Skip to main content
Top
Published in: memo - Magazine of European Medical Oncology 2/2022

Open Access 21-01-2022 | short review

Tracking mutation and drug-driven alterations of oncokinase conformations

Authors: Andreas Feichtner, Valentina Kugler, Selina Schwaighofer, Thomas Nuener, Jakob Fleischmann, Dr. Eduard Stefan

Published in: memo - Magazine of European Medical Oncology | Issue 2/2022

Login to get access

Summary

Numerous kinases act as central nodes of cellular signaling networks. As such, many of these enzymes function as molecular switches for coordinating spatiotemporal signal transmission. Typically, it is the compartmentalized phosphorylation of protein substrates which relays the transient input signal to determine decisive physiological cell responses. Genomic alterations affect kinase abundance and/or their activities which contribute to the malignant transformation, progression, and metastasis of human cancers. Thus, major drug discovery efforts have been made to identify lead molecules targeting clinically relevant oncokinases. The concept of personalized medicine aims to apply the therapeutic agent with the highest efficacy towards a patient-specific mutation. Here, we discuss the implementation of a cell-based reporter system which may foster the decision-making process to identify the most promising lead-molecules. We present a modular kinase conformation (KinCon) biosensor platform for live-cell analyses of kinase activity states. This biosensor facilitates the recording of kinase activity conformations of the wild-type and the respective mutated kinase upon lead molecule exposure. We reflect proof-of-principle studies demonstrating how this technology has been extended to profile drug properties of the full-length kinases BRAF and MEK1 in intact cells. Further, we pinpoint how this technology may open new avenues for systematic and patient-tailored drug discovery efforts. Overall, this precision-medicine-oriented biosensor concept aims to determine kinase inhibitor specificity and anticipate their drug efficacies.
Literature
1.
go back to reference Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.PubMedCrossRef Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.PubMedCrossRef
2.
go back to reference Manning BD. Challenges and opportunities in defining the essential cancer kinome. Sci Signal. 2009;2(63):e15.CrossRef Manning BD. Challenges and opportunities in defining the essential cancer kinome. Sci Signal. 2009;2(63):e15.CrossRef
4.
5.
go back to reference Kornev A, Taylor S, Eyck TL. A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains. PLoS Comput Biol. 2008;4(4):e1000056.PubMedPubMedCentralCrossRef Kornev A, Taylor S, Eyck TL. A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains. PLoS Comput Biol. 2008;4(4):e1000056.PubMedPubMedCentralCrossRef
6.
go back to reference Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal. 2017;37:1–11.PubMedCrossRef Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal. 2017;37:1–11.PubMedCrossRef
7.
go back to reference Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol Res. 2021;165:105463.PubMedCrossRef Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol Res. 2021;165:105463.PubMedCrossRef
9.
go back to reference Taylor SS, Kornev AP. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci. 2011;36(2):65–77.PubMedCrossRef Taylor SS, Kornev AP. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci. 2011;36(2):65–77.PubMedCrossRef
10.
go back to reference Gelens L, Qian J, Bollen M, Saurin AT. The importance of kinase-phosphatase integration: lessons from mitosis. Trends Cell Biol. 2018;28(1):6–21.PubMedCrossRef Gelens L, Qian J, Bollen M, Saurin AT. The importance of kinase-phosphatase integration: lessons from mitosis. Trends Cell Biol. 2018;28(1):6–21.PubMedCrossRef
11.
go back to reference Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol. 2012;13(10):646–58.PubMedPubMedCentralCrossRef Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol. 2012;13(10):646–58.PubMedPubMedCentralCrossRef
12.
go back to reference Cohen P. Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1(4):309–15.PubMedCrossRef Cohen P. Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1(4):309–15.PubMedCrossRef
13.
go back to reference Tong M, Seeliger MA. Targeting conformational plasticity of protein kinases. ACS Chem Biol. 2015;10(1):190–200.PubMedCrossRef Tong M, Seeliger MA. Targeting conformational plasticity of protein kinases. ACS Chem Biol. 2015;10(1):190–200.PubMedCrossRef
14.
go back to reference Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:357027.PubMedPubMedCentral Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:357027.PubMedPubMedCentral
15.
16.
go back to reference Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med. 2013;19(11):1401–9.PubMedCrossRef Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med. 2013;19(11):1401–9.PubMedCrossRef
17.
go back to reference Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):455–67.PubMedPubMedCentralCrossRef Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):455–67.PubMedPubMedCentralCrossRef
18.
go back to reference Forbes SA, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.PubMedCrossRef Forbes SA, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.PubMedCrossRef
20.
go back to reference Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16(5):281–98.PubMedCrossRef Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16(5):281–98.PubMedCrossRef
21.
go back to reference Tran NH, Wu X, Frost JA. B‑Raf and Raf‑1 are regulated by distinct autoregulatory mechanisms. J Biol Chem. 2005;280(16):16244–53.PubMedCrossRef Tran NH, Wu X, Frost JA. B‑Raf and Raf‑1 are regulated by distinct autoregulatory mechanisms. J Biol Chem. 2005;280(16):16244–53.PubMedCrossRef
22.
go back to reference Rock R, et al. BRAF inhibitors promote intermediate BRAF(V600E) conformations and binary interactions with activated RAS. Sci Adv. 2019;5(8):eaav8463.PubMedPubMedCentralCrossRef Rock R, et al. BRAF inhibitors promote intermediate BRAF(V600E) conformations and binary interactions with activated RAS. Sci Adv. 2019;5(8):eaav8463.PubMedPubMedCentralCrossRef
23.
go back to reference Terrell EM, et al. Distinct binding preferences between Ras and Raf family members and the impact on oncogenic Ras signaling. Mol Cell. 2019;76(6):872–884.e5.PubMedPubMedCentralCrossRef Terrell EM, et al. Distinct binding preferences between Ras and Raf family members and the impact on oncogenic Ras signaling. Mol Cell. 2019;76(6):872–884.e5.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Vasta JD, et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 2018;25(2):206–214.e11.PubMedPubMedCentralCrossRef Vasta JD, et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 2018;25(2):206–214.e11.PubMedPubMedCentralCrossRef
26.
go back to reference Jacoby E, et al. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Drug Discov Today. 2015;20(6):652–8.PubMedCrossRef Jacoby E, et al. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Drug Discov Today. 2015;20(6):652–8.PubMedCrossRef
27.
go back to reference Wang Y, Ma H. Protein kinase profiling assays: a technology review. Drug Discov Today Technol. 2015;18:1–8.PubMedCrossRef Wang Y, Ma H. Protein kinase profiling assays: a technology review. Drug Discov Today Technol. 2015;18:1–8.PubMedCrossRef
28.
go back to reference Cann ML, McDonald IM, East MP, Johnson GL, Graves LM. Measuring kinase activity—a global challenge. J Cell Biochem. 2017;118(11):3595–606.PubMedCrossRef Cann ML, McDonald IM, East MP, Johnson GL, Graves LM. Measuring kinase activity—a global challenge. J Cell Biochem. 2017;118(11):3595–606.PubMedCrossRef
30.
go back to reference Enzler F, Tschaikner P, Schneider R, Stefan E. KinCon: cell-based recording of full-length kinase conformations. TBMB. 2020;72(6):1168–74.CrossRef Enzler F, Tschaikner P, Schneider R, Stefan E. KinCon: cell-based recording of full-length kinase conformations. TBMB. 2020;72(6):1168–74.CrossRef
31.
go back to reference Yeon JH, Heinkel F, Sung M, Na D, Gsponer J. Systems-wide identification of cis-regulatory elements in proteins. Cell Syst. 2016;2(2):89–100.PubMedCrossRef Yeon JH, Heinkel F, Sung M, Na D, Gsponer J. Systems-wide identification of cis-regulatory elements in proteins. Cell Syst. 2016;2(2):89–100.PubMedCrossRef
32.
go back to reference Trudeau T, et al. Structure and intrinsic disorder in protein autoinhibition. Structure. 2013;21(3):332–41.PubMedCrossRef Trudeau T, et al. Structure and intrinsic disorder in protein autoinhibition. Structure. 2013;21(3):332–41.PubMedCrossRef
33.
go back to reference Mayrhofer JE, et al. Mutation-oriented profiling of autoinhibitory kinase conformations predicts RAF inhibitor efficacies. Proc Natl Acad Sci USA. 2020;117(49):31105–13.PubMedPubMedCentralCrossRef Mayrhofer JE, et al. Mutation-oriented profiling of autoinhibitory kinase conformations predicts RAF inhibitor efficacies. Proc Natl Acad Sci USA. 2020;117(49):31105–13.PubMedPubMedCentralCrossRef
34.
go back to reference Roskoski R Jr.. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019;144:19–50.PubMedCrossRef Roskoski R Jr.. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019;144:19–50.PubMedCrossRef
36.
go back to reference O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol. 2014;27:126–35.PubMedPubMedCentralCrossRef O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol. 2014;27:126–35.PubMedPubMedCentralCrossRef
39.
go back to reference Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov. 2007;6(7):569–82.PubMedCrossRef Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov. 2007;6(7):569–82.PubMedCrossRef
40.
go back to reference Stefan E, et al. PKA regulatory subunits mediate synergy among conserved G‑protein-coupled receptor cascades. Nat Commun. 2011;2:598.PubMedCrossRef Stefan E, et al. PKA regulatory subunits mediate synergy among conserved G‑protein-coupled receptor cascades. Nat Commun. 2011;2:598.PubMedCrossRef
42.
go back to reference Fleuren ED, Zhang L, Wu J, Daly RJ. The kinome ‘at large’ in cancer. Nat Rev Cancer. 2016;16(2):83–98.PubMedCrossRef Fleuren ED, Zhang L, Wu J, Daly RJ. The kinome ‘at large’ in cancer. Nat Rev Cancer. 2016;16(2):83–98.PubMedCrossRef
43.
go back to reference Byrne DP, Foulkes DM, Eyers PA. Pseudokinases: update on their functions and evaluation as new drug targets. Future Med Chem. 2017;9(2):245–65.PubMedCrossRef Byrne DP, Foulkes DM, Eyers PA. Pseudokinases: update on their functions and evaluation as new drug targets. Future Med Chem. 2017;9(2):245–65.PubMedCrossRef
44.
go back to reference Jacobsen AV, Murphy JM. The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases. Biochem Soc Trans. 2017;45(3):665–81.PubMedCrossRef Jacobsen AV, Murphy JM. The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases. Biochem Soc Trans. 2017;45(3):665–81.PubMedCrossRef
45.
go back to reference Murphy JM, Mace PD, Eyers PA. Live and let die: insights into pseudoenzyme mechanisms from structure. Curr Opin Struct Biol. 2017;47:95–104.PubMedCrossRef Murphy JM, Mace PD, Eyers PA. Live and let die: insights into pseudoenzyme mechanisms from structure. Curr Opin Struct Biol. 2017;47:95–104.PubMedCrossRef
Metadata
Title
Tracking mutation and drug-driven alterations of oncokinase conformations
Authors
Andreas Feichtner
Valentina Kugler
Selina Schwaighofer
Thomas Nuener
Jakob Fleischmann
Dr. Eduard Stefan
Publication date
21-01-2022
Publisher
Springer Vienna
Published in
memo - Magazine of European Medical Oncology / Issue 2/2022
Print ISSN: 1865-5041
Electronic ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-021-00790-6

Other articles of this Issue 2/2022

memo - Magazine of European Medical Oncology 2/2022 Go to the issue

editorial

ESMO 2021

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine