Skip to main content
Top
Published in: International Journal of Hematology 2/2008

01-09-2008 | Original Article

Genetic evidence of PEBP2β-independent activation of Runx1 in the murine embryo

Authors: Tomomasa Yokomizo, Masatoshi Yanagida, Gang Huang, Motomi Osato, Chikako Honda, Masatsugu Ema, Satoru Takahashi, Masayuki Yamamoto, Yoshiaki Ito

Published in: International Journal of Hematology | Issue 2/2008

Login to get access

Abstract

The Runx1/AML1 transcription factor is required for the generation of hematopoietic stem cells and is one of the most frequently targeted genes in human leukemia. Runx1-deficient mice die around embryonic day (E)12.5 due to severe hemorrhage in the central nervous system and the complete absence of definitive hematopoietic cells. Since mice lacking the heterodimeric partner of Runx1, PEBP2β/CBFβ, are almost identical in phenotype to Runx1 −/− mice, PEBP2β was believed to be essential for the in vivo function of Runx1. Here we show that transgenic overexpression of Runx1 partially rescues the lethal phenotype of PEBP2β-deficient mice at E12.5. Some of the rescued mice escaped from the severe hemorrhage at E11.5-12.5, although definitive hematopoiesis was not restored. Thus, PEBP2β-independent Runx1 activation can occur in vivo. This observation sheds new light on the mechanism(s) that regulate the activity of Runx transcription factors.
Literature
1.
go back to reference Ito Y. Molecular basis of tissue-specific gene expression mediated by the runt domain transcription factor PEBP2/CBF. Genes Cells. 1999;4:685–96.CrossRefPubMed Ito Y. Molecular basis of tissue-specific gene expression mediated by the runt domain transcription factor PEBP2/CBF. Genes Cells. 1999;4:685–96.CrossRefPubMed
2.
3.
go back to reference Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2:502–3.CrossRefPubMed Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2:502–3.CrossRefPubMed
4.
go back to reference Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene. 2004;23:4284–96.CrossRefPubMed Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene. 2004;23:4284–96.CrossRefPubMed
5.
go back to reference Cai ZL, de Bruijn M, Ma XQ, et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity. 2000;13:423–31.CrossRefPubMed Cai ZL, de Bruijn M, Ma XQ, et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity. 2000;13:423–31.CrossRefPubMed
6.
go back to reference Okada H, Watanabe T, Niki M, et al. AML1(-/-) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene. 1998;17:2287–93.CrossRefPubMed Okada H, Watanabe T, Niki M, et al. AML1(-/-) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene. 1998;17:2287–93.CrossRefPubMed
7.
go back to reference Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.CrossRefPubMed Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.CrossRefPubMed
8.
go back to reference Wang Q, Stacy T, Binder M, Marin Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93:3444–9.CrossRefPubMedPubMedCentral Wang Q, Stacy T, Binder M, Marin Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93:3444–9.CrossRefPubMedPubMedCentral
9.
go back to reference Niki M, Okada H, Takano H, et al. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc Natl Acad Sci USA. 1997;94:5697–702.CrossRefPubMedPubMedCentral Niki M, Okada H, Takano H, et al. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc Natl Acad Sci USA. 1997;94:5697–702.CrossRefPubMedPubMedCentral
10.
go back to reference Sasaki K, Yagi H, Bronson RT, et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor β. Proc Natl Acad Sci USA. 1996;93:12359–63.CrossRefPubMedPubMedCentral Sasaki K, Yagi H, Bronson RT, et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor β. Proc Natl Acad Sci USA. 1996;93:12359–63.CrossRefPubMedPubMedCentral
11.
go back to reference Wang Q, Stacy T, Miller JD, et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell. 1996;87:697–708.CrossRefPubMed Wang Q, Stacy T, Miller JD, et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell. 1996;87:697–708.CrossRefPubMed
12.
go back to reference Tahirov TH, Inoue-Bungo T, Morii H, et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ. Cell. 2001;104:755–67.CrossRefPubMed Tahirov TH, Inoue-Bungo T, Morii H, et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ. Cell. 2001;104:755–67.CrossRefPubMed
13.
go back to reference Tang YY, Crute BE, Kelley JJ, et al. Biophysical characterization of interactions between the core binding factor alpha and beta subunits and DNA. FEBS Lett. 2000;470:167–72.CrossRefPubMed Tang YY, Crute BE, Kelley JJ, et al. Biophysical characterization of interactions between the core binding factor alpha and beta subunits and DNA. FEBS Lett. 2000;470:167–72.CrossRefPubMed
14.
go back to reference Kim WY, Sieweke M, Ogawa E, et al. Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J. 1999;18:1609–20.CrossRefPubMedPubMedCentral Kim WY, Sieweke M, Ogawa E, et al. Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J. 1999;18:1609–20.CrossRefPubMedPubMedCentral
15.
go back to reference Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. Mol Cell Biol. 1998;18:4197–208.CrossRefPubMedPubMedCentral Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. Mol Cell Biol. 1998;18:4197–208.CrossRefPubMedPubMedCentral
16.
go back to reference Yokomizo T, Takahashi S, Mochizuki N, et al. Characterization of GATA-1+ hemangioblastic cells in the mouse embryo. EMBO J. 2007;26:184–96.CrossRefPubMed Yokomizo T, Takahashi S, Mochizuki N, et al. Characterization of GATA-1+ hemangioblastic cells in the mouse embryo. EMBO J. 2007;26:184–96.CrossRefPubMed
17.
go back to reference Takakura N, Yoshida H, Ogura Y, Kataoka H, Nishikawa S, Nishikawa SI. PDGFRα expression during mouse embryogenesis: immunolocalization analyzed by whole-mount immunohistostaining using the monoclonal anti-mouse PDGFRα antibody APA5. J Histochem Cytochem. 1997;45:883–93.CrossRefPubMed Takakura N, Yoshida H, Ogura Y, Kataoka H, Nishikawa S, Nishikawa SI. PDGFRα expression during mouse embryogenesis: immunolocalization analyzed by whole-mount immunohistostaining using the monoclonal anti-mouse PDGFRα antibody APA5. J Histochem Cytochem. 1997;45:883–93.CrossRefPubMed
18.
go back to reference Yokomizo T, Ogawa M, Osato M, et al. Requirement of Runx1/AML1/PEBP2αB for the generation of haematopoietic cells from endothelial cells. Genes Cells. 2001;6(1):13–23.CrossRefPubMed Yokomizo T, Ogawa M, Osato M, et al. Requirement of Runx1/AML1/PEBP2αB for the generation of haematopoietic cells from endothelial cells. Genes Cells. 2001;6(1):13–23.CrossRefPubMed
19.
go back to reference Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 2001;20:723–33.CrossRefPubMedPubMedCentral Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 2001;20:723–33.CrossRefPubMedPubMedCentral
20.
go back to reference Lacaud G, Gore L, Kennedy M, et al. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood. 2002;100:458–66.CrossRefPubMed Lacaud G, Gore L, Kennedy M, et al. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood. 2002;100:458–66.CrossRefPubMed
21.
go back to reference Drissen R, von Lindern M, Kolbus A, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005;25:5205–14.CrossRefPubMedPubMedCentral Drissen R, von Lindern M, Kolbus A, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005;25:5205–14.CrossRefPubMedPubMedCentral
22.
go back to reference Shimizu R, Takahashi S, Ohneda K, Engel JD, Yamamoto M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 2001;20:5250–60.CrossRefPubMedPubMedCentral Shimizu R, Takahashi S, Ohneda K, Engel JD, Yamamoto M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 2001;20:5250–60.CrossRefPubMedPubMedCentral
23.
go back to reference Miller J, Horner A, Stacy T, et al. The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nat Genet. 2002;32:645–9.CrossRefPubMed Miller J, Horner A, Stacy T, et al. The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nat Genet. 2002;32:645–9.CrossRefPubMed
24.
go back to reference Takakura N, Watanabe T, Suenobu S, et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell. 2000;102:199–209.CrossRefPubMed Takakura N, Watanabe T, Suenobu S, et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell. 2000;102:199–209.CrossRefPubMed
25.
go back to reference Samokhvalov IM, Samokhvalova NI, Nishikawa S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007;446:1056–61.CrossRefPubMed Samokhvalov IM, Samokhvalova NI, Nishikawa S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007;446:1056–61.CrossRefPubMed
26.
go back to reference Lee J, Ahnn J, Bae SC. Homolog of RUNX and CBFβ/PEBP2β in C. elegans. Oncogene. 2004;23:4346–52.CrossRefPubMed Lee J, Ahnn J, Bae SC. Homolog of RUNX and CBFβ/PEBP2β in C. elegans. Oncogene. 2004;23:4346–52.CrossRefPubMed
27.
go back to reference Bollerot K, Romero S, Dunon D, Jaffredo T. Core binding factor in the early avian embryo: cloning of Cbfβ and combinatorial expression patterns with Runx1. Gene Expr Patterns. 2005;6:29–39.CrossRefPubMed Bollerot K, Romero S, Dunon D, Jaffredo T. Core binding factor in the early avian embryo: cloning of Cbfβ and combinatorial expression patterns with Runx1. Gene Expr Patterns. 2005;6:29–39.CrossRefPubMed
Metadata
Title
Genetic evidence of PEBP2β-independent activation of Runx1 in the murine embryo
Authors
Tomomasa Yokomizo
Masatoshi Yanagida
Gang Huang
Motomi Osato
Chikako Honda
Masatsugu Ema
Satoru Takahashi
Masayuki Yamamoto
Yoshiaki Ito
Publication date
01-09-2008
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 2/2008
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-008-0121-4

Other articles of this Issue 2/2008

International Journal of Hematology 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine