Skip to main content
Top
Published in: Radiological Physics and Technology 1/2017

01-03-2017

Energy-sensitive photon counting detector-based X-ray computed tomography

Author: Katsuyuki Taguchi

Published in: Radiological Physics and Technology | Issue 1/2017

Login to get access

Abstract

Energy-sensitive photon counting detectors (PCDs) have recently been developed for medical X-ray computed tomography (CT) imaging and a handful of prototype PCD-CT systems have been built and evaluated. PCDs detect X-rays by using mechanisms that are completely different from the current CT detectors (i.e., energy integrating detectors or EIDs); PCDs count photons and obtain the information of the object tissues (i.e., the effective atomic numbers and mass densities) to be imaged. Therefore, these PCDs have the potential not only for evolution—to improve the current CT images such as providing dose reduction—but also for a revolution—to enable novel applications with a new concept such as molecular CT imaging. The performance of PCDs, however, is not flawless, and thus, it requires integrated efforts to develop PCD-CT for clinical use. In this article, we review the current status and the prediction for the future of PCDs, PCD-CT systems, and potential clinical applications.
Literature
2.
go back to reference Mettler FA Jr, Wiest PW, Locken JA, Kelsey CA. CT scanning: patterns of use and dose. J Radiol Prot. 2000;20:353–9.CrossRefPubMed Mettler FA Jr, Wiest PW, Locken JA, Kelsey CA. CT scanning: patterns of use and dose. J Radiol Prot. 2000;20:353–9.CrossRefPubMed
3.
go back to reference Swank RK. Absorption and noise in X-ray phosphors. J Appl Phys. 1973;44:4199–203.CrossRef Swank RK. Absorption and noise in X-ray phosphors. J Appl Phys. 1973;44:4199–203.CrossRef
4.
go back to reference Iwanczyk JS, Nygard E, Meirav O, Arenson J, Barber WC, Hartsough NE, et al. Photon counting energy dispersive detector arrays for X-ray imaging. IEEE Trans Nucl Sci. 2009;56:535–42.CrossRefPubMedPubMedCentral Iwanczyk JS, Nygard E, Meirav O, Arenson J, Barber WC, Hartsough NE, et al. Photon counting energy dispersive detector arrays for X-ray imaging. IEEE Trans Nucl Sci. 2009;56:535–42.CrossRefPubMedPubMedCentral
5.
go back to reference Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53:4031–47.CrossRefPubMed Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53:4031–47.CrossRefPubMed
6.
go back to reference Shikhaliev PM. Energy-resolved computed tomography: first experimental results. Phys Med Biol. 2008;53:5595–613.CrossRefPubMed Shikhaliev PM. Energy-resolved computed tomography: first experimental results. Phys Med Biol. 2008;53:5595–613.CrossRefPubMed
7.
go back to reference Barber WC, Nygard E, Iwanczyk JS, Zhang M, Frey EC, Tsui BMW, et al. Characterization of a novel photon counting detector for clinical CT: count rate, energy resolution, and noise performance. Lake Buena Vista: In: Presented at the SPIE medical imaging 2009: physics of medical imaging; 2009. Barber WC, Nygard E, Iwanczyk JS, Zhang M, Frey EC, Tsui BMW, et al. Characterization of a novel photon counting detector for clinical CT: count rate, energy resolution, and noise performance. Lake Buena Vista: In: Presented at the SPIE medical imaging 2009: physics of medical imaging; 2009.
8.
go back to reference Feuerlein S, Roessl E, Proksa R, Martens G, Klass O, Jeltsch M, et al. Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology. 2008;249:1010–6.CrossRefPubMed Feuerlein S, Roessl E, Proksa R, Martens G, Klass O, Jeltsch M, et al. Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology. 2008;249:1010–6.CrossRefPubMed
9.
go back to reference Tomita Y, Shirayanagi Y, Matsui S, Aoki T, Hatanaka Y. X-ray color scanner with multiple energy discrimination capability. San Diego: In: Presented at the medical imaging 2005: physics of medical imaging; 2005.CrossRef Tomita Y, Shirayanagi Y, Matsui S, Aoki T, Hatanaka Y. X-ray color scanner with multiple energy discrimination capability. San Diego: In: Presented at the medical imaging 2005: physics of medical imaging; 2005.CrossRef
10.
go back to reference Tomita Y, Shirayanagi Y, Matsui S, Misawa M, Takahashi H, Aoki T, et al. X-ray color scanner with multiple energy differentiate capability. Roma: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2004.CrossRef Tomita Y, Shirayanagi Y, Matsui S, Misawa M, Takahashi H, Aoki T, et al. X-ray color scanner with multiple energy differentiate capability. Roma: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2004.CrossRef
11.
go back to reference Butler APH, Anderson NG, Tipples R, Cook N, Watts R, Meyer J, et al. Bio-medical X-ray imaging with spectroscopic pixel detectors. Nucl Instrum Methods Phys Res Sect A. 2008;591:141–6.CrossRef Butler APH, Anderson NG, Tipples R, Cook N, Watts R, Meyer J, et al. Bio-medical X-ray imaging with spectroscopic pixel detectors. Nucl Instrum Methods Phys Res Sect A. 2008;591:141–6.CrossRef
12.
go back to reference Ballabriga R, Campbell M, Heijne EHM, Llopart X, Tlustos L. The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Trans Nucl Sci. 2007;54:1824–9.CrossRef Ballabriga R, Campbell M, Heijne EHM, Llopart X, Tlustos L. The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Trans Nucl Sci. 2007;54:1824–9.CrossRef
13.
go back to reference Firsching M, Butler AP, Scott N, Anderson NG, Michel T, Anton G. Contrast agent recognition in small animal CT using the Medipix2 detector. Nucl Instrum Methods Phys Res Sect A. 2009;607:179–82.CrossRef Firsching M, Butler AP, Scott N, Anderson NG, Michel T, Anton G. Contrast agent recognition in small animal CT using the Medipix2 detector. Nucl Instrum Methods Phys Res Sect A. 2009;607:179–82.CrossRef
14.
go back to reference Kraft E, Fischer P, Karagounis M, Koch M, Krueger H, Peric I, et al. Counting and integrating readout for direct conversion X-ray imaging: concept, realization and first prototype measurements. IEEE Trans Nucl Sci. 2007;54:383–90.CrossRef Kraft E, Fischer P, Karagounis M, Koch M, Krueger H, Peric I, et al. Counting and integrating readout for direct conversion X-ray imaging: concept, realization and first prototype measurements. IEEE Trans Nucl Sci. 2007;54:383–90.CrossRef
15.
go back to reference Steadman R, Herrmann C, Mulhens O, Maeding DG, Colley J, Firlit T, et al. ChromAIX: a high-rate energy-resolving photon-counting ASIC for spectral computed tomography. San Diego: In: Presented at the medical imaging 2010: physics of medical imaging; 2010. Steadman R, Herrmann C, Mulhens O, Maeding DG, Colley J, Firlit T, et al. ChromAIX: a high-rate energy-resolving photon-counting ASIC for spectral computed tomography. San Diego: In: Presented at the medical imaging 2010: physics of medical imaging; 2010.
16.
go back to reference Kappler S, Glasser F, Janssen S, Kraft E, Reinwand M. A research prototype system for quantum-counting clinical CT. San Diego: In: Presented at the medical imaging 2010: physics of medical imaging; 2010.CrossRef Kappler S, Glasser F, Janssen S, Kraft E, Reinwand M. A research prototype system for quantum-counting clinical CT. San Diego: In: Presented at the medical imaging 2010: physics of medical imaging; 2010.CrossRef
17.
go back to reference Barber WC, Arodzero A, Malakhov N, Damron MQ, Hartsough NE, Moraes D, et al. Guard ring elimination in CdTe and CdZnTe detectors. San Diego: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2006.CrossRef Barber WC, Arodzero A, Malakhov N, Damron MQ, Hartsough NE, Moraes D, et al. Guard ring elimination in CdTe and CdZnTe detectors. San Diego: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2006.CrossRef
18.
go back to reference Iwanczyk JS, Nygard E, Meirav O, Arenson J, Barber WC, Hartsough NE, et al. Photon counting energy dispersive detector arrays for X-ray imaging. Honolulu: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2007.CrossRef Iwanczyk JS, Nygard E, Meirav O, Arenson J, Barber WC, Hartsough NE, et al. Photon counting energy dispersive detector arrays for X-ray imaging. Honolulu: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2007.CrossRef
19.
go back to reference Barber WC, Wessel JC, Nygard E, Malakhov N, Wawrzyniak G, Hartsough NE, et al. High flux X-ray imaging with CdZnTe arrays. Anaheim: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2012. Barber WC, Wessel JC, Nygard E, Malakhov N, Wawrzyniak G, Hartsough NE, et al. High flux X-ray imaging with CdZnTe arrays. Anaheim: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2012.
20.
go back to reference Rupcich F, Gilat-Schmidt T. Experimental study of optimal energy weighting in energy-resolved CT using a CZT detector. Orlando: In: Presented at the medical imaging 2013: physics of medical imaging; 2013.CrossRef Rupcich F, Gilat-Schmidt T. Experimental study of optimal energy weighting in energy-resolved CT using a CZT detector. Orlando: In: Presented at the medical imaging 2013: physics of medical imaging; 2013.CrossRef
21.
go back to reference Cajipe VB, Calderwood RF, Clajus M, Hayakawa S, Jayaraman R, Tumer TO, et al. Multi-energy X-ray imaging with linear CZT pixel arrays and integrated electronics. In: Presented at the nuclear science symposium conference record, 2004. Rome: IEEE; 2004.CrossRef Cajipe VB, Calderwood RF, Clajus M, Hayakawa S, Jayaraman R, Tumer TO, et al. Multi-energy X-ray imaging with linear CZT pixel arrays and integrated electronics. In: Presented at the nuclear science symposium conference record, 2004. Rome: IEEE; 2004.CrossRef
22.
go back to reference Xu C, Danielsson M, Karlsson S, Svensson C, Bornefalk H. Performance characterization of a silicon strip detector for spectral computed tomography utilizing a laser testing system. Orlando: In: Presented at the SPIE Medical Imaging 2011; 2011.CrossRef Xu C, Danielsson M, Karlsson S, Svensson C, Bornefalk H. Performance characterization of a silicon strip detector for spectral computed tomography utilizing a laser testing system. Orlando: In: Presented at the SPIE Medical Imaging 2011; 2011.CrossRef
23.
go back to reference Fredenberg E, Hemmendorff M, Cederstrom B, Aslund M, Danielsson M. Contrast-enhanced spectral mammography with a photon-counting detector. Med Phys. 2010;37:2017–29.CrossRefPubMed Fredenberg E, Hemmendorff M, Cederstrom B, Aslund M, Danielsson M. Contrast-enhanced spectral mammography with a photon-counting detector. Med Phys. 2010;37:2017–29.CrossRefPubMed
24.
go back to reference Fredenberg E, Lundqvist M, Cederström B, Åslund M, Danielsson M. Energy resolution of a photon-counting silicon strip detector. Nucl Instrum Methods Phys Res Sect A. 2010;613:156–62.CrossRef Fredenberg E, Lundqvist M, Cederström B, Åslund M, Danielsson M. Energy resolution of a photon-counting silicon strip detector. Nucl Instrum Methods Phys Res Sect A. 2010;613:156–62.CrossRef
25.
go back to reference Aslund M, Cederstrom B, Lundqvist M, Danielsson M. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors. Med Phys. 2007;34:1918–25.CrossRefPubMed Aslund M, Cederstrom B, Lundqvist M, Danielsson M. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors. Med Phys. 2007;34:1918–25.CrossRefPubMed
26.
go back to reference Xu C, Danielsson M, Karlsson S, Svensson C, Bornefalk H. Preliminary evaluation of a silicon strip detector for photon-counting spectral CT. Nucl Instrum Methods Phys Res Sect A. 2012;677:45–51.CrossRef Xu C, Danielsson M, Karlsson S, Svensson C, Bornefalk H. Preliminary evaluation of a silicon strip detector for photon-counting spectral CT. Nucl Instrum Methods Phys Res Sect A. 2012;677:45–51.CrossRef
27.
go back to reference Kappler S, Hannemann T, Kraft E, Kreisler B, Niederloehner D, Stierstorfer K, et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. San Diego: In: Presented at the Proceedings of the SPIE 8313, medical imaging, physics of medical imaging; 2012.CrossRef Kappler S, Hannemann T, Kraft E, Kreisler B, Niederloehner D, Stierstorfer K, et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. San Diego: In: Presented at the Proceedings of the SPIE 8313, medical imaging, physics of medical imaging; 2012.CrossRef
28.
go back to reference Gimenez EN, Ballabriga R, Campbell M, Horswell I, Llopart X, Marchal J, et al. Characterization of Medipix3 with synchrotron radiation. IEEE Trans Nucl Sci. 2011;58:323–32.CrossRef Gimenez EN, Ballabriga R, Campbell M, Horswell I, Llopart X, Marchal J, et al. Characterization of Medipix3 with synchrotron radiation. IEEE Trans Nucl Sci. 2011;58:323–32.CrossRef
29.
go back to reference Xu C, Chen H, Persson M, Karlsson S, Danielsson M, Svensson C, et al. Energy resolution of a segmented silicon strip detector for photon-counting spectral CT. Nucl Instrum Methods Phys Res Sect A. 2013;715:11–7.CrossRef Xu C, Chen H, Persson M, Karlsson S, Danielsson M, Svensson C, et al. Energy resolution of a segmented silicon strip detector for photon-counting spectral CT. Nucl Instrum Methods Phys Res Sect A. 2013;715:11–7.CrossRef
30.
go back to reference Xu C, Danielsson M, Bornefalk H. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci. 2011;58:614–25.CrossRef Xu C, Danielsson M, Bornefalk H. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci. 2011;58:614–25.CrossRef
31.
go back to reference Xu C, Persson M, Han C, Karlsson S, Danielsson M, Svensson C, et al. Evaluation of a second-generation ultra-fast energy-resolved ASIC for photon-counting spectral CT. IEEE Trans Nucl Sci. 2013;60:437–45.CrossRef Xu C, Persson M, Han C, Karlsson S, Danielsson M, Svensson C, et al. Evaluation of a second-generation ultra-fast energy-resolved ASIC for photon-counting spectral CT. IEEE Trans Nucl Sci. 2013;60:437–45.CrossRef
32.
go back to reference Roessl E, Proksa R. K-edge imaging in X-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52:4679–96.CrossRefPubMed Roessl E, Proksa R. K-edge imaging in X-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52:4679–96.CrossRefPubMed
33.
go back to reference Tanguay J, Kim HK, Cunningham IA. The role of X-ray Swank factor in energy-resolving photon-counting imaging. Med Phys. 2010;37:6205–11.CrossRefPubMed Tanguay J, Kim HK, Cunningham IA. The role of X-ray Swank factor in energy-resolving photon-counting imaging. Med Phys. 2010;37:6205–11.CrossRefPubMed
34.
go back to reference Taguchi K, Polster C, Lee O, Stierstorfer K, Kappler S. Spatio-energetic cross talk in photon counting detectors: detector model and correlated Poisson data generator. Med Phys. 2016;43:6386–404.CrossRefPubMed Taguchi K, Polster C, Lee O, Stierstorfer K, Kappler S. Spatio-energetic cross talk in photon counting detectors: detector model and correlated Poisson data generator. Med Phys. 2016;43:6386–404.CrossRefPubMed
35.
go back to reference Kappler S, Henning A, Kreisler B, Schoeck F, Stierstorfer K, Flohr T. Photon counting CT at elevated X-ray tube currents: contrast stability, image noise and multi-energy performance. San Diego: In: Presented at the SPIE medical imaging 2014: physics of medical imaging; 2014. Kappler S, Henning A, Kreisler B, Schoeck F, Stierstorfer K, Flohr T. Photon counting CT at elevated X-ray tube currents: contrast stability, image noise and multi-energy performance. San Diego: In: Presented at the SPIE medical imaging 2014: physics of medical imaging; 2014.
36.
go back to reference Kappler S, Hoelzer S, Kraft E, Stierstorfer K, Flohr TG. Quantum-counting CT in the regime of count-rate paralysis: introduction of the pile-up trigger method. Orlando: In: Presented at the proceedings of the SPIE 7661, medical imaging: physics of medical imaging; 2011. Kappler S, Hoelzer S, Kraft E, Stierstorfer K, Flohr TG. Quantum-counting CT in the regime of count-rate paralysis: introduction of the pile-up trigger method. Orlando: In: Presented at the proceedings of the SPIE 7661, medical imaging: physics of medical imaging; 2011.
37.
go back to reference Kappler S, Kraft E, Kreisler B, Schoeck F, Flohr TG. Imaging performance of a hybrid research prototype CT scanner with small-pixel counting detector. Geneva: In: Presented at the workshop on medical applications of spectroscopic X-ray detectors; 2013. Kappler S, Kraft E, Kreisler B, Schoeck F, Flohr TG. Imaging performance of a hybrid research prototype CT scanner with small-pixel counting detector. Geneva: In: Presented at the workshop on medical applications of spectroscopic X-ray detectors; 2013.
38.
go back to reference Koenig T, Hamann E, Procz S, Ballabriga R, Cecilia A, Zuber M, et al. Charge summing in spectroscopic X-ray detectors with high-Z sensors. IEEE Trans Nucl Sci. 2013;60:4713–8.CrossRef Koenig T, Hamann E, Procz S, Ballabriga R, Cecilia A, Zuber M, et al. Charge summing in spectroscopic X-ray detectors with high-Z sensors. IEEE Trans Nucl Sci. 2013;60:4713–8.CrossRef
39.
go back to reference Gardner RP, Wielopolski L. A generalized method for correcting pulse-height spectra for the peak pileup effect due to double sum pulses. Nucl Instrum Methods Phys Res Sect A. 1977;140:289–96.CrossRef Gardner RP, Wielopolski L. A generalized method for correcting pulse-height spectra for the peak pileup effect due to double sum pulses. Nucl Instrum Methods Phys Res Sect A. 1977;140:289–96.CrossRef
40.
go back to reference Hero AO, Clinthorne NH, Rogers WL. A lower bound on PET timing estimation with pulse pileup. IEEE Trans Nucl Sci. 1991;38:709–12.CrossRef Hero AO, Clinthorne NH, Rogers WL. A lower bound on PET timing estimation with pulse pileup. IEEE Trans Nucl Sci. 1991;38:709–12.CrossRef
41.
go back to reference Johns PC, Yaffe MJ. Correction of pulse-height spectra for peak pileup effects using periodic and random pulse generators. Nucl Instrum Methods Phys Res Sect A. 1987;255:559–81.CrossRef Johns PC, Yaffe MJ. Correction of pulse-height spectra for peak pileup effects using periodic and random pulse generators. Nucl Instrum Methods Phys Res Sect A. 1987;255:559–81.CrossRef
42.
go back to reference Wang AS, Harrison D, Lobastov V, Tkaczyk JE. Pulse pileup statistics for energy discriminating photon counting X-ray detectors. Med Phys. 2011;38:4265–75.CrossRefPubMed Wang AS, Harrison D, Lobastov V, Tkaczyk JE. Pulse pileup statistics for energy discriminating photon counting X-ray detectors. Med Phys. 2011;38:4265–75.CrossRefPubMed
43.
go back to reference Taguchi K, Srivastava S, Tang Q, Caffo BS, Iwanczyk JS, Hartsough NE, et al. Pulse pileup statistics for energy sensitive photon counting detectors with pulse height analysis. San Diego: In: Presented at the SPIE medical imaging 2012: physics of medical imaging; 2012.CrossRef Taguchi K, Srivastava S, Tang Q, Caffo BS, Iwanczyk JS, Hartsough NE, et al. Pulse pileup statistics for energy sensitive photon counting detectors with pulse height analysis. San Diego: In: Presented at the SPIE medical imaging 2012: physics of medical imaging; 2012.CrossRef
44.
go back to reference Cammin J, Xu J, Barber WC, Iwanczyk JS, Hartsough NE, Taguchi K. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting X-ray detector for CT. Med Phys. 2014;41:041905.CrossRefPubMedPubMedCentral Cammin J, Xu J, Barber WC, Iwanczyk JS, Hartsough NE, Taguchi K. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting X-ray detector for CT. Med Phys. 2014;41:041905.CrossRefPubMedPubMedCentral
45.
go back to reference Taguchi K, Frey EC, Wang X, Iwanczyk JS, Barber WC. An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting X-ray detectors. Med Phys. 2010;37:3957–69.CrossRefPubMedPubMedCentral Taguchi K, Frey EC, Wang X, Iwanczyk JS, Barber WC. An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting X-ray detectors. Med Phys. 2010;37:3957–69.CrossRefPubMedPubMedCentral
46.
go back to reference Taguchi K, Zhang M, Frey EC, Wang X, Iwanczyk JS, Nygard E, et al. Modeling the performance of a photon counting X-ray detector for CT: energy response and pulse pileup effects. Med Phys. 2011;38:1089–102.CrossRefPubMedPubMedCentral Taguchi K, Zhang M, Frey EC, Wang X, Iwanczyk JS, Nygard E, et al. Modeling the performance of a photon counting X-ray detector for CT: energy response and pulse pileup effects. Med Phys. 2011;38:1089–102.CrossRefPubMedPubMedCentral
47.
go back to reference Roessl E, Daerr H, Proksa R. A Fourier approach to pulse pile-up in photon-counting X-ray detectors. Med Phys. 2016;43:1295–8.CrossRefPubMed Roessl E, Daerr H, Proksa R. A Fourier approach to pulse pile-up in photon-counting X-ray detectors. Med Phys. 2016;43:1295–8.CrossRefPubMed
49.
go back to reference Roessl E, Proksa R. Dynamic beam-shaper for high flux photon-counting computed tomography. Geneva: In: Presented at the workshop on medical applications of spectroscopic X-ray detectors; 2013. Roessl E, Proksa R. Dynamic beam-shaper for high flux photon-counting computed tomography. Geneva: In: Presented at the workshop on medical applications of spectroscopic X-ray detectors; 2013.
51.
go back to reference Lee O, Kappler S, Polster C, Taguchi K. Estimation of basis line-integrals for spectral distortion compensation in photon counting CT using low-order polynomial approximation. IEEE Trans Med Imaging. 2016 (in press). Lee O, Kappler S, Polster C, Taguchi K. Estimation of basis line-integrals for spectral distortion compensation in photon counting CT using low-order polynomial approximation. IEEE Trans Med Imaging. 2016 (in press).
52.
go back to reference Lee O, Polster C, Kappler S, Taguchi K. Spectral response effect-compensated estimator in photon counting CT using low-order Gram polynomials. In: Presented at the forth international conference on image formation in X-ray computed tomography, Bamberg, 2016. Lee O, Polster C, Kappler S, Taguchi K. Spectral response effect-compensated estimator in photon counting CT using low-order Gram polynomials. In: Presented at the forth international conference on image formation in X-ray computed tomography, Bamberg, 2016.
53.
go back to reference Xu J, Zbijewski W, Gang G, Stayman JW, Taguchi K, Lundqvist M et al. Cascaded systems analysis of photon counting detectors. Med Phys. 2014; 41:101907. Xu J, Zbijewski W, Gang G, Stayman JW, Taguchi K, Lundqvist M et al. Cascaded systems analysis of photon counting detectors. Med Phys. 2014; 41:101907.
54.
go back to reference Shikhaliev PM. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study. Phys Med Biol. 2005;50:5813–27.CrossRefPubMed Shikhaliev PM. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study. Phys Med Biol. 2005;50:5813–27.CrossRefPubMed
55.
go back to reference Leng S, Yu L, Wang J, Fletcher JG, Mistretta CA, McCollough CH. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection. Med Phys. 2011;38:4946–57.CrossRefPubMed Leng S, Yu L, Wang J, Fletcher JG, Mistretta CA, McCollough CH. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection. Med Phys. 2011;38:4946–57.CrossRefPubMed
56.
go back to reference Schirra CO, Roessl E, Koehler T, Brendel B, Thran A, Pan D, et al. Statistical reconstruction of material decomposed data in spectral CT. IEEE Trans Med Imag. 2013;32:1249–57.CrossRef Schirra CO, Roessl E, Koehler T, Brendel B, Thran A, Pan D, et al. Statistical reconstruction of material decomposed data in spectral CT. IEEE Trans Med Imag. 2013;32:1249–57.CrossRef
57.
go back to reference Nakada K, Taguchi K, Fung GSK, Amaya K. Joint estimation of tissue types and linear attenuation coefficients for photon counting CT. Seoul: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2013. Nakada K, Taguchi K, Fung GSK, Amaya K. Joint estimation of tissue types and linear attenuation coefficients for photon counting CT. Seoul: In: Presented at the IEEE nuclear science symposium and medical imaging conference; 2013.
58.
go back to reference Nakada K, Taguchi K, Fung GSK, Amaya K. Maximum a posteriori reconstruction of CT images using pixel-based latent variable of tissue types. In: Presented at the third international conference on image formation in X-ray computed tomography, Salt Lake City, 2014. Nakada K, Taguchi K, Fung GSK, Amaya K. Maximum a posteriori reconstruction of CT images using pixel-based latent variable of tissue types. In: Presented at the third international conference on image formation in X-ray computed tomography, Salt Lake City, 2014.
59.
go back to reference Nakada K, Taguchi K, Fung GSK, Amaya K. Joint estimation of tissue types and linear attenuation coefficients for photon counting CT. Med Phys. 2015;42:5329–41.CrossRefPubMed Nakada K, Taguchi K, Fung GSK, Amaya K. Joint estimation of tissue types and linear attenuation coefficients for photon counting CT. Med Phys. 2015;42:5329–41.CrossRefPubMed
60.
go back to reference Nakada K. Joint estimation of tissue types and linear attenuation coefficients using image segmentation algorithm for photon counting CT. Master of science thesis. Department of Systems and Control Engineering, School of Engineering, Tokyo Institute of Technology; 2016. p. 58. Nakada K. Joint estimation of tissue types and linear attenuation coefficients using image segmentation algorithm for photon counting CT. Master of science thesis. Department of Systems and Control Engineering, School of Engineering, Tokyo Institute of Technology; 2016. p. 58.
61.
go back to reference Zhicong Y, Shuai L, Steven MJ, Zhoubo L, Ralf G, Baiyu C, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol. 2016;61:1572.CrossRef Zhicong Y, Shuai L, Steven MJ, Zhoubo L, Ralf G, Baiyu C, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol. 2016;61:1572.CrossRef
62.
go back to reference Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, et al. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology. 2016;279:239–45.CrossRefPubMed Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, et al. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology. 2016;279:239–45.CrossRefPubMed
63.
go back to reference Muenzel D, Bar-Ness D, Roessl E, Blevis I, Bartels M, Fingerle AA, et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology 2016; 160890 (online doi:10.1148/radiol.2016160890). Muenzel D, Bar-Ness D, Roessl E, Blevis I, Bartels M, Fingerle AA, et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology 2016; 160890 (online doi:10.​1148/​radiol.​2016160890).
64.
go back to reference Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka J-P, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010;256: 774–82. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka J-P, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010;256: 774–82.
65.
go back to reference Pan D, Williams TA, Senpan A, Allen JS, Scott MJ, Gaffney PJ, et al. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle. J Am Chem Soc. 2009;131:15522–7.CrossRefPubMedPubMedCentral Pan D, Williams TA, Senpan A, Allen JS, Scott MJ, Gaffney PJ, et al. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle. J Am Chem Soc. 2009;131:15522–7.CrossRefPubMedPubMedCentral
66.
go back to reference Pan D, Roessl E, Schlomka J-P, Caruthers SD, Senpan A, Scott MJ, et al. Computed tomography in color: nanoK-enhanced spectral CT molecular imaging. Angew Chem Int Ed. 2010;49:9635–9.CrossRef Pan D, Roessl E, Schlomka J-P, Caruthers SD, Senpan A, Scott MJ, et al. Computed tomography in color: nanoK-enhanced spectral CT molecular imaging. Angew Chem Int Ed. 2010;49:9635–9.CrossRef
67.
go back to reference Cammin J, Srivastava S, Fung GSK, Taguchi K. Spectral response compensation for photon counting clinical X-ray CT and application to coronary vulnerable plaque detection. In: Proceedings of the second international meeting on image formation in X-ray computed tomography, Salt Lake City; 2012. pp. 186–189. Cammin J, Srivastava S, Fung GSK, Taguchi K. Spectral response compensation for photon counting clinical X-ray CT and application to coronary vulnerable plaque detection. In: Proceedings of the second international meeting on image formation in X-ray computed tomography, Salt Lake City; 2012. pp. 186–189.
Metadata
Title
Energy-sensitive photon counting detector-based X-ray computed tomography
Author
Katsuyuki Taguchi
Publication date
01-03-2017
Publisher
Springer Japan
Published in
Radiological Physics and Technology / Issue 1/2017
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-017-0390-9

Other articles of this Issue 1/2017

Radiological Physics and Technology 1/2017 Go to the issue