Skip to main content
Top
Published in: Radiological Physics and Technology 1/2009

01-01-2009

A review of image-guided radiotherapy

Authors: George T. Y. Chen, Gregory C. Sharp, Shinichiro Mori

Published in: Radiological Physics and Technology | Issue 1/2009

Login to get access

Abstract

Image-guided radiotherapy (IGRT) is in the midst of a strong development and implementation cycle, stimulated by pioneering work performed in Japan. We present a review of the rationale, technology, and methodology of image guidance, as well as an overview of current work in IGRT at the Massachusetts General Hospital. The technology is rapidly evolving, and synergisms between the various acquisition approaches are converging to provide unparalleled information on target and normal tissue location and motion. With these new approaches to patient localization, we expect improved clinical results to be forthcoming.
Literature
1.
go back to reference Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;25(8):938–46.PubMedCrossRef Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;25(8):938–46.PubMedCrossRef
2.
go back to reference Dawson LA, et al. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys. 2005;62(4):1247–52.PubMedCrossRef Dawson LA, et al. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys. 2005;62(4):1247–52.PubMedCrossRef
3.
go back to reference Balter JM, et al. Daily targeting of intrahepatic tumors for radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52(1):266–71.PubMedCrossRef Balter JM, et al. Daily targeting of intrahepatic tumors for radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52(1):266–71.PubMedCrossRef
4.
go back to reference Hong TS, et al. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(3):779–88.PubMedCrossRef Hong TS, et al. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(3):779–88.PubMedCrossRef
5.
go back to reference De Crevoisier R, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(4):965–73.PubMedCrossRef De Crevoisier R, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(4):965–73.PubMedCrossRef
6.
go back to reference Ghilezan M, et al. Online image-guided intensity-modulated radiotherapy for prostate cancer: How much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys. 2004;60(5):1602–10.PubMedCrossRef Ghilezan M, et al. Online image-guided intensity-modulated radiotherapy for prostate cancer: How much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys. 2004;60(5):1602–10.PubMedCrossRef
7.
go back to reference Martinez AA, et al. Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int J Radiat Oncol Biol Phys. 2001;50(5):1226–34.PubMedCrossRef Martinez AA, et al. Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int J Radiat Oncol Biol Phys. 2001;50(5):1226–34.PubMedCrossRef
8.
go back to reference Millender LE, et al. Daily electronic portal imaging for morbidly obese men undergoing radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2004;59(1):6–10.PubMedCrossRef Millender LE, et al. Daily electronic portal imaging for morbidly obese men undergoing radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2004;59(1):6–10.PubMedCrossRef
9.
go back to reference Barker JL Jr, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70.PubMedCrossRef Barker JL Jr, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70.PubMedCrossRef
10.
go back to reference Sonke JJ, Lebesque J, Van Herk M. Variability of four-dimensional computed tomography patient models. Int J Radiat Oncol Biol Phys. 2008;70(2):590–8.PubMedCrossRef Sonke JJ, Lebesque J, Van Herk M. Variability of four-dimensional computed tomography patient models. Int J Radiat Oncol Biol Phys. 2008;70(2):590–8.PubMedCrossRef
11.
go back to reference Engelsman M, et al. How much margin reduction is possible through gating or breath hold? Phys Med Biol. 2005;50(3):477–90.PubMedCrossRef Engelsman M, et al. How much margin reduction is possible through gating or breath hold? Phys Med Biol. 2005;50(3):477–90.PubMedCrossRef
12.
go back to reference Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 2006;7:848–58.PubMedCrossRef Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 2006;7:848–58.PubMedCrossRef
13.
go back to reference White E, Kane G. Radiation medicine practice in the image-guided radiation therapy era: new roles and new opportunities. Semin Radiat Oncol. 2007;17(4):298–305.PubMedCrossRef White E, Kane G. Radiation medicine practice in the image-guided radiation therapy era: new roles and new opportunities. Semin Radiat Oncol. 2007;17(4):298–305.PubMedCrossRef
14.
go back to reference Verellen D, De Ridder M, Storme G. A (short) history of image-guided radiotherapy. Radiother Oncol. 2008;86(1):4–13.PubMedCrossRef Verellen D, De Ridder M, Storme G. A (short) history of image-guided radiotherapy. Radiother Oncol. 2008;86(1):4–13.PubMedCrossRef
16.
go back to reference Verhey LJ, et al. Precise positioning of patients for radiation therapy. Int J Radiat Oncol Biol Phys. 1982;8(2):289–94.PubMedCrossRef Verhey LJ, et al. Precise positioning of patients for radiation therapy. Int J Radiat Oncol Biol Phys. 1982;8(2):289–94.PubMedCrossRef
17.
go back to reference Biggs PJ, Goitein M, Russell MD. A diagnostic X ray field verification device for a 10 MV linear accelerator. Int J Radiat Oncol Biol Phys. 1985;11(3):635–43.PubMedCrossRef Biggs PJ, Goitein M, Russell MD. A diagnostic X ray field verification device for a 10 MV linear accelerator. Int J Radiat Oncol Biol Phys. 1985;11(3):635–43.PubMedCrossRef
18.
go back to reference Shirato H, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48(4):1187–95.PubMedCrossRef Shirato H, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48(4):1187–95.PubMedCrossRef
19.
go back to reference Britton K, et al. Evaluation of inter-and intrafraction organ motion during IMRT for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med. 2005;23(1):14–24. Britton K, et al. Evaluation of inter-and intrafraction organ motion during IMRT for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med. 2005;23(1):14–24.
20.
go back to reference Uematsu M, et al. A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames. Int J Radiat Oncol Biol Phys. 1996;35(3):587–92.PubMedCrossRef Uematsu M, et al. A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames. Int J Radiat Oncol Biol Phys. 1996;35(3):587–92.PubMedCrossRef
21.
go back to reference Balter JM, Kessler ML. Imaging and alignment for image-guided radiation therapy. J Clin Oncol. 2007;25(8):931–7.PubMedCrossRef Balter JM, Kessler ML. Imaging and alignment for image-guided radiation therapy. J Clin Oncol. 2007;25(8):931–7.PubMedCrossRef
22.
go back to reference Guha C, et al. Tumor biology-guided radiotherapy treatment planning: gross tumor volume versus functional tumor volume. Semin Nucl Med. 2008;38(2):105–13.PubMedCrossRef Guha C, et al. Tumor biology-guided radiotherapy treatment planning: gross tumor volume versus functional tumor volume. Semin Nucl Med. 2008;38(2):105–13.PubMedCrossRef
23.
go back to reference Heron DE, et al. PET-CT in radiation oncology—the impact on diagnosis, treatment planning, and assessment of treatment response. Am J Clin Oncol-Cancer Clin Trials. 2008;31(4):352–62.CrossRef Heron DE, et al. PET-CT in radiation oncology—the impact on diagnosis, treatment planning, and assessment of treatment response. Am J Clin Oncol-Cancer Clin Trials. 2008;31(4):352–62.CrossRef
24.
go back to reference Li G, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat. 2008;7(1):67–81.PubMedCrossRef Li G, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat. 2008;7(1):67–81.PubMedCrossRef
25.
go back to reference Zanzonico P. PET-based biological imaging for radiation therapy treatment planning. Crit Rev Eukaryot Gene Expr. 2006;16(1):61–101.PubMedCrossRef Zanzonico P. PET-based biological imaging for radiation therapy treatment planning. Crit Rev Eukaryot Gene Expr. 2006;16(1):61–101.PubMedCrossRef
26.
go back to reference Zapotoczna A, et al. Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia. 2007;9(6):455–63.PubMedPubMedCentralCrossRef Zapotoczna A, et al. Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia. 2007;9(6):455–63.PubMedPubMedCentralCrossRef
27.
go back to reference Achterberg N, Muller RG. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy. Med Phys. 2007;34(10):3926–42.PubMedCrossRef Achterberg N, Muller RG. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy. Med Phys. 2007;34(10):3926–42.PubMedCrossRef
29.
go back to reference Jaffray D, et al. Review of image-guided radiation therapy. Expert Rev Anticancer Ther. 2007;7(1):89–103.PubMedCrossRef Jaffray D, et al. Review of image-guided radiation therapy. Expert Rev Anticancer Ther. 2007;7(1):89–103.PubMedCrossRef
30.
31.
32.
go back to reference Chang JY, et al. Image-guided radiation therapy for non-small cell lung cancer. J Thorac Oncol. 2008;3(2):177–86.PubMedCrossRef Chang JY, et al. Image-guided radiation therapy for non-small cell lung cancer. J Thorac Oncol. 2008;3(2):177–86.PubMedCrossRef
33.
go back to reference Devisetty K, Chen LF, Chmura SJ. Evolving use of radiotherapy and radiosurgery in the treatment of pituitary adenomas. Expert Rev Anticancer Ther. 2006;6(9):S93–8.PubMedCrossRef Devisetty K, Chen LF, Chmura SJ. Evolving use of radiotherapy and radiosurgery in the treatment of pituitary adenomas. Expert Rev Anticancer Ther. 2006;6(9):S93–8.PubMedCrossRef
34.
go back to reference Drummond KJ, Zhu JJG, Black PM. Meningiomas: updating basic science, management, and outcome. Neurologist. 2004;10(3):113–30.PubMedCrossRef Drummond KJ, Zhu JJG, Black PM. Meningiomas: updating basic science, management, and outcome. Neurologist. 2004;10(3):113–30.PubMedCrossRef
35.
go back to reference Fennessy FM, et al. MR imaging—guided interventions in the genitourinary tract: an evolving concept. Radiol Clin North Am. 2008;46(1):149–66. Fennessy FM, et al. MR imaging—guided interventions in the genitourinary tract: an evolving concept. Radiol Clin North Am. 2008;46(1):149–66.
36.
37.
go back to reference Langer CJ, et al. Cooperative group portfolio in locally advanced non-small-cell lung cancer: Are we making progress? Clin Lung Cancer. 2008;9(2):85–91.PubMedCrossRef Langer CJ, et al. Cooperative group portfolio in locally advanced non-small-cell lung cancer: Are we making progress? Clin Lung Cancer. 2008;9(2):85–91.PubMedCrossRef
38.
go back to reference Lefkopoulos D, et al. Present and future of the Image Guided Radiotherapy (IGRT) and its applications in lung cancer treatment. Cancer Radiother. 2007;11(1–2):23–31.PubMedCrossRef Lefkopoulos D, et al. Present and future of the Image Guided Radiotherapy (IGRT) and its applications in lung cancer treatment. Cancer Radiother. 2007;11(1–2):23–31.PubMedCrossRef
39.
go back to reference Lohr F, et al. Image-guided radiotherapy for prostate cancer. Aktuelle Urologie. 2007;38(5):386–91.PubMedCrossRef Lohr F, et al. Image-guided radiotherapy for prostate cancer. Aktuelle Urologie. 2007;38(5):386–91.PubMedCrossRef
40.
go back to reference Park C, Zhang G, Choy H. 4-Dimensional conformal radiation therapy: image-guided radiation therapy and its application in lung cancer treatment. Clin Lung Cancer. 2006;8(3):187–94.PubMedCrossRef Park C, Zhang G, Choy H. 4-Dimensional conformal radiation therapy: image-guided radiation therapy and its application in lung cancer treatment. Clin Lung Cancer. 2006;8(3):187–94.PubMedCrossRef
41.
go back to reference Timmerman RD, Forster KM, Cho LC. Extracranial stereotactic radiation delivery. Semin Radiat Oncol. 2005;15(3):202–7.PubMedCrossRef Timmerman RD, Forster KM, Cho LC. Extracranial stereotactic radiation delivery. Semin Radiat Oncol. 2005;15(3):202–7.PubMedCrossRef
43.
go back to reference Yamada Y, Lovelock DM, Bilsky MH. A review of image-guided intensity-modulated radiotherapy for spinal tumors. Neurosurgery. 2007;61(2):226–35.PubMedCrossRef Yamada Y, Lovelock DM, Bilsky MH. A review of image-guided intensity-modulated radiotherapy for spinal tumors. Neurosurgery. 2007;61(2):226–35.PubMedCrossRef
44.
go back to reference Yamada Y, et al. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys. 2005;62(1):53–61.PubMedCrossRef Yamada Y, et al. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys. 2005;62(1):53–61.PubMedCrossRef
45.
go back to reference Yamada Y, Lovelock M, Bilsky MH. Image-guided intensity-modulated radiation therapy of spine tumors. Curr Neurol Neurosci Rep. 2006;6(3):207–11.PubMedCrossRef Yamada Y, Lovelock M, Bilsky MH. Image-guided intensity-modulated radiation therapy of spine tumors. Curr Neurol Neurosci Rep. 2006;6(3):207–11.PubMedCrossRef
46.
go back to reference Bortfeld T, Chen G. Introduction: intrafractional organ motion and its management. Semin Radiat Oncol. 2004;14(1):1.CrossRef Bortfeld T, Chen G. Introduction: intrafractional organ motion and its management. Semin Radiat Oncol. 2004;14(1):1.CrossRef
47.
go back to reference Jaffray D. Image-guided radiation therapy: from concept to practice. Semin Radiat Oncol. 2007;17(4):243–306.PubMedCrossRef Jaffray D. Image-guided radiation therapy: from concept to practice. Semin Radiat Oncol. 2007;17(4):243–306.PubMedCrossRef
48.
go back to reference Kessler M. Image registration and data fusion in radiation therapy. Br J Radiol. 2006;79:S99–108.PubMedCrossRef Kessler M. Image registration and data fusion in radiation therapy. Br J Radiol. 2006;79:S99–108.PubMedCrossRef
49.
go back to reference Swerdloff S. Data handling in radiation therapy in the age of image-guided radiation therapy. Semin Radiat Oncol. 2007;17(5):287–92.PubMedCrossRef Swerdloff S. Data handling in radiation therapy in the age of image-guided radiation therapy. Semin Radiat Oncol. 2007;17(5):287–92.PubMedCrossRef
50.
go back to reference Berbeco RI, et al. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic X-ray systems with flat-panel detectors. Phys Med Biol. 2004;49(2):243–55. Berbeco RI, et al. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic X-ray systems with flat-panel detectors. Phys Med Biol. 2004;49(2):243–55.
51.
go back to reference Pouliot J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(2):552–60.PubMedCrossRef Pouliot J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(2):552–60.PubMedCrossRef
52.
go back to reference Pouliot J. Megavoltage imaging, megavoltage cone beam CT and dose-guided radiation therapy. Front Radiat Ther Oncol. 2007;40:132–42. Pouliot J. Megavoltage imaging, megavoltage cone beam CT and dose-guided radiation therapy. Front Radiat Ther Oncol. 2007;40:132–42.
53.
go back to reference Mackie TR, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(1):89–105.PubMedCrossRef Mackie TR, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(1):89–105.PubMedCrossRef
54.
go back to reference Berbeco RI, et al. Clinical feasibility of using an epid in cine mode for image-guided verification of stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):258–66.PubMedCrossRef Berbeco RI, et al. Clinical feasibility of using an epid in cine mode for image-guided verification of stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):258–66.PubMedCrossRef
56.
go back to reference Raaymakers B, et al. Integrating a MRI scanner with a 6 MV radiotehrapy accelerator. Phys Med Biol. 2007;49:4109–18.CrossRef Raaymakers B, et al. Integrating a MRI scanner with a 6 MV radiotehrapy accelerator. Phys Med Biol. 2007;49:4109–18.CrossRef
58.
go back to reference Balter JM, Cao Y. Advanced technologies in image-guided radiation therapy. Semin Radiat Oncol. 2007;17(4):293–7.PubMedCrossRef Balter JM, Cao Y. Advanced technologies in image-guided radiation therapy. Semin Radiat Oncol. 2007;17(4):293–7.PubMedCrossRef
59.
go back to reference Lee SW, et al. Clinical assessment and characterization of a dual-tube kilovoltage X-ray localization system in the radiotherapy treatment room. J Appl Clin Med Phys. 2008;9(1):1–15. Lee SW, et al. Clinical assessment and characterization of a dual-tube kilovoltage X-ray localization system in the radiotherapy treatment room. J Appl Clin Med Phys. 2008;9(1):1–15.
60.
go back to reference Jin JY, et al. Evaluation of residual patient position variation for spinal radiosurgery using the Novalis image guided system. Med Phys. 2008;35(3):1087–93.PubMedCrossRef Jin JY, et al. Evaluation of residual patient position variation for spinal radiosurgery using the Novalis image guided system. Med Phys. 2008;35(3):1087–93.PubMedCrossRef
61.
go back to reference Teh BS, et al. Versatility of the novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat. 2007;6(4):347–54.PubMedCrossRef Teh BS, et al. Versatility of the novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat. 2007;6(4):347–54.PubMedCrossRef
62.
go back to reference Ernst-Stecken A, et al. Hypofractionated stereotactic radiotherapy to the rat hippocampus—determination of dose response and tolerance. Strahlentherapie Und Onkologie. 2007;183(8):440–6.PubMedCrossRef Ernst-Stecken A, et al. Hypofractionated stereotactic radiotherapy to the rat hippocampus—determination of dose response and tolerance. Strahlentherapie Und Onkologie. 2007;183(8):440–6.PubMedCrossRef
63.
go back to reference Soete G, et al. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys. 2007;67(3):823–7.PubMedCrossRef Soete G, et al. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys. 2007;67(3):823–7.PubMedCrossRef
64.
go back to reference Verellen D, et al. Breathing-synchronized irradiation using stereoscopic KV-imaging to limit influence of interplay between leaf motion and organ motion in 3D-CRT and IMRT: dosimetric verification and first clinical experience. Int J Rad Oncol Biol Phys. 2006;66(4):S108–19.CrossRef Verellen D, et al. Breathing-synchronized irradiation using stereoscopic KV-imaging to limit influence of interplay between leaf motion and organ motion in 3D-CRT and IMRT: dosimetric verification and first clinical experience. Int J Rad Oncol Biol Phys. 2006;66(4):S108–19.CrossRef
65.
go back to reference Wurm RE, et al. Image guided respiratory gated hypofractionated Stereotactic Body Radiation Therapy (H-SBRT) for liver and lung tumors: initial experience. Acta Oncologica. 2006;45(7):881–9.PubMedCrossRef Wurm RE, et al. Image guided respiratory gated hypofractionated Stereotactic Body Radiation Therapy (H-SBRT) for liver and lung tumors: initial experience. Acta Oncologica. 2006;45(7):881–9.PubMedCrossRef
66.
go back to reference Yan H, Yin FF, Kim JH. A phantom study on the positioning accuracy of the Novalis Body system. Med Phys. 2003;30(12):3052–60.PubMedCrossRef Yan H, Yin FF, Kim JH. A phantom study on the positioning accuracy of the Novalis Body system. Med Phys. 2003;30(12):3052–60.PubMedCrossRef
67.
go back to reference Watchman CJ, et al. Patient positioning using implanted gold markers with the novalis body system in the thoracic spine. Neurosurgery. 2008;62(5 Suppl):A62–8 (discussion A68). Watchman CJ, et al. Patient positioning using implanted gold markers with the novalis body system in the thoracic spine. Neurosurgery. 2008;62(5 Suppl):A62–8 (discussion A68).
68.
go back to reference Fuller CD, et al. Method comparison of ultrasound and kilovoltage X-ray fiducial marker imaging for prostate radiotherapy targeting. Phys Med Biol. 2006;51(19):4981–93. Fuller CD, et al. Method comparison of ultrasound and kilovoltage X-ray fiducial marker imaging for prostate radiotherapy targeting. Phys Med Biol. 2006;51(19):4981–93.
69.
go back to reference Ryu SI, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery. 2001;49(4):838–46.PubMed Ryu SI, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery. 2001;49(4):838–46.PubMed
70.
go back to reference Seppenwoolde Y, et al. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–84.PubMedCrossRef Seppenwoolde Y, et al. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–84.PubMedCrossRef
71.
go back to reference Shiu AS, et al. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys. 2003;57(3):605–13.PubMedCrossRef Shiu AS, et al. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys. 2003;57(3):605–13.PubMedCrossRef
72.
go back to reference Amies C, et al. A multi-platform approach to image guided radiation therapy (IGRT). Med Dosim. 2006;31(1):12–9.PubMedCrossRef Amies C, et al. A multi-platform approach to image guided radiation therapy (IGRT). Med Dosim. 2006;31(1):12–9.PubMedCrossRef
73.
go back to reference Charlie CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31(1):30–9.CrossRef Charlie CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31(1):30–9.CrossRef
74.
go back to reference Wong JR, et al. Image-guided radiotherapy for prostate cancer by CT–linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys. 2005;61(2):561–9. Wong JR, et al. Image-guided radiotherapy for prostate cancer by CT–linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys. 2005;61(2):561–9.
75.
go back to reference Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31(1):30–9.PubMedCrossRef Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31(1):30–9.PubMedCrossRef
76.
go back to reference Thieke C, et al. Kilovoltage CT using a linac–CT scanner combination. Br J Radiol. 2006;79(Spec No 1):S79–86. Thieke C, et al. Kilovoltage CT using a linac–CT scanner combination. Br J Radiol. 2006;79(Spec No 1):S79–86.
77.
go back to reference Lattanzi J, et al. Ultrasound-based stereotactic guidance in prostate cancer—quantification of organ motion and set-up errors in external beam radiation therapy. Comput Aided Surg. 2000;5(4):289–95. Lattanzi J, et al. Ultrasound-based stereotactic guidance in prostate cancer—quantification of organ motion and set-up errors in external beam radiation therapy. Comput Aided Surg. 2000;5(4):289–95.
78.
go back to reference Boda-Heggemann J, et al. Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70(4):1247–55.PubMedCrossRef Boda-Heggemann J, et al. Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70(4):1247–55.PubMedCrossRef
79.
go back to reference Roeske JC, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys. 1995;33(5):1321–9.PubMedCrossRef Roeske JC, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys. 1995;33(5):1321–9.PubMedCrossRef
80.
go back to reference Beard CJ, et al. Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys. 1996;34(2):451–8.PubMedCrossRef Beard CJ, et al. Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys. 1996;34(2):451–8.PubMedCrossRef
81.
go back to reference Melian E, et al. Variation in prostate position quantitation and implications for three-dimensional conformal treatment planning. Int J Radiat Oncol Biol Phys. 1997;38(1):73–81.PubMedCrossRef Melian E, et al. Variation in prostate position quantitation and implications for three-dimensional conformal treatment planning. Int J Radiat Oncol Biol Phys. 1997;38(1):73–81.PubMedCrossRef
82.
go back to reference Langen KM, et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(3):635–44.PubMedCrossRef Langen KM, et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(3):635–44.PubMedCrossRef
83.
go back to reference Cury F, et al. Ultrasound-based image guided radiotherapy for prostate cancer—comparison of cross modality and intramodlaity methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(5):1562–7. Cury F, et al. Ultrasound-based image guided radiotherapy for prostate cancer—comparison of cross modality and intramodlaity methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(5):1562–7.
84.
go back to reference Bert C, et al. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys. 2006;64(4):1265–74.PubMedCrossRef Bert C, et al. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys. 2006;64(4):1265–74.PubMedCrossRef
85.
go back to reference Bert C, et al. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. Med Phys. 2005;32(9):2753–62.PubMedCrossRef Bert C, et al. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. Med Phys. 2005;32(9):2753–62.PubMedCrossRef
86.
go back to reference Willoughby TR, et al. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2006;65(2):528–34.PubMedCrossRef Willoughby TR, et al. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2006;65(2):528–34.PubMedCrossRef
87.
go back to reference Litzenberg DW, et al. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int J Radiat Oncol Biol Phys. 2007;68(4):1199–206.PubMedCrossRef Litzenberg DW, et al. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int J Radiat Oncol Biol Phys. 2007;68(4):1199–206.PubMedCrossRef
88.
go back to reference Langen KM, et al. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys. 2008;71(4):1084–90.PubMedCrossRef Langen KM, et al. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys. 2008;71(4):1084–90.PubMedCrossRef
89.
go back to reference Kupelian P, et al. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67(4):1088–98.PubMedCrossRef Kupelian P, et al. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67(4):1088–98.PubMedCrossRef
90.
go back to reference Bissonnette JP. Quality assurance of image-guidance technologies. Semin Radiat Oncol. 2007;17(4):278–86.PubMedCrossRef Bissonnette JP. Quality assurance of image-guidance technologies. Semin Radiat Oncol. 2007;17(4):278–86.PubMedCrossRef
91.
go back to reference Herman MG, et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys. 2001;28(5):712–37.PubMedCrossRef Herman MG, et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys. 2001;28(5):712–37.PubMedCrossRef
92.
go back to reference Kutcher GJ, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21(4):581–618.PubMedCrossRef Kutcher GJ, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21(4):581–618.PubMedCrossRef
93.
go back to reference Mutic S, et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003;30(10):2762–92.PubMedCrossRef Mutic S, et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003;30(10):2762–92.PubMedCrossRef
94.
go back to reference Yoo S, et al. A quality assurance program for the on-board imagers. Med Phys. 2006;33(11):4431–47.PubMedCrossRef Yoo S, et al. A quality assurance program for the on-board imagers. Med Phys. 2006;33(11):4431–47.PubMedCrossRef
95.
go back to reference van Herk M. Different styles of image-guided radiotherapy. Semin Radiat Oncol. 2007;17(4):258–67.PubMedCrossRef van Herk M. Different styles of image-guided radiotherapy. Semin Radiat Oncol. 2007;17(4):258–67.PubMedCrossRef
96.
go back to reference de Boer H, BJM H. eNAL: an extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. Int J Radiat Oncol Biol Phys. 2007;67(5):1586–95.PubMedCrossRef de Boer H, BJM H. eNAL: an extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. Int J Radiat Oncol Biol Phys. 2007;67(5):1586–95.PubMedCrossRef
97.
go back to reference West JB, et al. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48(4):810–6 (discussion 816–7). West JB, et al. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48(4):810–6 (discussion 816–7).
98.
go back to reference Fitzpatrick JM, West JB, Maurer CR Jr. Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging. 1998;17(5):694–702.PubMedCrossRef Fitzpatrick JM, West JB, Maurer CR Jr. Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging. 1998;17(5):694–702.PubMedCrossRef
99.
go back to reference Gierga DP, et al. Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2008;70(4):1239–46.PubMedCrossRef Gierga DP, et al. Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2008;70(4):1239–46.PubMedCrossRef
Metadata
Title
A review of image-guided radiotherapy
Authors
George T. Y. Chen
Gregory C. Sharp
Shinichiro Mori
Publication date
01-01-2009
Publisher
Springer Japan
Published in
Radiological Physics and Technology / Issue 1/2009
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-008-0045-y

Other articles of this Issue 1/2009

Radiological Physics and Technology 1/2009 Go to the issue