Skip to main content
Top
Published in: Environmental Health and Preventive Medicine 3/2013

01-05-2013 | Short Communication

Simultaneous measurement of urinary total nicotine and cotinine as biomarkers of active and passive smoking among Japanese individuals

Authors: Akiko Matsumoto, Akane Matsumoto, Masayoshi Ichiba, Nicole M. Payton, Hirotaka Oishi, Megumi Hara

Published in: Environmental Health and Preventive Medicine | Issue 3/2013

Login to get access

Abstract

Objectives

Measuring urinary cotinine is a popular and established method of biologically monitoring exposure to tobacco smoke. However, the lower detection limit of cotinine often impedes the evaluation of passive (second-hand) smoking and this, together with unconverted nicotine, does not reflect actual levels of exposure. Furthermore, a portion of the Japanese population might have decreased ability to metabolize nicotine. The present study was therefore carried out to validate the simultaneous analysis of total concentrations of free nicotine and cotinine and their glucuronides to determine actual levels of voluntary and involuntary exposure to cigarette smoke.

Methods

Urine samples from 118 Japanese smokers and 117 non-smokers were analyzed using gas chromatography–mass spectrometry. Voluntary and involuntary smoking status was self-reported and workplace smoking restrictions were objectively evaluated.

Results

The integrated sum of all concentrations showed 2.2- and 2.4-fold higher total levels (free and glucuronide) of nicotine and cotinine relative to the free levels. Median (quartiles) of total nicotine and cotinine were 1635 (2222) and 3948 (3512) ng/mL in smokers, and 3.5 (5.3) and 2.8 (4.2) ng/mL in non-smokers. Concentrations of urinary nicotine were higher than those of cotinine in 21 % of smokers and in 54 % of non-smokers. Nicotine and cotinine levels were significantly associated with a smoking habit, as well as being significantly associated with the workplace and home environments of non-smokers.

Conclusions

The present method can monitor voluntary and involuntary exposure to tobacco smoke. Measuring total urinary nicotine levels might be useful for analyzing exposure to cigarette smoke among non-smokers.
Literature
1.
go back to reference Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention. A report of the surgeon general; the health consequences of involuntary exposure to tobacco smoke. Pittsburgh, PA: U.S. Government Printing Office: 2006. Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention. A report of the surgeon general; the health consequences of involuntary exposure to tobacco smoke. Pittsburgh, PA: U.S. Government Printing Office: 2006.
2.
go back to reference Sasaki S, Braimoh TS, Yila TA, Yoshioka E, Kishi R. Self-reported tobacco smoke exposure and plasma cotinine levels during pregnancy—a validation study in Northern Japan. Sci Total Environ. 2011;412–413:114–8.PubMedCrossRef Sasaki S, Braimoh TS, Yila TA, Yoshioka E, Kishi R. Self-reported tobacco smoke exposure and plasma cotinine levels during pregnancy—a validation study in Northern Japan. Sci Total Environ. 2011;412–413:114–8.PubMedCrossRef
3.
go back to reference Miller EI, Murray GJ, Rollins DE, Tiffany ST, Wilkins DG. Validation of a liquid chromatography-tandem mass spectrometry method for the detection of nicotine biomarkers in hair and an evaluation of wash procedures for removal of environmental nicotine. J Anal Toxicol. 2011;35:321–32.PubMedCrossRef Miller EI, Murray GJ, Rollins DE, Tiffany ST, Wilkins DG. Validation of a liquid chromatography-tandem mass spectrometry method for the detection of nicotine biomarkers in hair and an evaluation of wash procedures for removal of environmental nicotine. J Anal Toxicol. 2011;35:321–32.PubMedCrossRef
4.
go back to reference Shin HS, Kim JG, Shin YJ, Jee SH. Sensitive and simple method for the determination of nicotine and cotinine in human urine, plasma and saliva by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;769:177–83.PubMedCrossRef Shin HS, Kim JG, Shin YJ, Jee SH. Sensitive and simple method for the determination of nicotine and cotinine in human urine, plasma and saliva by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;769:177–83.PubMedCrossRef
5.
go back to reference Matsumoto A, Ino T, Ohta M, Otani T, Hanada S, Sakuraoka A, et al. Enzyme-linked immunosorbent assay of nicotine metabolites. Environ Health Prev Med. 2010;15:211–6.PubMedCrossRef Matsumoto A, Ino T, Ohta M, Otani T, Hanada S, Sakuraoka A, et al. Enzyme-linked immunosorbent assay of nicotine metabolites. Environ Health Prev Med. 2010;15:211–6.PubMedCrossRef
6.
go back to reference Wu CF, Uang SN, Chiang SY, Shih WC, Huang YF, Wu KY. Simultaneous quantitation of urinary cotinine and acrylonitrile-derived mercapturic acids with ultraperformance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2012;402:2113–20.PubMedCrossRef Wu CF, Uang SN, Chiang SY, Shih WC, Huang YF, Wu KY. Simultaneous quantitation of urinary cotinine and acrylonitrile-derived mercapturic acids with ultraperformance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2012;402:2113–20.PubMedCrossRef
7.
go back to reference Leenders M, Chuang SC, Dahm CC, Overvad K, Ueland PM, Midttun O, et al. Plasma cotinine levels and pancreatic cancer in the EPIC cohort study. Int J Cancer 2011;131:997–1002. Leenders M, Chuang SC, Dahm CC, Overvad K, Ueland PM, Midttun O, et al. Plasma cotinine levels and pancreatic cancer in the EPIC cohort study. Int J Cancer 2011;131:997–1002.
8.
go back to reference Yuan JM, Gao YT, Murphy SE, Carmella SG, Wang R, Zhong Y, et al. Urinary levels of cigarette smoke constituent metabolites are prospectively associated with lung cancer development in smokers. Cancer Res. 2011;71:6749–57.PubMedCrossRef Yuan JM, Gao YT, Murphy SE, Carmella SG, Wang R, Zhong Y, et al. Urinary levels of cigarette smoke constituent metabolites are prospectively associated with lung cancer development in smokers. Cancer Res. 2011;71:6749–57.PubMedCrossRef
9.
go back to reference Butz AM, Matsui EC, Breysse P, Curtin-Brosnan J, Eggleston P, Diette G, et al. A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure. Arch Pediatr Adolesc Med. 2011;165:741–8.PubMedCrossRef Butz AM, Matsui EC, Breysse P, Curtin-Brosnan J, Eggleston P, Diette G, et al. A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure. Arch Pediatr Adolesc Med. 2011;165:741–8.PubMedCrossRef
10.
go back to reference Lai HK, Hedley AJ, Repace J, So C, Lu QY, McGhee SM, et al. Lung function and exposure to workplace second-hand smoke during exemptions from smoking ban legislation: an exposure-response relationship based on indoor PM2.5 and urinary cotinine levels. Thorax. 2011;66:615–23.PubMedCrossRef Lai HK, Hedley AJ, Repace J, So C, Lu QY, McGhee SM, et al. Lung function and exposure to workplace second-hand smoke during exemptions from smoking ban legislation: an exposure-response relationship based on indoor PM2.5 and urinary cotinine levels. Thorax. 2011;66:615–23.PubMedCrossRef
11.
go back to reference Ahijevych KL, Tyndale RF, Dhatt RK, Weed HG, Browning KK. Factors influencing cotinine half-life during smoking abstinence in African American and Caucasian women. Nicotine Tob Res. 2002;4:423–31.PubMedCrossRef Ahijevych KL, Tyndale RF, Dhatt RK, Weed HG, Browning KK. Factors influencing cotinine half-life during smoking abstinence in African American and Caucasian women. Nicotine Tob Res. 2002;4:423–31.PubMedCrossRef
12.
go back to reference Man CN, Gam LH, Ismail S, Lajis R, Awang R. Simple, rapid and sensitive assay method for simultaneous quantification of urinary nicotine and cotinine using gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;844:322–7.PubMedCrossRef Man CN, Gam LH, Ismail S, Lajis R, Awang R. Simple, rapid and sensitive assay method for simultaneous quantification of urinary nicotine and cotinine using gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;844:322–7.PubMedCrossRef
13.
go back to reference Man CN, Fathelrahman AI, Harn GL, Lajis R, Samin AS, Omar M, et al. Correlation between urinary nicotine, cotinine and self-reported smoking status among educated young adults. Environ Toxicol Pharmacol. 2009;28:92–6.PubMedCrossRef Man CN, Fathelrahman AI, Harn GL, Lajis R, Samin AS, Omar M, et al. Correlation between urinary nicotine, cotinine and self-reported smoking status among educated young adults. Environ Toxicol Pharmacol. 2009;28:92–6.PubMedCrossRef
14.
go back to reference Nakajima M, Fukami T, Yamanaka H, Higashi E, Sakai H, Yoshida R, et al. Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther. 2006;80:282–97.PubMedCrossRef Nakajima M, Fukami T, Yamanaka H, Higashi E, Sakai H, Yoshida R, et al. Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther. 2006;80:282–97.PubMedCrossRef
15.
go back to reference Vogel RI, Carmella SG, Stepanov I, Hatsukami DK, Hecht SS. The ratio of a urinary tobacco-specific lung carcinogen metabolite to cotinine is significantly higher in passive than in active smokers. Biomarkers. 2011;16:491–7.PubMedCrossRef Vogel RI, Carmella SG, Stepanov I, Hatsukami DK, Hecht SS. The ratio of a urinary tobacco-specific lung carcinogen metabolite to cotinine is significantly higher in passive than in active smokers. Biomarkers. 2011;16:491–7.PubMedCrossRef
16.
go back to reference Liu T, David SP, Tyndale RF, Wang H, Yu XQ, Chen W, et al. Relationship between amounts of daily cigarette consumption and abdominal obesity moderated by CYP2A6 genotypes in Chinese male current smokers. Ann Behav Med. 2011;43:253–61.CrossRef Liu T, David SP, Tyndale RF, Wang H, Yu XQ, Chen W, et al. Relationship between amounts of daily cigarette consumption and abdominal obesity moderated by CYP2A6 genotypes in Chinese male current smokers. Ann Behav Med. 2011;43:253–61.CrossRef
17.
go back to reference Rao Y, Hoffmann E, Zia M, Bodin L, Zeman M, Sellers EM, et al. Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking. Mol Pharmacol. 2000;58:747–55.PubMed Rao Y, Hoffmann E, Zia M, Bodin L, Zeman M, Sellers EM, et al. Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking. Mol Pharmacol. 2000;58:747–55.PubMed
18.
go back to reference Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature. 1998;393:750.PubMedCrossRef Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature. 1998;393:750.PubMedCrossRef
19.
go back to reference Benowitz NL, Dains KM, Dempsey D, Yu L, Jacob P 3rd. Estimation of nicotine dose after low-level exposure using plasma and urine nicotine metabolites. Cancer Epidemiol Biomarkers Prev. 2010;19:1160–6.PubMedCrossRef Benowitz NL, Dains KM, Dempsey D, Yu L, Jacob P 3rd. Estimation of nicotine dose after low-level exposure using plasma and urine nicotine metabolites. Cancer Epidemiol Biomarkers Prev. 2010;19:1160–6.PubMedCrossRef
20.
go back to reference Benowitz NL, Jacob P 3rd, Fong I, Gupta S. Nicotine metabolic profile in man: comparison of cigarette smoking and transdermal nicotine. J Pharmacol Exp Ther. 1994;268:296–303.PubMed Benowitz NL, Jacob P 3rd, Fong I, Gupta S. Nicotine metabolic profile in man: comparison of cigarette smoking and transdermal nicotine. J Pharmacol Exp Ther. 1994;268:296–303.PubMed
Metadata
Title
Simultaneous measurement of urinary total nicotine and cotinine as biomarkers of active and passive smoking among Japanese individuals
Authors
Akiko Matsumoto
Akane Matsumoto
Masayoshi Ichiba
Nicole M. Payton
Hirotaka Oishi
Megumi Hara
Publication date
01-05-2013
Publisher
Springer Japan
Published in
Environmental Health and Preventive Medicine / Issue 3/2013
Print ISSN: 1342-078X
Electronic ISSN: 1347-4715
DOI
https://doi.org/10.1007/s12199-012-0307-5

Other articles of this Issue 3/2013

Environmental Health and Preventive Medicine 3/2013 Go to the issue