Skip to main content
Top
Published in: Radiological Physics and Technology 1/2018

01-03-2018

Classification of early stage non-small cell lung cancers on computed tomographic images into histological types using radiomic features: interobserver delineation variability analysis

Authors: Akihiro Haga, Wataru Takahashi, Shuri Aoki, Kanabu Nawa, Hideomi Yamashita, Osamu Abe, Keiichi Nakagawa

Published in: Radiological Physics and Technology | Issue 1/2018

Login to get access

Abstract

Radiomics, which involves the extraction of large numbers of quantitative features from medical images, has attracted attention in cancer research. In radiomics analysis, tumor segmentation is a crucial step. In this study, we evaluated the potential application of radiomics for predicting the histology of early stage non-small cell lung cancer (NSCLC) by analyzing interobserver variability in tumor delineation. Forty patient datasets were included in this study, 21 involving adenocarcinomas and 19 involving squamous cell carcinomas. All patients underwent stereotactic body radiotherapy treatment. In total, 476 features were extracted from each dataset, representing treatment planning, computed tomography images, and gross tumor volume (GTV). The definition of GTV can significantly affect the histology prediction. Therefore, in the present study, the effect of interobserver tumor delineation variability on radiomic features was evaluated by preparing 4 volumes of interest (VOIs) for each patient, as follows: the original GTV (which was delineated at treatment planning); two GTVs delineated retrospectively by radiation oncologists; and a semi-automatic GTV contoured by a medical physicist. Radiomic features extracted from each VOI were then analyzed using a naïve Bayesian model. Area-under-the-curve (AUC) analysis showed that interobserver variability in delineation is a significant factor in radiomics performance. Nevertheless, with 8 selected features, AUC values averaged over the VOIs were high (0.725 ± 0.070). The present study indicated that radiomics has potential for predicting early stage NSCLC histology despite variability in delineation. The high prediction accuracy implies that noninvasive histology evaluation by radiomics is a promising clinical application.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.CrossRefPubMedPubMedCentral Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.CrossRefPubMedPubMedCentral
3.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentral
4.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RGPM, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RGPM, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.CrossRefPubMedPubMedCentral
5.
go back to reference Yamamoto S, Korn RL, Oklu R, Migdal C, Gotway MB, Weiss GJ, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology. 2014;272(2):568–76.CrossRefPubMed Yamamoto S, Korn RL, Oklu R, Migdal C, Gotway MB, Weiss GJ, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology. 2014;272(2):568–76.CrossRefPubMed
6.
go back to reference Ellingson BM, Lai A, Harris RJ, Selfridge JM, Yong WH, Das K, et al. Probabilistic radiographic atlas of glioblastoma phenotypes. Am J Neuroradiol. 2013;34(3):533–40.CrossRefPubMed Ellingson BM, Lai A, Harris RJ, Selfridge JM, Yong WH, Das K, et al. Probabilistic radiographic atlas of glioblastoma phenotypes. Am J Neuroradiol. 2013;34(3):533–40.CrossRefPubMed
7.
go back to reference Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med. 2011;52(Suppl 2):93S–100S.CrossRefPubMed Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med. 2011;52(Suppl 2):93S–100S.CrossRefPubMed
8.
go back to reference King AD, Chow K-K, Yu K-H, Mo FKF, Yeung DKW, Yuan J, et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology. 2013;266(2):531–8.CrossRefPubMed King AD, Chow K-K, Yu K-H, Mo FKF, Yeung DKW, Yuan J, et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology. 2013;266(2):531–8.CrossRefPubMed
9.
go back to reference Baek HJ, Kim HS, Kim N, Choi YJ, Kim YJ. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas (histographic pattern). Radiology. 2012;264(3):834–43.CrossRefPubMed Baek HJ, Kim HS, Kim N, Choi YJ, Kim YJ. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas (histographic pattern). Radiology. 2012;264(3):834–43.CrossRefPubMed
10.
go back to reference Xu R, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, et al. Texture analysis on 18F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions. Ann Nucl Med. 2014;28(9):926–35.CrossRefPubMed Xu R, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, et al. Texture analysis on 18F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions. Ann Nucl Med. 2014;28(9):926–35.CrossRefPubMed
11.
go back to reference Nie K, Chen JH, Yu HJ, Chu Y, Nalcioglu O, Su MY. Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol AUR. 2008;15(12):1513–25.CrossRef Nie K, Chen JH, Yu HJ, Chu Y, Nalcioglu O, Su MY. Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol AUR. 2008;15(12):1513–25.CrossRef
12.
go back to reference Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016;6:71.PubMedPubMedCentral Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016;6:71.PubMedPubMedCentral
13.
go back to reference Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9(7):1–8.CrossRef Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9(7):1–8.CrossRef
14.
go back to reference Gaede S, Olsthoorn J, Louie AV, Palma D, Yu E, Yaremko B, et al. An evaluation of an automated 4D-CT contour propagation tool to define an internal gross tumour volume for lung cancer radiotherapy. Radiother Oncol. 2011;101(2):322–8.CrossRefPubMed Gaede S, Olsthoorn J, Louie AV, Palma D, Yu E, Yaremko B, et al. An evaluation of an automated 4D-CT contour propagation tool to define an internal gross tumour volume for lung cancer radiotherapy. Radiother Oncol. 2011;101(2):322–8.CrossRefPubMed
15.
go back to reference Haralick R, Shanmugan K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;1973:610–21.CrossRef Haralick R, Shanmugan K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;1973:610–21.CrossRef
16.
go back to reference Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process. 1975;4(2):172–9.CrossRef Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process. 1975;4(2):172–9.CrossRef
17.
go back to reference Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Pattern Recognit Lett. 1990;11(6):415–9.CrossRef Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Pattern Recognit Lett. 1990;11(6):415–9.CrossRef
18.
go back to reference Dasarathy BV, Holder EB. Image characterizations based on joint gray level-run length distributions. Pattern Recognit Lett. 1991;12(8):497–502.CrossRef Dasarathy BV, Holder EB. Image characterizations based on joint gray level-run length distributions. Pattern Recognit Lett. 1991;12(8):497–502.CrossRef
19.
go back to reference Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, Sequeira J and Mari J-L. Texture indexes and gray level size zone matrix: application to cell nuclei classification. In: 10th International conference on pattern recognition and information processing. Minsk; 2009. pp. 140–145. Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, Sequeira J and Mari J-L. Texture indexes and gray level size zone matrix: application to cell nuclei classification. In: 10th International conference on pattern recognition and information processing. Minsk; 2009. pp. 140–145.
20.
go back to reference Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264–73.CrossRef Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264–73.CrossRef
21.
go back to reference Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.CrossRefPubMed Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.CrossRefPubMed
22.
go back to reference Ratanamahatana C, Gunopulos D. Feature selection for the naive bayesian classifier using decision trees. Appl Artif Intell. 2003;17(5–6):475–87.CrossRef Ratanamahatana C, Gunopulos D. Feature selection for the naive bayesian classifier using decision trees. Appl Artif Intell. 2003;17(5–6):475–87.CrossRef
23.
go back to reference Bishop CM. Pattern recognition and machine learning, pattern recognition. Berlin: Springer; 2006. p. 791–9. Bishop CM. Pattern recognition and machine learning, pattern recognition. Berlin: Springer; 2006. p. 791–9.
24.
25.
go back to reference Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.CrossRefPubMed Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.CrossRefPubMed
Metadata
Title
Classification of early stage non-small cell lung cancers on computed tomographic images into histological types using radiomic features: interobserver delineation variability analysis
Authors
Akihiro Haga
Wataru Takahashi
Shuri Aoki
Kanabu Nawa
Hideomi Yamashita
Osamu Abe
Keiichi Nakagawa
Publication date
01-03-2018
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 1/2018
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-017-0433-2

Other articles of this Issue 1/2018

Radiological Physics and Technology 1/2018 Go to the issue