Skip to main content
Top
Published in: Radiological Physics and Technology 2/2013

01-07-2013

Optimum CT reconstruction parameters for vascular and hepatocellular carcinoma models in a liver phantom with multi-level dynamic computed tomography with 64 detector rows: a basic study

Authors: Murotani Kazuhiro, Nobuyuki Kawai, Morio Sato, Hiroki Minamiguchi, Motoki Nakai, Tetsuo Sonomura, Seiki Hosokawa, Tadayoshi Nishioku

Published in: Radiological Physics and Technology | Issue 2/2013

Login to get access

Abstract

We quantified to clarify the optimum factors for CT image reconstruction of an enhanced hepatocellular carcinoma (HCC) model in a liver phantom obtained by multi-level dynamic computed tomography (M-LDCT) with 64 detector rows. After M-LDCT scanning of a water phantom and an enhanced HCC model, we compared the standard deviation (SD, 1 ± SD), noise power spectrum (NPS) values, contrast–noise ratios (CNR), and the M-LDCT image among the reconstruction parameters, including the convolution kernel (FC11, FC13, and FC15), post-processing quantum filters (2D-Q00, 2D-Q01, and 2D-Q02) and slice thicknesses/slice intervals. The SD and NPS values were lowest with FC11 and 2D-Q02. The CNR values were highest with 2D-Q02. The M-LDCT image quality was highest with FC11 and 2D-Q02, and with slice thicknesses/slice intervals of 0.5 mm/0.5 mm and 0.5 mm/0.25 mm. The optimum factors were the FC11 convolution kernel, 2D-Q02 quantum filter, and 0.5 mm slice thickness/0.5 mm slice interval or less.
Literature
1.
go back to reference Kanamoto H, Horibe T, Kudo K, Taira J, Sugimoto K, Metoki R, Furuichi Y, Miyahara T, Moriyasu F. Utility of interventional-CT (IVR-CT) in transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma—a comparative study of TACE with and without IVR-CT. Kanzo. 2007;48:589–97.CrossRef Kanamoto H, Horibe T, Kudo K, Taira J, Sugimoto K, Metoki R, Furuichi Y, Miyahara T, Moriyasu F. Utility of interventional-CT (IVR-CT) in transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma—a comparative study of TACE with and without IVR-CT. Kanzo. 2007;48:589–97.CrossRef
2.
go back to reference Ueda K, Matsui O, Kawamori Y, Kadoya M, Yoshikawa J, Gabata T, Nonomura A, Takashima T. Hypervascular hepatocellular carcinoma: evaluation of hemodynamics with dynamic CT during hepatic arteriography. Radiology. 1998;206:161–6.PubMed Ueda K, Matsui O, Kawamori Y, Kadoya M, Yoshikawa J, Gabata T, Nonomura A, Takashima T. Hypervascular hepatocellular carcinoma: evaluation of hemodynamics with dynamic CT during hepatic arteriography. Radiology. 1998;206:161–6.PubMed
3.
go back to reference Sultana S, Awai K, Nakayama Y, Nakaura T, Liu D, Hatemura M, Funama Y, Morishita S, Yamashita Y. Hypervascular hepatocellular carcinoma; bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology. 2007;243:140–7.PubMedCrossRef Sultana S, Awai K, Nakayama Y, Nakaura T, Liu D, Hatemura M, Funama Y, Morishita S, Yamashita Y. Hypervascular hepatocellular carcinoma; bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology. 2007;243:140–7.PubMedCrossRef
4.
go back to reference Murakami T, Kim T, Takamura M, Hori M, Takahashi S, Federie MP, Tsuda K, Osuga K, Nakamura H, Kudo M. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology. 2001;218:763–7.PubMed Murakami T, Kim T, Takamura M, Hori M, Takahashi S, Federie MP, Tsuda K, Osuga K, Nakamura H, Kudo M. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology. 2001;218:763–7.PubMed
5.
go back to reference Yamaguchi I, Kidoya E, Suzuki M, Kimura H. Optimizing scan of hepatic arterial phase by physiologic pharmacokinetic analysis in bolus-tracking technique by multi-detector row computed tomography. Radiol Phys Technol. 2011;4:43–52.PubMedCrossRef Yamaguchi I, Kidoya E, Suzuki M, Kimura H. Optimizing scan of hepatic arterial phase by physiologic pharmacokinetic analysis in bolus-tracking technique by multi-detector row computed tomography. Radiol Phys Technol. 2011;4:43–52.PubMedCrossRef
6.
go back to reference Brouwer PA, Bosman T, van Walderveen MAA, Krings T, Leroux AA, Willems PWA. Dynamic 320-section CT angiography in clinical arteriovenous shunting lesions. AJNR. 2010;31:767–70.PubMedCrossRef Brouwer PA, Bosman T, van Walderveen MAA, Krings T, Leroux AA, Willems PWA. Dynamic 320-section CT angiography in clinical arteriovenous shunting lesions. AJNR. 2010;31:767–70.PubMedCrossRef
7.
go back to reference Shope TB, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission X-ray computed tomography. Med Phys. 1981;8:488–95.PubMedCrossRef Shope TB, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission X-ray computed tomography. Med Phys. 1981;8:488–95.PubMedCrossRef
8.
go back to reference Mori I, Uchida M, Sato A, Sato S, Tamura H, Takai Y, Ishibashi T, Saito H, Hosoaki Y, Ogura T, Chiba K, Machida Y. Evaluation of an adaptive filter for CT under low-CNR condition: comparison with linear filter. Jpn Soc J Radiol Technol. 2009;65:15–24.CrossRef Mori I, Uchida M, Sato A, Sato S, Tamura H, Takai Y, Ishibashi T, Saito H, Hosoaki Y, Ogura T, Chiba K, Machida Y. Evaluation of an adaptive filter for CT under low-CNR condition: comparison with linear filter. Jpn Soc J Radiol Technol. 2009;65:15–24.CrossRef
9.
go back to reference Sasaki T, Hanari T, Sasaki M, Oikawa H, Gakumazawa H, Okumura M, Ikeda Y, Toyoshima N. Reduction of radiation exposure in CT perfusion study using a quantum de-noising filter. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2004;60:1688–93.PubMed Sasaki T, Hanari T, Sasaki M, Oikawa H, Gakumazawa H, Okumura M, Ikeda Y, Toyoshima N. Reduction of radiation exposure in CT perfusion study using a quantum de-noising filter. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2004;60:1688–93.PubMed
10.
go back to reference Ichikawa K, Hara T, Niwa S, Tamaguchi I, Ohashi K. Calculation methods of noise power spectrum measurement in computed tomography. Med Imaging Info Sci. 2008;25:29–34. Ichikawa K, Hara T, Niwa S, Tamaguchi I, Ohashi K. Calculation methods of noise power spectrum measurement in computed tomography. Med Imaging Info Sci. 2008;25:29–34.
11.
go back to reference Ichikawa K, Hara T, Niwa S, Ohashi K. Method of measuring modulation transfer function using metal wire in computed tomography. Nihon Hoshasen Gijutu Gakkai Zasshi. 2008;64:672–80.CrossRef Ichikawa K, Hara T, Niwa S, Ohashi K. Method of measuring modulation transfer function using metal wire in computed tomography. Nihon Hoshasen Gijutu Gakkai Zasshi. 2008;64:672–80.CrossRef
12.
go back to reference Kawamata M, Matsui H, Yoneda A, Yamane Y, Okamoto H, Kumatani Y, Kumatani T, Kawahigashi K, Narumi Y. Appropriate scan conditions for multidetector-row CT in detection of simulated tumors in the chest region: evaluation with contrast-to-noise ratio. CT Screen. 2007;14:150–6. Kawamata M, Matsui H, Yoneda A, Yamane Y, Okamoto H, Kumatani Y, Kumatani T, Kawahigashi K, Narumi Y. Appropriate scan conditions for multidetector-row CT in detection of simulated tumors in the chest region: evaluation with contrast-to-noise ratio. CT Screen. 2007;14:150–6.
13.
go back to reference Gupta AK, Nelson RC, Johnson GA, Paulson EK, Delong DM, Yoshizumi TT. Optimization of eight-element multi-detector row helical CT technology for evaluation of the abdomen. Radiology. 2003;227:739–45.PubMedCrossRef Gupta AK, Nelson RC, Johnson GA, Paulson EK, Delong DM, Yoshizumi TT. Optimization of eight-element multi-detector row helical CT technology for evaluation of the abdomen. Radiology. 2003;227:739–45.PubMedCrossRef
Metadata
Title
Optimum CT reconstruction parameters for vascular and hepatocellular carcinoma models in a liver phantom with multi-level dynamic computed tomography with 64 detector rows: a basic study
Authors
Murotani Kazuhiro
Nobuyuki Kawai
Morio Sato
Hiroki Minamiguchi
Motoki Nakai
Tetsuo Sonomura
Seiki Hosokawa
Tadayoshi Nishioku
Publication date
01-07-2013
Publisher
Springer Japan
Published in
Radiological Physics and Technology / Issue 2/2013
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-013-0203-8

Other articles of this Issue 2/2013

Radiological Physics and Technology 2/2013 Go to the issue