Skip to main content
Top
Published in: Pathology & Oncology Research 4/2011

01-12-2011 | Research

Smoking and Polymorphisms in Xenobiotic Metabolism and DNA Repair Genes are Additive Risk Factors Affecting Bladder Cancer in Northern Tunisia

Authors: Kamel Rouissi, Slah Ouerhani, Bechr Hamrita, Karim Bougatef, Raja Marrakchi, Mohamed Cherif, Mohamed Riadh Ben Slama, Mohamed Bouzouita, Mohamed Chebil, Amel Ben Ammar Elgaaied

Published in: Pathology & Oncology Research | Issue 4/2011

Login to get access

Abstract

Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking and genetic polymorphisms on the occurrence of bladder cancer. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes, such as the super-families of N-acetyltransferases (NAT) and glutathione S-transferases (GST). DNA repair is essential to an individual’s ability to respond to damage caused by tobacco carcinogens. Alterations in DNA repair genes may affect cancer risk by influencing individual susceptibility to this environmental exposure. Polymorphisms in NAT2, GST and DNA repair genes alter the ability of these enzymes to metabolize carcinogens or to repair alterations caused by this process. We have conducted a case-control study to assess the role of smoking, slow NAT2 variants, GSTM1 and GSTT1 null, and XPC, XPD, XPG nucleotide excision-repair (NER) genotypes in bladder cancer development in North Tunisia. Taken alone, each gene unless NAT2 did not appear to be a factor affecting bladder cancer susceptibility. For the NAT2 slow acetylator genotypes, the NAT2*5/*7 diplotype was found to have a 7-fold increased risk to develop bladder cancer (OR = 7.14; 95% CI: 1.30–51.41). However, in tobacco consumers, we have shown that Null GSTM1, Wild GSTT1, Slow NAT2, XPC (CC) and XPG (CC) are genetic risk factors for the disease. When combined together in susceptible individuals compared to protected individuals these risk factors give an elevated OR (OR = 61). So, we have shown a strong cumulative effect of tobacco and different combinations of studied genetic risk factors which lead to a great susceptibility to bladder cancer.
Literature
1.
go back to reference Cohen SM, Johansson SL (1992) Epidemiology and etiology of bladder cancer. Urol Clin North Am 19:421–428PubMed Cohen SM, Johansson SL (1992) Epidemiology and etiology of bladder cancer. Urol Clin North Am 19:421–428PubMed
2.
go back to reference Raunio H, Husgafvel-Pursiainen K, Anttila S et al (1995) Diagnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility: a review. Gene 159:113–121PubMedCrossRef Raunio H, Husgafvel-Pursiainen K, Anttila S et al (1995) Diagnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility: a review. Gene 159:113–121PubMedCrossRef
3.
go back to reference Kaprio J (2000) Science, medicine, and the future. Genetic epidemiology. B Med J 320:1257–1259CrossRef Kaprio J (2000) Science, medicine, and the future. Genetic epidemiology. B Med J 320:1257–1259CrossRef
4.
go back to reference Ford JG, Li Y, O’Sullivan MM et al (2000) Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis 21:1971–1975PubMedCrossRef Ford JG, Li Y, O’Sullivan MM et al (2000) Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis 21:1971–1975PubMedCrossRef
5.
go back to reference Karagas MR, Park S, Warren A et al (2005) Gender, smoking, glutathione- S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett 219:63–69PubMedCrossRef Karagas MR, Park S, Warren A et al (2005) Gender, smoking, glutathione- S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett 219:63–69PubMedCrossRef
6.
go back to reference Abdel-Rahman SZ, Anwar WA, Abdel-Ala WE et al (1998) GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev 22:129–138PubMedCrossRef Abdel-Rahman SZ, Anwar WA, Abdel-Ala WE et al (1998) GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev 22:129–138PubMedCrossRef
7.
go back to reference Salagovic J, Kalina I, Stubna J et al (1998) Genetic polymorphism of glutathione S-transferase M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 45:312–317PubMed Salagovic J, Kalina I, Stubna J et al (1998) Genetic polymorphism of glutathione S-transferase M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 45:312–317PubMed
8.
go back to reference Hengstler JG, Kett A, Arand M et al (1998) Glutathione S-transferase T1 and M1 gene defects in ovarian carcinoma. Cancer Lett 130:43–48PubMedCrossRef Hengstler JG, Kett A, Arand M et al (1998) Glutathione S-transferase T1 and M1 gene defects in ovarian carcinoma. Cancer Lett 130:43–48PubMedCrossRef
9.
go back to reference Katoh T, Inatomi H, Kim H et al (1998) Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett 132:147–152PubMedCrossRef Katoh T, Inatomi H, Kim H et al (1998) Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett 132:147–152PubMedCrossRef
10.
go back to reference Badawi AF, Hirvonen A, Bell DA et al (1995) Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen-DNA adducts formation in human urinary bladder. Cancer Res 55:5230–5237PubMed Badawi AF, Hirvonen A, Bell DA et al (1995) Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen-DNA adducts formation in human urinary bladder. Cancer Res 55:5230–5237PubMed
11.
go back to reference Kloth MT, Gee RL, Messing EM et al (1994) Expression of N acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis 15:2781–2787PubMedCrossRef Kloth MT, Gee RL, Messing EM et al (1994) Expression of N acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis 15:2781–2787PubMedCrossRef
12.
go back to reference Blum M, Grant DM, McBride W et al (1990) Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 9:193–203PubMedCrossRef Blum M, Grant DM, McBride W et al (1990) Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 9:193–203PubMedCrossRef
13.
go back to reference Brockmoller J, Cascorbi I, Kerb R et al (1996) Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 56:3915–3925PubMed Brockmoller J, Cascorbi I, Kerb R et al (1996) Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 56:3915–3925PubMed
14.
go back to reference Risch A, Wallace DMA, Bathers S et al (1995) Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum Mol Genet 4:231–236PubMedCrossRef Risch A, Wallace DMA, Bathers S et al (1995) Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum Mol Genet 4:231–236PubMedCrossRef
15.
go back to reference Probst-Hensch NM, Bell DA, Watson MA et al (2000) N-acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenylhemoglobin adduct levels. Cancer Epidemiol Biomarkers Prev 9:619–623PubMed Probst-Hensch NM, Bell DA, Watson MA et al (2000) N-acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenylhemoglobin adduct levels. Cancer Epidemiol Biomarkers Prev 9:619–623PubMed
16.
go back to reference Yu MC, Skipper PL, Taghizadeh K et al (1994) Acetylator phenotype, aminobiphenylhemoglobin adduct levels, and bladder cancer risk in white, black, and Asian men in Los Angeles, California. J Nat Cancer Inst 86:712–716PubMedCrossRef Yu MC, Skipper PL, Taghizadeh K et al (1994) Acetylator phenotype, aminobiphenylhemoglobin adduct levels, and bladder cancer risk in white, black, and Asian men in Los Angeles, California. J Nat Cancer Inst 86:712–716PubMedCrossRef
17.
go back to reference Airoldi L, Orsi F, Magagnotti C et al (2002) Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies. Carcinogenesis 23:861–866PubMedCrossRef Airoldi L, Orsi F, Magagnotti C et al (2002) Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies. Carcinogenesis 23:861–866PubMedCrossRef
18.
go back to reference Hao GY, Zhang WD, Chen YH et al (2004) Relationship between genetic polymorphism of NAT2 and susceptibility to urinary bladder cancer. Zhonghua Zhong Liu Za Zhi 26:283–286PubMed Hao GY, Zhang WD, Chen YH et al (2004) Relationship between genetic polymorphism of NAT2 and susceptibility to urinary bladder cancer. Zhonghua Zhong Liu Za Zhi 26:283–286PubMed
19.
go back to reference Wu XF, Dzenis YA (2006) Guided self-assembly diblock copolymer thin films on chemically patterned substrartes. J Chem Phys 125:174–1777 Wu XF, Dzenis YA (2006) Guided self-assembly diblock copolymer thin films on chemically patterned substrartes. J Chem Phys 125:174–1777
20.
go back to reference Chen CH, Shun CT, Huang KH et al (2007) Stopping smoking might reduce tumour recurrence in non-muscle invasive bladder cancer. BJU Int 100:281–286PubMedCrossRef Chen CH, Shun CT, Huang KH et al (2007) Stopping smoking might reduce tumour recurrence in non-muscle invasive bladder cancer. BJU Int 100:281–286PubMedCrossRef
21.
go back to reference Garcıa-Closas M, Malats N, Real FX et al (2006) Genetic variation in the nucleotide-excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15:536–542PubMedCrossRef Garcıa-Closas M, Malats N, Real FX et al (2006) Genetic variation in the nucleotide-excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15:536–542PubMedCrossRef
22.
go back to reference Sanyal S, De Verdier PJ, Steineck G et al (2007) Polymorphisms in XPD, XPC and the risk of death in patients with urinary bladder neoplasms. Acta Oncol 46:31–41PubMedCrossRef Sanyal S, De Verdier PJ, Steineck G et al (2007) Polymorphisms in XPD, XPC and the risk of death in patients with urinary bladder neoplasms. Acta Oncol 46:31–41PubMedCrossRef
23.
go back to reference Zhu Y, Yang H, Chen Q et al (2008) Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair 7:141–148PubMedCrossRef Zhu Y, Yang H, Chen Q et al (2008) Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair 7:141–148PubMedCrossRef
24.
go back to reference Dworaczek H, Xiao W (2007) Xeroderma pigmentosum: a glimpse into nucleotide-excision repair, genetic instability, and cancer. Crit Rev Oncog 13:159–177PubMed Dworaczek H, Xiao W (2007) Xeroderma pigmentosum: a glimpse into nucleotide-excision repair, genetic instability, and cancer. Crit Rev Oncog 13:159–177PubMed
25.
go back to reference Shen M, Hung RJ, Brennan P et al (2003) Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers Prev 12:1234–1240PubMed Shen M, Hung RJ, Brennan P et al (2003) Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers Prev 12:1234–1240PubMed
26.
go back to reference Sellami A, Jlidi R, Hsaıri M et al (2000) Registre du cancer du Sud Tunisie 1997. Hôpital Habib Bourguiba 2:32–35 Sellami A, Jlidi R, Hsaıri M et al (2000) Registre du cancer du Sud Tunisie 1997. Hôpital Habib Bourguiba 2:32–35
27.
go back to reference Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor
28.
go back to reference Arand M, Muhlbaur R, Hengstler J et al (1996) A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S transferase GSTM1 and GSTT1 polymorphisms. Annal Biochem 236:384–386CrossRef Arand M, Muhlbaur R, Hengstler J et al (1996) A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S transferase GSTM1 and GSTT1 polymorphisms. Annal Biochem 236:384–386CrossRef
29.
go back to reference Hsieh FI, Pu YS, Chern HD et al (1999) Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br J Cancer 81:537–541PubMedCrossRef Hsieh FI, Pu YS, Chern HD et al (1999) Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br J Cancer 81:537–541PubMedCrossRef
30.
go back to reference Fukino K, Sasaki Y, Hirai S et al (2008) Effect of N-acetyltransferase 2(NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum Concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci 33:187–195PubMedCrossRef Fukino K, Sasaki Y, Hirai S et al (2008) Effect of N-acetyltransferase 2(NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum Concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci 33:187–195PubMedCrossRef
31.
go back to reference Vastis KP, Weber WW, Bell DA et al (1995) Nomenclature for N-acetyltransferases. Pharmacogenetics 5:1–17CrossRef Vastis KP, Weber WW, Bell DA et al (1995) Nomenclature for N-acetyltransferases. Pharmacogenetics 5:1–17CrossRef
32.
go back to reference Sanyal S, Festa F, Sakano S et al (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25:729–734PubMedCrossRef Sanyal S, Festa F, Sakano S et al (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25:729–734PubMedCrossRef
33.
go back to reference De Ruyck K, Szaumkessel M, De Rudder I et al (2007) Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res 631:101–110PubMed De Ruyck K, Szaumkessel M, De Rudder I et al (2007) Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res 631:101–110PubMed
34.
go back to reference O’Gorman TW, Woolson RF (1993) The effect of category choice on the odds ratio and several measures of association in case-control studies. Commun Stat 22:1157–1171CrossRef O’Gorman TW, Woolson RF (1993) The effect of category choice on the odds ratio and several measures of association in case-control studies. Commun Stat 22:1157–1171CrossRef
35.
go back to reference Ouerhani S, Tebourski F, Slama MR et al (2006) The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol 33:529–535PubMedCrossRef Ouerhani S, Tebourski F, Slama MR et al (2006) The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol 33:529–535PubMedCrossRef
36.
go back to reference Garte S, Gaspari L, Alexandrie AK et al (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248PubMed Garte S, Gaspari L, Alexandrie AK et al (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248PubMed
37.
go back to reference Kempkes M, Golka K, Reich S et al (1996) Glutathione transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol 71:123–126PubMedCrossRef Kempkes M, Golka K, Reich S et al (1996) Glutathione transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol 71:123–126PubMedCrossRef
38.
go back to reference Lee SJ, Cho SH, Park SK et al (2002) Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett 77:173–179CrossRef Lee SJ, Cho SH, Park SK et al (2002) Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett 77:173–179CrossRef
39.
go back to reference Kim WJ, Kim H, Kim CH et al (2002) GSTT1-null genotype is a protective factor against bladder cancer. Urology 60:913–918PubMedCrossRef Kim WJ, Kim H, Kim CH et al (2002) GSTT1-null genotype is a protective factor against bladder cancer. Urology 60:913–918PubMedCrossRef
40.
go back to reference Hein DW (2006) N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25:1649–1658PubMedCrossRef Hein DW (2006) N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25:1649–1658PubMedCrossRef
41.
go back to reference Khedhaier A, Hassen E, Bouaouina N et al (2008) Implication of xenobiotic metabolizing enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer 28:109–121CrossRef Khedhaier A, Hassen E, Bouaouina N et al (2008) Implication of xenobiotic metabolizing enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer 28:109–121CrossRef
42.
go back to reference Bell DA, Taylor JA, Butler MA et al (1993) Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 14:1689–1692PubMedCrossRef Bell DA, Taylor JA, Butler MA et al (1993) Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 14:1689–1692PubMedCrossRef
43.
go back to reference El Desoky ES, Abdel Salam YM, Salama RH et al (2005) NAT2*5/*5 genotype (341T>C) is a potential risk factor for schistosomiasis- associated bladder cancer in Egyptians. Ther Drug Monit 27:297–304PubMedCrossRef El Desoky ES, Abdel Salam YM, Salama RH et al (2005) NAT2*5/*5 genotype (341T>C) is a potential risk factor for schistosomiasis- associated bladder cancer in Egyptians. Ther Drug Monit 27:297–304PubMedCrossRef
44.
go back to reference Fretland AJ, Doll MA, Leff MA et al (2001) Functional characterization of nucleotide polymorphisms in the coding region of N-acetyltransferase 1. Pharmacogenetics 11:511–520PubMedCrossRef Fretland AJ, Doll MA, Leff MA et al (2001) Functional characterization of nucleotide polymorphisms in the coding region of N-acetyltransferase 1. Pharmacogenetics 11:511–520PubMedCrossRef
45.
go back to reference Zang Y, Zhao S, Doll MA et al (2004) The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 14:717–723PubMedCrossRef Zang Y, Zhao S, Doll MA et al (2004) The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 14:717–723PubMedCrossRef
46.
go back to reference Garcia-Closas M, Malats N, Silverman D et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366:649–659PubMedCrossRef Garcia-Closas M, Malats N, Silverman D et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366:649–659PubMedCrossRef
47.
go back to reference Lin J, Swan GE, Shields PG et al (2007) Mutagen sensitivity and genetic variants in nucleotide-excision repair pathway: genotype-phenotype correlation. Cancer Epidemiol Biomarkers Prev 16:2065–2071PubMedCrossRef Lin J, Swan GE, Shields PG et al (2007) Mutagen sensitivity and genetic variants in nucleotide-excision repair pathway: genotype-phenotype correlation. Cancer Epidemiol Biomarkers Prev 16:2065–2071PubMedCrossRef
48.
go back to reference Fontana L, Bosviel R, Delort L (2008) DNA repair gene ERCC2, XPC, XRCC1, XRCC3 polymorphisms and associations with bladder cancer risk in a French cohort. Anticancer Res 28:1853–1856PubMed Fontana L, Bosviel R, Delort L (2008) DNA repair gene ERCC2, XPC, XRCC1, XRCC3 polymorphisms and associations with bladder cancer risk in a French cohort. Anticancer Res 28:1853–1856PubMed
49.
go back to reference Rouissi K, Ouerhani S, Oliveira E et al (2009) Polymorphisms in one-carbon metabolism pathway genes and risk for bladder cancer in a Tunisian population. Cancer Genet Cytogenet 195:43–53PubMedCrossRef Rouissi K, Ouerhani S, Oliveira E et al (2009) Polymorphisms in one-carbon metabolism pathway genes and risk for bladder cancer in a Tunisian population. Cancer Genet Cytogenet 195:43–53PubMedCrossRef
Metadata
Title
Smoking and Polymorphisms in Xenobiotic Metabolism and DNA Repair Genes are Additive Risk Factors Affecting Bladder Cancer in Northern Tunisia
Authors
Kamel Rouissi
Slah Ouerhani
Bechr Hamrita
Karim Bougatef
Raja Marrakchi
Mohamed Cherif
Mohamed Riadh Ben Slama
Mohamed Bouzouita
Mohamed Chebil
Amel Ben Ammar Elgaaied
Publication date
01-12-2011
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 4/2011
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-011-9398-3

Other articles of this Issue 4/2011

Pathology & Oncology Research 4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine