Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 3/2010

01-06-2010

MicroRNAs in Vascular Biology and Vascular Disease

Author: Chunxiang Zhang

Published in: Journal of Cardiovascular Translational Research | Issue 3/2010

Login to get access

Abstract

MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs that negatively regulate over 30% of genes in a cell via degradation or translational inhibition of their target mRNAs. Functionally, an individual miRNA is important as a transcription factor because it is able to regulate the expression of its multiple target genes. Recent studies have identified that miRNAs are highly expressed in vasculature and their expression is deregulated in diseased vessels. miRNAs are found to be critical modulators for vascular cell functions such as cell differentiation, migration, proliferation, and apoptosis. Accordingly, miRNAs are involved in the angiogenesis and in the pathogenesis of vascular diseases. miRNAs may serve as novel biomarkers and therapeutic targets for vascular disease. This review article summarizes the research progress regarding the roles of miRNAs in vascular biology and vascular disease.
Literature
2.
go back to reference Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed
3.
go back to reference Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.CrossRefPubMed Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.CrossRefPubMed
4.
go back to reference Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefPubMed Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefPubMed
5.
go back to reference Friedman, J. M., & Jones, P. A. (2008). MicroRNAs: Critical mediators of differentiation, development and disease. Swiss Medical Weekly, 139(33–34), 466–472. Friedman, J. M., & Jones, P. A. (2008). MicroRNAs: Critical mediators of differentiation, development and disease. Swiss Medical Weekly, 139(33–34), 466–472.
6.
go back to reference Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770.CrossRefPubMed Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770.CrossRefPubMed
7.
go back to reference Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8, 93–103.CrossRefPubMed Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8, 93–103.CrossRefPubMed
8.
go back to reference Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.CrossRefPubMed Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.CrossRefPubMed
9.
go back to reference Zhang, C. (2008). MicroRNomics: A newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.CrossRefPubMed Zhang, C. (2008). MicroRNomics: A newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.CrossRefPubMed
10.
go back to reference De Paepe, B. (2009). Anti-angiogenic agents and cancer: Current insights and future perspectives. Recent Patents on Anti-cancer Drug Discovery, 4(2), 180–185.CrossRefPubMed De Paepe, B. (2009). Anti-angiogenic agents and cancer: Current insights and future perspectives. Recent Patents on Anti-cancer Drug Discovery, 4(2), 180–185.CrossRefPubMed
11.
go back to reference Di Stefano, R., Felice, F., & Balbarini, A. (2009). Angiogenesis as risk factor for plaque vulnerability. Current Pharmaceutical Design, 15(10), 1095–1106.CrossRefPubMed Di Stefano, R., Felice, F., & Balbarini, A. (2009). Angiogenesis as risk factor for plaque vulnerability. Current Pharmaceutical Design, 15(10), 1095–1106.CrossRefPubMed
12.
go back to reference Smart, N., Dubé, K. N., & Riley, P. R. (2009). Coronary vessel development and insight towards neovascular therapy. International Journal of Experimental Pathology, 90(3), 262–283.PubMed Smart, N., Dubé, K. N., & Riley, P. R. (2009). Coronary vessel development and insight towards neovascular therapy. International Journal of Experimental Pathology, 90(3), 262–283.PubMed
13.
go back to reference Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Research, 100(11), 1579–1588.CrossRefPubMed Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Research, 100(11), 1579–1588.CrossRefPubMed
14.
go back to reference Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). A necessary role of miR-222 and miR-221 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circulation Research, 104(4), 476–487.CrossRefPubMed Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). A necessary role of miR-222 and miR-221 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circulation Research, 104(4), 476–487.CrossRefPubMed
15.
go back to reference Cheng, Y., Liu, X., Yang, J., Lin, Y., Xu, D., Lu, Q., et al. (2009). MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circulation Research, 105, 158–166.CrossRefPubMed Cheng, Y., Liu, X., Yang, J., Lin, Y., Xu, D., Lu, Q., et al. (2009). MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circulation Research, 105, 158–166.CrossRefPubMed
16.
go back to reference Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.CrossRefPubMed Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.CrossRefPubMed
17.
go back to reference Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101(1), 59–68.CrossRefPubMed Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101(1), 59–68.CrossRefPubMed
18.
go back to reference Suárez, Y., Fernández-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.CrossRefPubMed Suárez, Y., Fernández-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.CrossRefPubMed
19.
go back to reference Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15(2), 272–284.CrossRefPubMed Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15(2), 272–284.CrossRefPubMed
20.
go back to reference van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J. M., Roeten, M. K., van Oeveren-Rietdijk, A. M., et al. (2009). Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. Journal of Cellular and Molecular Medicine, 13(8A), 1577–1585.CrossRefPubMed van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J. M., Roeten, M. K., van Oeveren-Rietdijk, A. M., et al. (2009). Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. Journal of Cellular and Molecular Medicine, 13(8A), 1577–1585.CrossRefPubMed
21.
go back to reference Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.CrossRefPubMed Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.CrossRefPubMed
22.
go back to reference Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111(3), 1217–1226.CrossRefPubMed Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111(3), 1217–1226.CrossRefPubMed
23.
go back to reference Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283(23), 15878–15883.CrossRefPubMed Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283(23), 15878–15883.CrossRefPubMed
24.
go back to reference Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20350–20355.CrossRefPubMed Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20350–20355.CrossRefPubMed
25.
go back to reference Würdinger, T., Tannous, B. A., Saydam, O., Skog, J., Grau, S., Soutschek, J., et al. (2008). miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell, 14(5), 382–393.CrossRefPubMed Würdinger, T., Tannous, B. A., Saydam, O., Skog, J., Grau, S., Soutschek, J., et al. (2008). miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell, 14(5), 382–393.CrossRefPubMed
26.
go back to reference Li, Y., Song, Y. H., Li, F., Yang, T., Lu, Y. W., & Geng, Y. J. (2009). MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochemical and Biophysical Research Communications, 381(1), 81–83.CrossRefPubMed Li, Y., Song, Y. H., Li, F., Yang, T., Lu, Y. W., & Geng, Y. J. (2009). MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochemical and Biophysical Research Communications, 381(1), 81–83.CrossRefPubMed
27.
go back to reference Minami, Y., Satoh, M., Maesawa, C., Takahashi, Y., Tabuchi, T., Itoh, T., et al. (2009). Effect of atorvastatin on microRNA 221 / 222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. European Journal of Clinical Investigation, 39(5), 359–367.CrossRefPubMed Minami, Y., Satoh, M., Maesawa, C., Takahashi, Y., Tabuchi, T., Itoh, T., et al. (2009). Effect of atorvastatin on microRNA 221 / 222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. European Journal of Clinical Investigation, 39(5), 359–367.CrossRefPubMed
28.
go back to reference Wang, C. H., Lee, D. Y., Deng, Z., Jeyapalan, Z., Lee, S. C., Kahai, S., et al. (2008). MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE, 3(6), e2420.CrossRefPubMed Wang, C. H., Lee, D. Y., Deng, Z., Jeyapalan, Z., Lee, S. C., Kahai, S., et al. (2008). MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE, 3(6), e2420.CrossRefPubMed
29.
go back to reference Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.CrossRefPubMed Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.CrossRefPubMed
30.
go back to reference Chan, L. S., Yue, P. Y., Mak, N. K., & Wong, R. N. (2009). Role of MicroRNA-214 in ginsenoside-Rg1-induced angiogenesis. European Journal of Pharmaceutical Sciences, 38(4), 370–377.CrossRefPubMed Chan, L. S., Yue, P. Y., Mak, N. K., & Wong, R. N. (2009). Role of MicroRNA-214 in ginsenoside-Rg1-induced angiogenesis. European Journal of Pharmaceutical Sciences, 38(4), 370–377.CrossRefPubMed
31.
go back to reference Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.PubMed Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.PubMed
32.
go back to reference Zhang, C. (2009). MicroRNA-145 in vascular smooth muscle cell biology: A new therapeutic target for vascular disease. Cell Cycle, 8(21), 3469–3473.PubMed Zhang, C. (2009). MicroRNA-145 in vascular smooth muscle cell biology: A new therapeutic target for vascular disease. Cell Cycle, 8(21), 3469–3473.PubMed
33.
go back to reference Elia, L., Quintavalle, M., Zhang, J., Contu, R., Cossu, L., Latronico, M. V., et al. (2009). The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death and Differentiation, 16(12), 1590–1598.CrossRefPubMed Elia, L., Quintavalle, M., Zhang, J., Contu, R., Cossu, L., Latronico, M. V., et al. (2009). The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death and Differentiation, 16(12), 1590–1598.CrossRefPubMed
34.
go back to reference Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., & Zhang, C. (2009). Involvement of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. Journal of Biological Chemistry, 284(12), 7903–7913.CrossRefPubMed Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., & Zhang, C. (2009). Involvement of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. Journal of Biological Chemistry, 284(12), 7903–7913.CrossRefPubMed
35.
go back to reference Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G., & Hata, A. (2009). Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. Journal of Biological Chemistry, 284(6), 3728–3738.CrossRefPubMed Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G., & Hata, A. (2009). Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. Journal of Biological Chemistry, 284(6), 3728–3738.CrossRefPubMed
36.
go back to reference Boettger, T., Beetz, N., Kostin, S., Schneider, J., Krüger, M., Hein, L., et al. (2009). Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. Journal of Clinical Investigation, 119(9), 2634–2647.CrossRefPubMed Boettger, T., Beetz, N., Kostin, S., Schneider, J., Krüger, M., Hein, L., et al. (2009). Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. Journal of Clinical Investigation, 119(9), 2634–2647.CrossRefPubMed
37.
go back to reference Xin, M., Small, E. M., Sutherland, L. B., Qi, X., McAnally, J., Plato, C. F., et al. (2009). MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes & Development, 23(18), 2166–2178.CrossRef Xin, M., Small, E. M., Sutherland, L. B., Qi, X., McAnally, J., Plato, C. F., et al. (2009). MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes & Development, 23(18), 2166–2178.CrossRef
38.
go back to reference Pushparaj, P. N., Aarthi, J. J., Kumar, S. D., & Manikandan, J. (2008). RNAi and RNAa—The yin and yang of RNAome. Bioinformation, 2(6), 235–237.PubMed Pushparaj, P. N., Aarthi, J. J., Kumar, S. D., & Manikandan, J. (2008). RNAi and RNAa—The yin and yang of RNAome. Bioinformation, 2(6), 235–237.PubMed
39.
go back to reference Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15(2), 261–271.CrossRefPubMed Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15(2), 261–271.CrossRefPubMed
40.
go back to reference Kuhnert, F., Mancuso, M. R., Hampton, J., Stankunas, K., Asano, T., Chen, C. Z., et al. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135(24), 3989–3993.CrossRefPubMed Kuhnert, F., Mancuso, M. R., Hampton, J., Stankunas, K., Asano, T., Chen, C. Z., et al. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135(24), 3989–3993.CrossRefPubMed
41.
go back to reference Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. The Proceedings of the National Academy of Sciences, 105(5), 1516–1521.CrossRef Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. The Proceedings of the National Academy of Sciences, 105(5), 1516–1521.CrossRef
42.
go back to reference Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81.CrossRefPubMed Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81.CrossRefPubMed
43.
go back to reference Mishra, P. J., Mishra, P. J., Banerjee, D., & Bertino, J. R. (2008). MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle, 7(7), 853–858.PubMed Mishra, P. J., Mishra, P. J., Banerjee, D., & Bertino, J. R. (2008). MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle, 7(7), 853–858.PubMed
44.
go back to reference Wang, M., Ye, Y., Qian, H., Song, Z., Jia, X., Zhang, Z., et al. (2010). Common genetic variants in pre-microRNAs are associated with risk of coal workers’ pneumoconiosis. Journal of Human Genetics, 55(1), 13–17. Wang, M., Ye, Y., Qian, H., Song, Z., Jia, X., Zhang, Z., et al. (2010). Common genetic variants in pre-microRNAs are associated with risk of coal workers’ pneumoconiosis. Journal of Human Genetics, 55(1), 13–17.
45.
go back to reference Sethupathy, P., & Collins, F. S. (2008). MicroRNA target site polymorphisms and human disease. Trends in Genetics, 24(10), 489–497.CrossRefPubMed Sethupathy, P., & Collins, F. S. (2008). MicroRNA target site polymorphisms and human disease. Trends in Genetics, 24(10), 489–497.CrossRefPubMed
46.
go back to reference Yang, Z., & Kaye, D. M. (2009). Mechanistic insights into the link between a polymorphism of the 3′UTR of the SLC7A1 gene and hypertension. Human Mutation, 30(3), 328–333.CrossRefPubMed Yang, Z., & Kaye, D. M. (2009). Mechanistic insights into the link between a polymorphism of the 3′UTR of the SLC7A1 gene and hypertension. Human Mutation, 30(3), 328–333.CrossRefPubMed
47.
go back to reference Fluiter, K., Mook, O. R., & Baas, F. (2009). The therapeutic potential of LNA-modified siRNAs: Reduction of off-target effects by chemical modification of the siRNA sequence. Methods in Molecular Biology, 487, 189–203.PubMedCrossRef Fluiter, K., Mook, O. R., & Baas, F. (2009). The therapeutic potential of LNA-modified siRNAs: Reduction of off-target effects by chemical modification of the siRNA sequence. Methods in Molecular Biology, 487, 189–203.PubMedCrossRef
Metadata
Title
MicroRNAs in Vascular Biology and Vascular Disease
Author
Chunxiang Zhang
Publication date
01-06-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 3/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9164-z

Other articles of this Issue 3/2010

Journal of Cardiovascular Translational Research 3/2010 Go to the issue