (2010). Quantification of myocardial perfusion by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 12, 57-.PubMedCrossRef Jerosch-Herold, M. (2010). Quantification of myocardial perfusion by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 12, 57-.PubMedCrossRef
57.
go back to reference Atkinson, D., Burstein, D., & Edelman, R. (1990). First-pass cardiac perfusion: Evaluation with ultrafast MR imaging. Radiology, 173(3–1), 757–762. Atkinson, D., Burstein, D., & Edelman, R. (1990). First-pass cardiac perfusion: Evaluation with ultrafast MR imaging. Radiology, 173(3–1), 757–762.
58.
go back to reference Patel, A., Antkowiak, P., Nadalur, K., West, A., Salerno, M., Arora, V., et al. (2010). Assessment of advanced coronary artery disease: Advantages of quantitative cardiac magnetic resonance perfusion analysis. Journal of the American College of Cardiology, 56(7), 561–569.PubMedCrossRef Patel, A., Antkowiak, P., Nadalur, K., West, A., Salerno, M., Arora, V., et al. (2010). Assessment of advanced coronary artery disease: Advantages of quantitative cardiac magnetic resonance perfusion analysis. Journal of the American College of Cardiology, 56(7), 561–569.PubMedCrossRef
59.
go back to reference Antkowiak, P., Janiczek, R., Gibberman, L., Xu, C., Kramer, C., Meyer, C., et al. (2010). Quantitative first-pass perfusion MRI of the mouse heart. Journal of Cardiovascular Magnetic Resonance, 12(1), M10.CrossRef Antkowiak, P., Janiczek, R., Gibberman, L., Xu, C., Kramer, C., Meyer, C., et al. (2010). Quantitative first-pass perfusion MRI of the mouse heart. Journal of Cardiovascular Magnetic Resonance, 12(1), M10.CrossRef
60.
go back to reference Makowski, M., Jansen, C., Webb, I., Chiribiri, A., Nagel, E., Botnar, R., et al. (2010). First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magnetic Resonance in Medicine, 64(6), 1592–1598.PubMedCrossRef Makowski, M., Jansen, C., Webb, I., Chiribiri, A., Nagel, E., Botnar, R., et al. (2010). First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magnetic Resonance in Medicine, 64(6), 1592–1598.PubMedCrossRef
61.
go back to reference Coolen, B., Moonen, R., Paulis, L., Geelen, T., Nicolay, K., & Strijkers, G. (2010). Mouse myocardial first-pass perfusion MR imaging. Magnetic Resonance in Medicine, 64(6), 1658–1663.PubMedCrossRef Coolen, B., Moonen, R., Paulis, L., Geelen, T., Nicolay, K., & Strijkers, G. (2010). Mouse myocardial first-pass perfusion MR imaging. Magnetic Resonance in Medicine, 64(6), 1658–1663.PubMedCrossRef
62.
go back to reference Christian, T., Rettmann, D., Aletras, A., Liao, S., Taylor, J., Balaban, R., et al. (2004). Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology, 232(3), 677–684.PubMedCrossRef Christian, T., Rettmann, D., Aletras, A., Liao, S., Taylor, J., Balaban, R., et al. (2004). Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology, 232(3), 677–684.PubMedCrossRef
63.
go back to reference Gatehouse, P., Elkington, A., Ablitt, N., Yang, G., Pennell, D., & Firmin, D. (2004). Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. Journal of Magnetic Resonance Imaging, 20(1), 39–45.PubMedCrossRef Gatehouse, P., Elkington, A., Ablitt, N., Yang, G., Pennell, D., & Firmin, D. (2004). Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. Journal of Magnetic Resonance Imaging, 20(1), 39–45.PubMedCrossRef
64.
go back to reference Otazo, R., Kim, D., Axel, L., & Sodickson, D. (2010). Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magnetic Resonance in Medicine, 64(3), 767–776.PubMedCrossRef Otazo, R., Kim, D., Axel, L., & Sodickson, D. (2010). Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magnetic Resonance in Medicine, 64(3), 767–776.PubMedCrossRef
65.
go back to reference Goldstein, T., Jerosch-Herold, M., Misselwitz, B., Zhang, H., Gropler, R., & Zheng, J. (2008). Fast mapping of myocardial blood flow with MR first-pass perfusion imaging. Magnetic Resonance in Medicine, 59(6), 1394–1400.PubMedCrossRef Goldstein, T., Jerosch-Herold, M., Misselwitz, B., Zhang, H., Gropler, R., & Zheng, J. (2008). Fast mapping of myocardial blood flow with MR first-pass perfusion imaging. Magnetic Resonance in Medicine, 59(6), 1394–1400.PubMedCrossRef
66.
go back to reference Fidler, F., Wacker, C., Dueren, C., Weigel, M., Jakob, P., & Bauer, W. A. H. (2004). Myocardial perfusion measurements by spin-labeling under different vasodynamic states. Journal of Cardiovascular Magnetic Resonance, 6(2), 509–516.PubMedCrossRef Fidler, F., Wacker, C., Dueren, C., Weigel, M., Jakob, P., & Bauer, W. A. H. (2004). Myocardial perfusion measurements by spin-labeling under different vasodynamic states. Journal of Cardiovascular Magnetic Resonance, 6(2), 509–516.PubMedCrossRef
67.
go back to reference Northrup, B. E., McCommis, K. S., Zhang H., Ray, S., Woodard, P. K., Groplet, R.J., et al. (2008). Resting myocardial perfusion quantification with CMR arterial spin labeling at 1.5T 3.0T. Journal of Cardiovascular Magnetic Resonance, 10(53). Northrup, B. E., McCommis, K. S., Zhang H., Ray, S., Woodard, P. K., Groplet, R.J., et al. (2008). Resting myocardial perfusion quantification with CMR arterial spin labeling at 1.5T 3.0T. Journal of Cardiovascular Magnetic Resonance, 10(53).
68.
go back to reference Poncelet, B. P., Koelling, T. M., Schmidt, C. J., Kwong, K. K., Reese, T. G., Ledden, P., et al. (1999). Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magnetic Resonance in Medicine, 41(3), 510–519.PubMedCrossRef Poncelet, B. P., Koelling, T. M., Schmidt, C. J., Kwong, K. K., Reese, T. G., Ledden, P., et al. (1999). Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magnetic Resonance in Medicine, 41(3), 510–519.PubMedCrossRef
69.
go back to reference Wacker, C. M., Fidler, F., Dueren, C., Hirn, S., Jakob, P. M., Ertl, G., et al. (2003). Quantitative assessment of myocardial perfusion with a spin-labeling technique: Preliminary results in patients with coronary artery disease. Journal of Magnetic Resonance Imaging, 18(5), 555–560.PubMedCrossRef Wacker, C. M., Fidler, F., Dueren, C., Hirn, S., Jakob, P. M., Ertl, G., et al. (2003). Quantitative assessment of myocardial perfusion with a spin-labeling technique: Preliminary results in patients with coronary artery disease. Journal of Magnetic Resonance Imaging, 18(5), 555–560.PubMedCrossRef
70.
go back to reference Zun, Z., Wong, E., & Nayak, K. (2009). Assessment of myocardial blood flow (MBR) in humans using aterial spin labeling (ASL): Feasibility and noise analysis. Magnetic Resonance in Medicine, 62(4), 975–983.PubMedCrossRef Zun, Z., Wong, E., & Nayak, K. (2009). Assessment of myocardial blood flow (MBR) in humans using aterial spin labeling (ASL): Feasibility and noise analysis. Magnetic Resonance in Medicine, 62(4), 975–983.PubMedCrossRef
71.
go back to reference Streif, J. U. G., Nahrendorf, M., Hiller, K.-H., Waller, C., Wiesmann, F., Rommel, E., et al. (2005). In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magnetic Resonance in Medicine, 53(3), 584–592.PubMedCrossRef Streif, J. U. G., Nahrendorf, M., Hiller, K.-H., Waller, C., Wiesmann, F., Rommel, E., et al. (2005). In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magnetic Resonance in Medicine, 53(3), 584–592.PubMedCrossRef
72.
go back to reference Kober, F., Iltis, I., Cozzone, P. J., & Bernard, M. (2005). Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: Influence of ketamine/xylazine and isoflurane anesthesia. Magnetic Resonance in Medicine, 53(3), 601–606.PubMedCrossRef Kober, F., Iltis, I., Cozzone, P. J., & Bernard, M. (2005). Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: Influence of ketamine/xylazine and isoflurane anesthesia. Magnetic Resonance in Medicine, 53(3), 601–606.PubMedCrossRef
73.
go back to reference Nahrendorf, M., Streif, J. U., Hiller, K.-H., Hu, K., Nordbeck, P., Ritter, O., et al. (2006). Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. American Journal of Physiology. Heart and Circulatory Physiology, 290(6), H2516–H2521.PubMedCrossRef Nahrendorf, M., Streif, J. U., Hiller, K.-H., Hu, K., Nordbeck, P., Ritter, O., et al. (2006). Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. American Journal of Physiology. Heart and Circulatory Physiology, 290(6), H2516–H2521.PubMedCrossRef
74.
go back to reference Kober, F., Iltis, I., Izquierdo, M., Desrois, M., Ibarrola, D., Cozzone, P. J., et al. (2004). High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magnetic Resonance in Medicine, 51(1), 62–67.PubMedCrossRef Kober, F., Iltis, I., Izquierdo, M., Desrois, M., Ibarrola, D., Cozzone, P. J., et al. (2004). High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magnetic Resonance in Medicine, 51(1), 62–67.PubMedCrossRef
75.
go back to reference Waller, C., Engelhorn, T., Hiller, K.-H., Heusch, G., Ertl, G., Bauer, W. R., et al. (2005). Impaired resting perfusion in viable myocardium distal to chronic coronary stenosis in rats. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H2588–H2593.PubMedCrossRef Waller, C., Engelhorn, T., Hiller, K.-H., Heusch, G., Ertl, G., Bauer, W. R., et al. (2005). Impaired resting perfusion in viable myocardium distal to chronic coronary stenosis in rats. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H2588–H2593.PubMedCrossRef
76.
go back to reference Waller, C., Hiller, K.-H., Kahler, E., Hu, K., Nahrendorf, M., Voll, S., et al. (2001). Serial magnetic resonance imaging of microvascular remodeling in the infarcted rat heart. Circulation, 103(11), 1564–1569.PubMed Waller, C., Hiller, K.-H., Kahler, E., Hu, K., Nahrendorf, M., Voll, S., et al. (2001). Serial magnetic resonance imaging of microvascular remodeling in the infarcted rat heart. Circulation, 103(11), 1564–1569.PubMed
77.
go back to reference Waller, C., Hiller, K.-H., Pfaff, D., Gattenlöhner, S., Ertl, G., & Bauer, W. R. (2008). Functional mechanisms of myocardial microcirculation in left ventricular hypertrophy: A hypothetical model of capillary remodeling post myocardial infarction. Microvascular Research, 75(1), 104.PubMedCrossRef Waller, C., Hiller, K.-H., Pfaff, D., Gattenlöhner, S., Ertl, G., & Bauer, W. R. (2008). Functional mechanisms of myocardial microcirculation in left ventricular hypertrophy: A hypothetical model of capillary remodeling post myocardial infarction. Microvascular Research, 75(1), 104.PubMedCrossRef
78.
go back to reference Waller, C., Hiller, K.-H., Rudiger, T., Kraus, G., Konietzko, C., Hardt, N., et al. (2005). Noninvasive imaging of angiogenesis inhibition following nitric oxide synthase blockade in the ischemic rat heart in vivo. Microcirculation, 12(4), 339–347.PubMedCrossRef Waller, C., Hiller, K.-H., Rudiger, T., Kraus, G., Konietzko, C., Hardt, N., et al. (2005). Noninvasive imaging of angiogenesis inhibition following nitric oxide synthase blockade in the ischemic rat heart in vivo. Microcirculation, 12(4), 339–347.PubMedCrossRef
79.
go back to reference Waller, C., Kahler, E., Hiller, K.-H., Hu, K., Nahrendorf, M., Voll, S., et al. (2000). Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology, 215(1), 189–197.PubMed Waller, C., Kahler, E., Hiller, K.-H., Hu, K., Nahrendorf, M., Voll, S., et al. (2000). Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology, 215(1), 189–197.PubMed
80.
go back to reference Belle, V., Kahler, E., Waller, C., Rommel, E., Voll, S., Hiller, K., et al. (1998). In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. Journal of Magnetic Resonance Imaging, 8, 1240–1245.PubMedCrossRef Belle, V., Kahler, E., Waller, C., Rommel, E., Voll, S., Hiller, K., et al. (1998). In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. Journal of Magnetic Resonance Imaging, 8, 1240–1245.PubMedCrossRef
81.
go back to reference Iltis, I., Kober, F., Dalmasso, C., Cozzone, P. J., & Bernard, M. (2005). Noninvasive characterization of myocardial blood flow in diabetic, hypertensive, and diabetic and hypertensive rats using spin-labeling MRI. Microcirculation, 12(8), 607–614.PubMedCrossRef Iltis, I., Kober, F., Dalmasso, C., Cozzone, P. J., & Bernard, M. (2005). Noninvasive characterization of myocardial blood flow in diabetic, hypertensive, and diabetic and hypertensive rats using spin-labeling MRI. Microcirculation, 12(8), 607–614.PubMedCrossRef
82.
go back to reference Iltis, I., Kober, F., Dalmasso, C., Lan, C., Cozzone, P. J., & Bernard, M. (2005). In vivo assessment of myocardial blood flow in rat heart using magnetic resonance imaging: Effect of anesthesia. Journal of Magnetic Resonance Imaging, 22(2), 242–247.PubMedCrossRef Iltis, I., Kober, F., Dalmasso, C., Lan, C., Cozzone, P. J., & Bernard, M. (2005). In vivo assessment of myocardial blood flow in rat heart using magnetic resonance imaging: Effect of anesthesia. Journal of Magnetic Resonance Imaging, 22(2), 242–247.PubMedCrossRef
83.
go back to reference Iltis, I., Kober, F., Desrois, M., Dalmasso, C., Lan, C., Portha, B., et al. (2005). Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: A noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Investigative Radiology, 40(1), 19–26.PubMed Iltis, I., Kober, F., Desrois, M., Dalmasso, C., Lan, C., Portha, B., et al. (2005). Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: A noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Investigative Radiology, 40(1), 19–26.PubMed
84.
go back to reference Look, D., & Locker, D. (1970). Time saving in measurement of NMR and EPR relaxation times. The Review of Scientific Instruments, 41, 250–251.CrossRef Look, D., & Locker, D. (1970). Time saving in measurement of NMR and EPR relaxation times. The Review of Scientific Instruments, 41, 250–251.CrossRef
85.
go back to reference Messroghli, D., Radjenovic, A., Kozerke, S., Higgins, D., Sivananthan, M., & Ridgway, J. (2004). Modified Look–Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magnetic Resonance in Medicine, 52(1), 141–146.PubMedCrossRef Messroghli, D., Radjenovic, A., Kozerke, S., Higgins, D., Sivananthan, M., & Ridgway, J. (2004). Modified Look–Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magnetic Resonance in Medicine, 52(1), 141–146.PubMedCrossRef
86.
go back to reference Messroghli, D., Walters, K., Plein, S., Sparrow, P., Friedrich, M., Ridgway, J., et al. (2007). Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction. Magnetic Resonance in Medicine, 58(1), 34–40.PubMedCrossRef Messroghli, D., Walters, K., Plein, S., Sparrow, P., Friedrich, M., Ridgway, J., et al. (2007). Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction. Magnetic Resonance in Medicine, 58(1), 34–40.PubMedCrossRef
87.
go back to reference Sutton, M. G. S. J., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101(25), 2981–2988.PubMed Sutton, M. G. S. J., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101(25), 2981–2988.PubMed
88.
go back to reference Frangogiannis, N. G. (2006). The mechanistic basis of infarct healing. Antioxidants Redox Signaling, 8(11), 1907–1939.PubMedCrossRef Frangogiannis, N. G. (2006). The mechanistic basis of infarct healing. Antioxidants Redox Signaling, 8(11), 1907–1939.PubMedCrossRef
89.
go back to reference Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58(2), 88.PubMedCrossRef Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58(2), 88.PubMedCrossRef
90.
go back to reference Kraitchman, D., Kedziorek, D., & Bulte, J. (2011). MR imaging of transplanted stem cells in myocardial infarction. Methods in Molecular Biology, 680, 141–152.PubMedCrossRef Kraitchman, D., Kedziorek, D., & Bulte, J. (2011). MR imaging of transplanted stem cells in myocardial infarction. Methods in Molecular Biology, 680, 141–152.PubMedCrossRef
91.
go back to reference Kraitchman, D., & Caravan, P. (2009). Magnetic resonance labeling of stem cells: Is positive tracking a plus or a minus? Journal of the American College of Cardiology Cardiovascular Imaging, 2(9), 1123–1125.PubMed Kraitchman, D., & Caravan, P. (2009). Magnetic resonance labeling of stem cells: Is positive tracking a plus or a minus? Journal of the American College of Cardiology Cardiovascular Imaging, 2(9), 1123–1125.PubMed
92.
go back to reference Bulte, J., Arbab, A., Douglas, T., & Frank, J. (2004). Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods in Enzymology, 386, 275–299.PubMedCrossRef Bulte, J., Arbab, A., Douglas, T., & Frank, J. (2004). Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods in Enzymology, 386, 275–299.PubMedCrossRef
93.
go back to reference Adler, E., Bystrup, A., Briley-Saebo, K., Mani, V., Young, W., Giovanonne, S., et al. (2009). In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled gadofluorine M in murine myocardium. Journal of the American College of Cardiology Cardiovascular Imaging, 2(9), 1114–1122.PubMed Adler, E., Bystrup, A., Briley-Saebo, K., Mani, V., Young, W., Giovanonne, S., et al. (2009). In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled gadofluorine M in murine myocardium. Journal of the American College of Cardiology Cardiovascular Imaging, 2(9), 1114–1122.PubMed
94.
go back to reference Naresh, N., Vandsburger, M., Klibanov, A., Beyers, R., Antkowiak, P., Xu, Y., et al. (2010). Serial quantitative cellular MRI of macrophage infiltration in the post-infarct heart using T1-mapping and Gd-liposomes. Circulation, 122, A17344. Naresh, N., Vandsburger, M., Klibanov, A., Beyers, R., Antkowiak, P., Xu, Y., et al. (2010). Serial quantitative cellular MRI of macrophage infiltration in the post-infarct heart using T1-mapping and Gd-liposomes. Circulation, 122, A17344.
95.
go back to reference Bhagavathula, N., Dame, M., Dasilva, M., Jenkins, W. A., Aslam, M., Perone, P., et al. (2010). Fibroblast response to gadolinium: Role for platelet-derived growth factor receptor. Investigative Radiology, 45(12), 769–777.CrossRefPubMed Bhagavathula, N., Dame, M., Dasilva, M., Jenkins, W. A., Aslam, M., Perone, P., et al. (2010). Fibroblast response to gadolinium: Role for platelet-derived growth factor receptor. Investigative Radiology, 45(12), 769–777.CrossRefPubMed
96.
go back to reference Yuxiang, Y., & Bogaert, J. (2008). Cell therapy in moycardial infarction: Emphasis on the role of MRI. European Radiology, 18, 548–569.CrossRef Yuxiang, Y., & Bogaert, J. (2008). Cell therapy in moycardial infarction: Emphasis on the role of MRI. European Radiology, 18, 548–569.CrossRef
97.
go back to reference Shapiro, E., Sharer, K., Skrtic, S., & Koretsky, A. (2006). In vivo detection of single cells by MRI. Magnetic Resonance in Medicine, 55(2), 242.PubMedCrossRef Shapiro, E., Sharer, K., Skrtic, S., & Koretsky, A. (2006). In vivo detection of single cells by MRI. Magnetic Resonance in Medicine, 55(2), 242.PubMedCrossRef
98.
go back to reference Shapiro, E., Skrtic, S., & Koretsky, A. (2005). Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magnetic Resonance in Medicine, 53(2), 329–338.PubMedCrossRef Shapiro, E., Skrtic, S., & Koretsky, A. (2005). Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magnetic Resonance in Medicine, 53(2), 329–338.PubMedCrossRef
99.
go back to reference Qiao, H., Zhang, H., Zheng, Y., Ponde, D., Shen, D., Gao, F., et al. (2009). Embryonic stem cell grafting in normal and infarcted myocardium: Serial assessment with MR imaging and PET dual detection. Radiology, 250(3), 821–829.PubMedCrossRef Qiao, H., Zhang, H., Zheng, Y., Ponde, D., Shen, D., Gao, F., et al. (2009). Embryonic stem cell grafting in normal and infarcted myocardium: Serial assessment with MR imaging and PET dual detection. Radiology, 250(3), 821–829.PubMedCrossRef
100.
go back to reference Carr, C., Stuckey, D., Tatton, L., Tyler, D., Hale, S., Sweeney, D., et al. (2008). Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: An in vivo cine-MRI study. American Journal of Physiology. Heart and Circulatory Physiology, 295(2), H533–H542.PubMedCrossRef Carr, C., Stuckey, D., Tatton, L., Tyler, D., Hale, S., Sweeney, D., et al. (2008). Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: An in vivo cine-MRI study. American Journal of Physiology. Heart and Circulatory Physiology, 295(2), H533–H542.PubMedCrossRef
101.
go back to reference Sosnovik, D., Nahrendorf, M., Deliolanis, N., Novikov, M., Aikawa, E., Josephson, L., et al. (2007). Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation, 115(11), 1384–1391.PubMedCrossRef Sosnovik, D., Nahrendorf, M., Deliolanis, N., Novikov, M., Aikawa, E., Josephson, L., et al. (2007). Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation, 115(11), 1384–1391.PubMedCrossRef
102.
go back to reference Wu, Y., Ye, Q., Sato, K., Foley, L., Hitchens, T., & Ho, C. (2009). Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovascular Imaging, 2(6), 731–741.PubMedCrossRef Wu, Y., Ye, Q., Sato, K., Foley, L., Hitchens, T., & Ho, C. (2009). Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovascular Imaging, 2(6), 731–741.PubMedCrossRef
103.
go back to reference Stuber, M., Gilson, W., Schär, M., Kedziorek, D., Hofmann, L., Shah, S., et al. (2007). Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magnetic Resonance in Medicine, 58(5), 1072–1077.PubMedCrossRef Stuber, M., Gilson, W., Schär, M., Kedziorek, D., Hofmann, L., Shah, S., et al. (2007). Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magnetic Resonance in Medicine, 58(5), 1072–1077.PubMedCrossRef
104.
go back to reference Zhou, R., Idiyatullin, D., Moeller, S., Corum, C., Zhang, H., Qiao, H., et al. (2010). SWIFT detection of SPIO-labeled stem cells grafted in the myocardium. Magnetic Resonance in Medicine, 63(5), 1154–1161.PubMedCrossRef Zhou, R., Idiyatullin, D., Moeller, S., Corum, C., Zhang, H., Qiao, H., et al. (2010). SWIFT detection of SPIO-labeled stem cells grafted in the myocardium. Magnetic Resonance in Medicine, 63(5), 1154–1161.PubMedCrossRef
105.
go back to reference Liu, W., Dahnke, H., Jordan, E., Schaeffter, T., & Frank, J. (2008). In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR in Biomedicine, 21(3), 242–250.PubMedCrossRef Liu, W., Dahnke, H., Jordan, E., Schaeffter, T., & Frank, J. (2008). In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR in Biomedicine, 21(3), 242–250.PubMedCrossRef
106.
go back to reference Winter, E., Hogers, B., van der Graaf, L., Gittenberger-de Groot, A., Poelmann, R., & van der Weerd, L. (2010). Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart. Magnetic Resonance in Medicine, 63(3), 817–821.PubMedCrossRef Winter, E., Hogers, B., van der Graaf, L., Gittenberger-de Groot, A., Poelmann, R., & van der Weerd, L. (2010). Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart. Magnetic Resonance in Medicine, 63(3), 817–821.PubMedCrossRef
107.
go back to reference Naumova, A., Reinecke, H., Yarnykh, V., Deem, J., Yuan, C., & Murry, C. (2010). Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Molecular Imaging, 9(4), 201–210.PubMed Naumova, A., Reinecke, H., Yarnykh, V., Deem, J., Yuan, C., & Murry, C. (2010). Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Molecular Imaging, 9(4), 201–210.PubMed
108.
go back to reference Cohen, B., Dafni, H., Meir, G., Harmelin, A., & Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia, 7(2), 109–117.PubMedCrossRef Cohen, B., Dafni, H., Meir, G., Harmelin, A., & Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia, 7(2), 109–117.PubMedCrossRef
109.
go back to reference Uppal, R., & Caravan, P. (2010). Targeted probes for cardiovascular MR imaging. Future Medicinal Chemistry, 2(3), 451–470.PubMedCrossRef Uppal, R., & Caravan, P. (2010). Targeted probes for cardiovascular MR imaging. Future Medicinal Chemistry, 2(3), 451–470.PubMedCrossRef
110.
go back to reference Sosnovik, D., & Caravan, P. (2009). Molecular MRI of atherosclerotic plaque with targeted contrast agents. Current Cardiovascular Imaging, 2(2), 87–94.CrossRef Sosnovik, D., & Caravan, P. (2009). Molecular MRI of atherosclerotic plaque with targeted contrast agents. Current Cardiovascular Imaging, 2(2), 87–94.CrossRef
111.
go back to reference Caravan, P. (2009). Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: Design and mechanism of action. Accounts of Chemical Research, 42(7), 851–862.PubMedCrossRef Caravan, P. (2009). Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: Design and mechanism of action. Accounts of Chemical Research, 42(7), 851–862.PubMedCrossRef
112.
go back to reference Oostendorp, M., Douma, K., Wagenaar, A., Slenter, J., Hackeng, T., van Zandvoort, M., et al. (2010). Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation, 121(6), 775–783.PubMedCrossRef Oostendorp, M., Douma, K., Wagenaar, A., Slenter, J., Hackeng, T., van Zandvoort, M., et al. (2010). Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation, 121(6), 775–783.PubMedCrossRef
113.
go back to reference Helm, P. A., Caravan, P., French, B. A., Jacques, V., Shen, L., Xu, Y., et al. (2008). Postinfarction myocardial scarring in mice: Molecular MR imaging with use of a collagen-targeting contrast agent. Radiology, 247(3), 788–796.PubMedCrossRef Helm, P. A., Caravan, P., French, B. A., Jacques, V., Shen, L., Xu, Y., et al. (2008). Postinfarction myocardial scarring in mice: Molecular MR imaging with use of a collagen-targeting contrast agent. Radiology, 247(3), 788–796.PubMedCrossRef
114.
go back to reference Spuentrup, E., Botnar, R., Wiethoff, A., Ibrahim, T., Kelle, S., Katoh, M., et al. (2008). MR imaging of thrombi using EP-2140R, a fibrin-specific contrast agent: Initial results in patients. European Radiology, 18(9), 1995–2005.PubMedCrossRef Spuentrup, E., Botnar, R., Wiethoff, A., Ibrahim, T., Kelle, S., Katoh, M., et al. (2008). MR imaging of thrombi using EP-2140R, a fibrin-specific contrast agent: Initial results in patients. European Radiology, 18(9), 1995–2005.PubMedCrossRef
115.
go back to reference Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology, 70(1), 23–49.PubMedCrossRef Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology, 70(1), 23–49.PubMedCrossRef
116.
go back to reference Bers, D. M. (2006). Altered cardiac myocyte calcium regulation in heart failure. The Journal of Physiology, 21, 380–387.CrossRef Bers, D. M. (2006). Altered cardiac myocyte calcium regulation in heart failure. The Journal of Physiology, 21, 380–387.CrossRef
117.
go back to reference Masumiya, H., Tsujikawa, H., Hino, N., & Ochi, R. (2003). Modulation of manganese currents by 1,4-dihydropyridines, isoproterenol, and foskolin in rabbit ventricular cells. Pflügers Archiv - European Journal of Physiology, 446, 695–701.PubMedCrossRef Masumiya, H., Tsujikawa, H., Hino, N., & Ochi, R. (2003). Modulation of manganese currents by 1,4-dihydropyridines, isoproterenol, and foskolin in rabbit ventricular cells. Pflügers Archiv - European Journal of Physiology, 446, 695–701.PubMedCrossRef
118.
go back to reference Hu, T., Chuang, K., Yanasak, N., & Koretsky, A. (2011). Relationship between blood and myocardium manganese levels during manganese-enhanced MRI (MEMRI) with T(1) mapping in rats. NMR in Biomedicine, 24(1), 46–53.PubMedCrossRef Hu, T., Chuang, K., Yanasak, N., & Koretsky, A. (2011). Relationship between blood and myocardium manganese levels during manganese-enhanced MRI (MEMRI) with T(1) mapping in rats. NMR in Biomedicine, 24(1), 46–53.PubMedCrossRef
119.
go back to reference Koretsky, A., & Silva, A. (2004). Manganese-enhanced magnetic resonance imaging (MEMRI). NMR in Biomedicine, 17(8), 527–531.PubMedCrossRef Koretsky, A., & Silva, A. (2004). Manganese-enhanced magnetic resonance imaging (MEMRI). NMR in Biomedicine, 17(8), 527–531.PubMedCrossRef
120.
go back to reference Wendland, M. (2004). Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to imaging of the heart. NMR in Biomedicine, 17(8), 581–594.PubMedCrossRef Wendland, M. (2004). Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to imaging of the heart. NMR in Biomedicine, 17(8), 581–594.PubMedCrossRef
121.
go back to reference Hu, T. C., Christian, T. F., Aletras, A. H., Taylor, J. L., Koretsky, A. P., & Arai, A. E. (2005). Manganese enhanced magnetic resonance imaging of normal and ischemic canine heart. Magnetic Resonance in Medicine, 54(1), 196–200.PubMedCrossRef Hu, T. C., Christian, T. F., Aletras, A. H., Taylor, J. L., Koretsky, A. P., & Arai, A. E. (2005). Manganese enhanced magnetic resonance imaging of normal and ischemic canine heart. Magnetic Resonance in Medicine, 54(1), 196–200.PubMedCrossRef
122.
go back to reference Natanzon, A., Aletras, A., Hsu, L., & Arai, A. (2005). Determining canine myocardial area at risk with manganese-enhanced MR imaging. Radiology, 236(3), 859–866.PubMedCrossRef Natanzon, A., Aletras, A., Hsu, L., & Arai, A. (2005). Determining canine myocardial area at risk with manganese-enhanced MR imaging. Radiology, 236(3), 859–866.PubMedCrossRef
123.
go back to reference Hu, T. C. C., Pautler, R. G., MacGowan, G. A., & Koretsky, A. P. (2001). Manganese-enhanced MRI of mouse heart during changes in inotropy. Magnetic Resonance in Medicine, 46(5), 884–890.PubMedCrossRef Hu, T. C. C., Pautler, R. G., MacGowan, G. A., & Koretsky, A. P. (2001). Manganese-enhanced MRI of mouse heart during changes in inotropy. Magnetic Resonance in Medicine, 46(5), 884–890.PubMedCrossRef
124.
go back to reference Hu, T., Bao, W., Lenhard, S., Schaeffer, T., Yue, T., Willette, R., et al. (2004). Simultaneous assessment of left-ventricular infarction size, function and tissue viability in a murine model of myocardial infarction by cardiac manganese-enhanced magnetic resonance imaging (MEMRI). NMR in Biomedicine, 17(8), 620–626.PubMedCrossRef Hu, T., Bao, W., Lenhard, S., Schaeffer, T., Yue, T., Willette, R., et al. (2004). Simultaneous assessment of left-ventricular infarction size, function and tissue viability in a murine model of myocardial infarction by cardiac manganese-enhanced magnetic resonance imaging (MEMRI). NMR in Biomedicine, 17(8), 620–626.PubMedCrossRef
125.
go back to reference Waghorn, B., Edwards, T., Yang, Y., Chuang, K., Yanasak, N., & Hu, T. (2008). Monitoring dynamic alterations in calcium homeostasis by T (1)-weighted and T (1)-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR in Biomedicine, 21(10), 1102–1111.PubMedCrossRef Waghorn, B., Edwards, T., Yang, Y., Chuang, K., Yanasak, N., & Hu, T. (2008). Monitoring dynamic alterations in calcium homeostasis by T (1)-weighted and T (1)-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR in Biomedicine, 21(10), 1102–1111.PubMedCrossRef
126.
go back to reference Waghorn, B., Yang, Y., Baba, A., Matsuda, T., Schumacher, A., Yanasak, N., et al. (2009). Assessing manganese efflux using SEA0400 and cardiac T1-mapping manganese-enhanced MRI in a murine model. NMR in Biomedicine, 22(8), 874–881.PubMedCrossRef Waghorn, B., Yang, Y., Baba, A., Matsuda, T., Schumacher, A., Yanasak, N., et al. (2009). Assessing manganese efflux using SEA0400 and cardiac T1-mapping manganese-enhanced MRI in a murine model. NMR in Biomedicine, 22(8), 874–881.PubMedCrossRef
127.
go back to reference Vandsburger, M., French, B., Kramer, C., & Epstein, F. H. (2010). Cine DENSE and manganese-enhanced MRI demonstrate that nNOS, and not eNOS, plays a dominant role in modulating EC-coupling in the mouse heart. Circulation, 122, A12386. Vandsburger, M., French, B., Kramer, C., & Epstein, F. H. (2010). Cine DENSE and manganese-enhanced MRI demonstrate that nNOS, and not eNOS, plays a dominant role in modulating EC-coupling in the mouse heart. Circulation, 122, A12386.
128.
go back to reference Fernandes, J., Storey, P., da Silva, J., de Figueiredo, G., Kalaf, J., & Coelho, O. (2011). Preliminary assessment of cardiac short term safety and efficacy of manganese chloride for cardiovascular magnetic resonance in humans. Journal of Cardiovascular Magnetic Resonance, 13(1), 6. epub ahead of print.PubMedCrossRef Fernandes, J., Storey, P., da Silva, J., de Figueiredo, G., Kalaf, J., & Coelho, O. (2011). Preliminary assessment of cardiac short term safety and efficacy of manganese chloride for cardiovascular magnetic resonance in humans. Journal of Cardiovascular Magnetic Resonance, 13(1), 6. epub ahead of print.PubMedCrossRef
129.
go back to reference Markl, M., Kilner, P., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13(1), 7–29.PubMedCrossRef Markl, M., Kilner, P., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13(1), 7–29.PubMedCrossRef
130.
go back to reference Caro, C. G. (2009). Discovery of the role of wall shear in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 158–161.PubMedCrossRef Caro, C. G. (2009). Discovery of the role of wall shear in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 158–161.PubMedCrossRef
131.
go back to reference Gelfand, B., Epstein, F. H., & Blackman, B. (2006). Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI. Journal of Magnetic Resonance Imaging, 24(6), 1386–1392.PubMedCrossRef Gelfand, B., Epstein, F. H., & Blackman, B. (2006). Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI. Journal of Magnetic Resonance Imaging, 24(6), 1386–1392.PubMedCrossRef
132.
go back to reference Markl, M., Wegent, F., Zech, T., Bauer, S., Strecker, C., Schumacher, M., et al. (2010). In vivo wall shear stress distribution in the carotid artery: Effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circulation Cardiovascular Imaging, 3(6), 647–655.PubMedCrossRef Markl, M., Wegent, F., Zech, T., Bauer, S., Strecker, C., Schumacher, M., et al. (2010). In vivo wall shear stress distribution in the carotid artery: Effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circulation Cardiovascular Imaging, 3(6), 647–655.PubMedCrossRef
133.
go back to reference Markl, M., Geiger, J., Kilner, P., Föll, D., Stiller, B., Beyersdorf, F., et al. (2011). Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. European Journal of Cardiothoracic Surgery, 39(2), 206–212.PubMedCrossRef Markl, M., Geiger, J., Kilner, P., Föll, D., Stiller, B., Beyersdorf, F., et al. (2011). Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. European Journal of Cardiothoracic Surgery, 39(2), 206–212.PubMedCrossRef
134.
go back to reference Harloff, A., Nussbaumer, A., Bauer, S., Stalder, A., Frydrychowicz, A., Weiller, C., et al. (2010). In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magnetic Resonance in Medicine, 63(6), 1529–1536.PubMedCrossRef Harloff, A., Nussbaumer, A., Bauer, S., Stalder, A., Frydrychowicz, A., Weiller, C., et al. (2010). In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magnetic Resonance in Medicine, 63(6), 1529–1536.PubMedCrossRef
135.
go back to reference Harloff, A., Albrecht, F., Spreer, J., Stalder, A., Bock, J., Frydrychowicz, A., et al. (2009). 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3 T. Magnetic Resonance in Medicine, 61(1), 65–74.PubMedCrossRef Harloff, A., Albrecht, F., Spreer, J., Stalder, A., Bock, J., Frydrychowicz, A., et al. (2009). 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3 T. Magnetic Resonance in Medicine, 61(1), 65–74.PubMedCrossRef
136.
go back to reference Janiczek, R., Meyer, C., Acton, S. T., Blackman, B., & Epstein, F. H. (2009). 4D spiral phase-contrast MRI of wall shear stress in the mouse aorta. Procedings of the International Society of Magnetic Resonance in Medicine, 17, 3857. Janiczek, R., Meyer, C., Acton, S. T., Blackman, B., & Epstein, F. H. (2009). 4D spiral phase-contrast MRI of wall shear stress in the mouse aorta. Procedings of the International Society of Magnetic Resonance in Medicine, 17, 3857.
137.
go back to reference Berr, S. S., Roy, R. J., French, B. A., Yang, Z., Gilson, W., Kramer, C. M., et al. (2005). Black blood gradient echo cine magnetic resonance imaging of the mouse heart. Magnetic Resonance in Medicine, 53(5), 1074–1079.PubMedCrossRef Berr, S. S., Roy, R. J., French, B. A., Yang, Z., Gilson, W., Kramer, C. M., et al. (2005). Black blood gradient echo cine magnetic resonance imaging of the mouse heart. Magnetic Resonance in Medicine, 53(5), 1074–1079.PubMedCrossRef
138.
go back to reference Beyers, R., Smith, R., Xu, Y., Piras, B., Berr, S., Meyer, C., Kramer, C., French, B., Epstein, F. H. (2011). T2-weighted MRI of post-infarct myocardial edema in mice. Magnetic Resonance in Medicine (in press) Beyers, R., Smith, R., Xu, Y., Piras, B., Berr, S., Meyer, C., Kramer, C., French, B., Epstein, F. H. (2011). T2-weighted MRI of post-infarct myocardial edema in mice. Magnetic Resonance in Medicine (in press)
139.
go back to reference Cernicanu, A., & Axel, L. (2006). Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. Academic Radiology, 13(6), 686–693.PubMedCrossRef Cernicanu, A., & Axel, L. (2006). Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. Academic Radiology, 13(6), 686–693.PubMedCrossRef
140.
go back to reference Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J. A., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. nonreperfused murine myocardial infarction. Cardiovascular Pathology, 15(2), 83.PubMedCrossRef Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J. A., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. nonreperfused murine myocardial infarction. Cardiovascular Pathology, 15(2), 83.PubMedCrossRef
Metadata
Title
Emerging MRI Methods in Translational Cardiovascular Research
Authors
Moriel H. Vandsburger
Frederick H. Epstein
Publication date
01-08-2011
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2011
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9275-1

Other articles of this Issue 4/2011

Journal of Cardiovascular Translational Research 4/2011 Go to the issue