Skip to main content
Top
Published in: Annals of Nuclear Medicine 2/2022

01-02-2022 | Artificial Intelligence | Invited Review Article

Artificial intelligence for nuclear medicine in oncology

Authors: Kenji Hirata, Hiroyuki Sugimori, Noriyuki Fujima, Takuya Toyonaga, Kohsuke Kudo

Published in: Annals of Nuclear Medicine | Issue 2/2022

Login to get access

Abstract

As in all other medical fields, artificial intelligence (AI) is increasingly being used in nuclear medicine for oncology. There are many articles that discuss AI from the viewpoint of nuclear medicine, but few focus on nuclear medicine from the viewpoint of AI. Nuclear medicine images are characterized by their low spatial resolution and high quantitativeness. It is noted that AI has been used since before the emergence of deep learning. AI can be divided into three categories by its purpose: (1) assisted interpretation, i.e., computer-aided detection (CADe) or computer-aided diagnosis (CADx). (2) Additional insight, i.e., AI provides information beyond the radiologist's eye, such as predicting genes and prognosis from images. It is also related to the field called radiomics/radiogenomics. (3) Augmented image, i.e., image generation tasks. To apply AI to practical use, harmonization between facilities and the possibility of black box explanations need to be resolved.
Literature
1.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol 1. Curran Associates Inc., Lake Tahoe, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol 1. Curran Associates Inc., Lake Tahoe, pp 1097–1105
2.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.PubMed LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.PubMed
3.
go back to reference Ueda D, Yamamoto A, Shimazaki A, Walston SL, Matsumoto T, Izumi N, Tsukioka T, Komatsu H, Inoue H, Kabata D, et al. Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study. BMC Cancer. 2021;21(1):1120.PubMedPubMedCentral Ueda D, Yamamoto A, Shimazaki A, Walston SL, Matsumoto T, Izumi N, Tsukioka T, Komatsu H, Inoue H, Kabata D, et al. Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study. BMC Cancer. 2021;21(1):1120.PubMedPubMedCentral
4.
go back to reference Niikura R, Aoki T, Shichijo S, Yamada A, Kawahara T, Kato Y, Hirata Y, Hayakawa Y, Suzuki N, Ochi M, HirasawaT Tada T, Kawai T, Koike K. Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer inpatients who underwent upper gastrointestinal endoscopy. Endoscopy. 2021. https://doi.org/10.1055/a-1660-6500. Epub ahead of print. PMID: 34607377CrossRefPubMed Niikura R, Aoki T, Shichijo S, Yamada A, Kawahara T, Kato Y, Hirata Y, Hayakawa Y, Suzuki N, Ochi M, HirasawaT Tada T, Kawai T, Koike K. Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer inpatients who underwent upper gastrointestinal endoscopy. Endoscopy. 2021. https://​doi.​org/​10.​1055/​a-1660-6500. Epub ahead of print. PMID: 34607377CrossRefPubMed
5.
go back to reference O’Byrne C, Abbas A, Korot E, Keane PA. Automated deep learning in ophthalmology: AI that can build AI. Curr Opin Ophthalmol. 2021;32(5):406–12.PubMed O’Byrne C, Abbas A, Korot E, Keane PA. Automated deep learning in ophthalmology: AI that can build AI. Curr Opin Ophthalmol. 2021;32(5):406–12.PubMed
6.
go back to reference Ni P, Huang N, Nie F, Zhang J, Zhang Z, Wu B, Bai L, Liu W, Xiao CL, Luo F, et al. Genome-wide detection of cytosine methylations in plant from nanopore data using deep learning. Nat Commun. 2021;12(1):5976.PubMedPubMedCentral Ni P, Huang N, Nie F, Zhang J, Zhang Z, Wu B, Bai L, Liu W, Xiao CL, Luo F, et al. Genome-wide detection of cytosine methylations in plant from nanopore data using deep learning. Nat Commun. 2021;12(1):5976.PubMedPubMedCentral
7.
go back to reference Xu W, Gao Y, Wang Y, Guan J. Protein-protein interaction prediction based on ordinal regression and recurrent convolutional neural networks. BMC Bioinform. 2021;22(Suppl 6):485. Xu W, Gao Y, Wang Y, Guan J. Protein-protein interaction prediction based on ordinal regression and recurrent convolutional neural networks. BMC Bioinform. 2021;22(Suppl 6):485.
9.
go back to reference Toosi A, Bottino AG, Saboury B, Siegel E, Rahmim A. A brief history of AI: how to prevent another winter (a critical review). PET Clin. 2021;16(4):449–69.PubMed Toosi A, Bottino AG, Saboury B, Siegel E, Rahmim A. A brief history of AI: how to prevent another winter (a critical review). PET Clin. 2021;16(4):449–69.PubMed
10.
go back to reference Suzuki K, Okamura Y, Hara T, Terakawa T, Furukawa J, Harada K, Hinata N, Fujisawa M. Prognostic impact of bone metastatic volume beyond vertebrae and pelvis in patients with metastatic hormone-sensitive prostate cancer. Int J Clin Oncol. 2021;26(8):1533–40.PubMed Suzuki K, Okamura Y, Hara T, Terakawa T, Furukawa J, Harada K, Hinata N, Fujisawa M. Prognostic impact of bone metastatic volume beyond vertebrae and pelvis in patients with metastatic hormone-sensitive prostate cancer. Int J Clin Oncol. 2021;26(8):1533–40.PubMed
11.
go back to reference Uemura K, Miyoshi Y, Kawahara T, Ryosuke J, Yamashita D, Yoneyama S, Yokomizo Y, Kobayashi K, Kishida T, Yao M, et al. Prognostic value of an automated bone scan index for men with metastatic castration-resistant prostate cancer treated with cabazitaxel. BMC Cancer. 2018;18(1):501.PubMedPubMedCentral Uemura K, Miyoshi Y, Kawahara T, Ryosuke J, Yamashita D, Yoneyama S, Yokomizo Y, Kobayashi K, Kishida T, Yao M, et al. Prognostic value of an automated bone scan index for men with metastatic castration-resistant prostate cancer treated with cabazitaxel. BMC Cancer. 2018;18(1):501.PubMedPubMedCentral
12.
go back to reference Nakajima K, Edenbrandt L, Mizokami A. Bone scan index: a new biomarker of bone metastasis in patients with prostate cancer. Int J Urol. 2017;24(9):668–73.PubMed Nakajima K, Edenbrandt L, Mizokami A. Bone scan index: a new biomarker of bone metastasis in patients with prostate cancer. Int J Urol. 2017;24(9):668–73.PubMed
13.
go back to reference Idota A, Sawaki M, Yoshimura A, Hattori M, Inaba Y, Oze I, Kikumori T, Kodera Y, Iwata H. Bone Scan Index predicts skeletal-related events in patients with metastatic breast cancer. Springerplus. 2016;5(1):1095.PubMedPubMedCentral Idota A, Sawaki M, Yoshimura A, Hattori M, Inaba Y, Oze I, Kikumori T, Kodera Y, Iwata H. Bone Scan Index predicts skeletal-related events in patients with metastatic breast cancer. Springerplus. 2016;5(1):1095.PubMedPubMedCentral
14.
go back to reference Miyoshi Y, Yoneyama S, Kawahara T, Hattori Y, Teranishi J, Kondo K, Moriyama M, Takebayashi S, Yokomizo Y, Yao M, et al. Prognostic value of the bone scan index using a computer-aided diagnosis system for bone scans in hormone-naive prostate cancer patients with bone metastases. BMC Cancer. 2016;16:128.PubMedPubMedCentral Miyoshi Y, Yoneyama S, Kawahara T, Hattori Y, Teranishi J, Kondo K, Moriyama M, Takebayashi S, Yokomizo Y, Yao M, et al. Prognostic value of the bone scan index using a computer-aided diagnosis system for bone scans in hormone-naive prostate cancer patients with bone metastases. BMC Cancer. 2016;16:128.PubMedPubMedCentral
15.
go back to reference Uemura K, Miyoshi Y, Kawahara T, Yoneyama S, Hattori Y, Teranishi J, Kondo K, Moriyama M, Takebayashi S, Yokomizo Y, et al. Prognostic value of a computer-aided diagnosis system involving bone scans among men treated with docetaxel for metastatic castration-resistant prostate cancer. BMC Cancer. 2016;16:109.PubMedPubMedCentral Uemura K, Miyoshi Y, Kawahara T, Yoneyama S, Hattori Y, Teranishi J, Kondo K, Moriyama M, Takebayashi S, Yokomizo Y, et al. Prognostic value of a computer-aided diagnosis system involving bone scans among men treated with docetaxel for metastatic castration-resistant prostate cancer. BMC Cancer. 2016;16:109.PubMedPubMedCentral
16.
go back to reference Koizumi M, Motegi K, Koyama M, Ishiyama M, Togawa T, Makino T, Arisaka Y, Terauchi T. Diagnostic performance of a computer-assisted diagnostic system: sensitivity of BONENAVI for bone scintigraphy in patients with disseminated skeletal metastasis is not so high. Ann Nucl Med. 2020;34(3):200–11.PubMedPubMedCentral Koizumi M, Motegi K, Koyama M, Ishiyama M, Togawa T, Makino T, Arisaka Y, Terauchi T. Diagnostic performance of a computer-assisted diagnostic system: sensitivity of BONENAVI for bone scintigraphy in patients with disseminated skeletal metastasis is not so high. Ann Nucl Med. 2020;34(3):200–11.PubMedPubMedCentral
17.
go back to reference Yamamoto Y, Mitsunaga S, Horikawa A, Hino A, Kurihara H. Quantitative bone scan imaging using BSI and BUV: an approach to evaluate ARONJ early. Ann Nucl Med. 2020;34(1):74–9.PubMed Yamamoto Y, Mitsunaga S, Horikawa A, Hino A, Kurihara H. Quantitative bone scan imaging using BSI and BUV: an approach to evaluate ARONJ early. Ann Nucl Med. 2020;34(1):74–9.PubMed
18.
go back to reference Watanabe S, Nakajima K, Mizokami A, Yaegashi H, Noguchi N, Kawashiri S, Inokuchi M, Kinuya S. Bone scan index of the jaw: a new approach for evaluating early-stage anti-resorptive agents-related osteonecrosis. Ann Nucl Med. 2017;31(3):201–10.PubMed Watanabe S, Nakajima K, Mizokami A, Yaegashi H, Noguchi N, Kawashiri S, Inokuchi M, Kinuya S. Bone scan index of the jaw: a new approach for evaluating early-stage anti-resorptive agents-related osteonecrosis. Ann Nucl Med. 2017;31(3):201–10.PubMed
19.
go back to reference Okada Y, Matsushita S, Nakajima Y, Yamaguchi K, Okuda I, Kojima Y, Tsugawa K. Comparison of diagnostic precision for bone metastasis of primary breast cancer between BONENAVI version 1 and BONENAVI version 2. Nucl Med Commun. 2019;40(11):1148–53.PubMed Okada Y, Matsushita S, Nakajima Y, Yamaguchi K, Okuda I, Kojima Y, Tsugawa K. Comparison of diagnostic precision for bone metastasis of primary breast cancer between BONENAVI version 1 and BONENAVI version 2. Nucl Med Commun. 2019;40(11):1148–53.PubMed
20.
go back to reference Isoda T, BaBa S, Maruoka Y, Kitamura Y, Tahara K, Sasaki M, Hatakenaka M, Honda H. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, BONENAVI, on bone scintigraphy images. Asia Ocean J Nucl Med Biol. 2017;5(1):49–55.PubMedPubMedCentral Isoda T, BaBa S, Maruoka Y, Kitamura Y, Tahara K, Sasaki M, Hatakenaka M, Honda H. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, BONENAVI, on bone scintigraphy images. Asia Ocean J Nucl Med Biol. 2017;5(1):49–55.PubMedPubMedCentral
21.
go back to reference Shintawati R, Achmad A, Higuchi T, Shimada H, Hirasawa H, Arisaka Y, Takahashi A, Nakajima T, Tsushima Y. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann Nucl Med. 2015;29(10):911–20.PubMed Shintawati R, Achmad A, Higuchi T, Shimada H, Hirasawa H, Arisaka Y, Takahashi A, Nakajima T, Tsushima Y. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann Nucl Med. 2015;29(10):911–20.PubMed
22.
go back to reference Nakajima K, Okuda K, Matsuo S, Kiso K, Kinuya S, Garcia EV. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: based on the Japanese Society of Nuclear Medicine working group normal database. J Nucl Cardiol. 2017;24(2):611–21.PubMed Nakajima K, Okuda K, Matsuo S, Kiso K, Kinuya S, Garcia EV. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: based on the Japanese Society of Nuclear Medicine working group normal database. J Nucl Cardiol. 2017;24(2):611–21.PubMed
23.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.PubMed
25.
go back to reference Hirata K, Kobayashi K, Wong KP, Manabe O, Surmak A, Tamaki N, Huang SC. A semi-automated technique determining the liver standardized uptake value reference for tumor delineation in FDG PET-CT. PLoS ONE. 2014;9(8):e105682.PubMedPubMedCentral Hirata K, Kobayashi K, Wong KP, Manabe O, Surmak A, Tamaki N, Huang SC. A semi-automated technique determining the liver standardized uptake value reference for tumor delineation in FDG PET-CT. PLoS ONE. 2014;9(8):e105682.PubMedPubMedCentral
26.
go back to reference Uchiyama Y, Hirata K, Watanabe S, Okamoto S, Shiga T, Okada K, Ito YM, Kudo K. Development and validation of a prediction model based on the organ-based metabolic tumor volume on FDG-PET in patients with differentiated thyroid carcinoma. Ann Nucl Med. 2021;35(11):1223–31.PubMed Uchiyama Y, Hirata K, Watanabe S, Okamoto S, Shiga T, Okada K, Ito YM, Kudo K. Development and validation of a prediction model based on the organ-based metabolic tumor volume on FDG-PET in patients with differentiated thyroid carcinoma. Ann Nucl Med. 2021;35(11):1223–31.PubMed
27.
go back to reference Shimizu A, Wakabayashi H, Kanamori T, Saito A, Nishikawa K, Daisaki H, Higashiyama S, Kawabe J. Automated measurement of bone scan index from a whole-body bone scintigram. Int J Comput Assist Radiol Surg. 2020;15(3):389–400.PubMed Shimizu A, Wakabayashi H, Kanamori T, Saito A, Nishikawa K, Daisaki H, Higashiyama S, Kawabe J. Automated measurement of bone scan index from a whole-body bone scintigram. Int J Comput Assist Radiol Surg. 2020;15(3):389–400.PubMed
28.
go back to reference Aoki Y, Nakayama M, Nomura K, Tomita Y, Nakajima K, Yamashina M, Okizaki A. The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer. Ann Nucl Med. 2020;34(12):926–31.PubMed Aoki Y, Nakayama M, Nomura K, Tomita Y, Nakajima K, Yamashina M, Okizaki A. The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer. Ann Nucl Med. 2020;34(12):926–31.PubMed
29.
go back to reference Shiri I, Arabi H, Sanaat A, Jenabi E, Becker M, Zaidi H. Fully automated gross tumor volume delineation from PET in head and neck cancer using deep learning algorithms. Clin Nucl Med. 2021;46(11):872–83.PubMed Shiri I, Arabi H, Sanaat A, Jenabi E, Becker M, Zaidi H. Fully automated gross tumor volume delineation from PET in head and neck cancer using deep learning algorithms. Clin Nucl Med. 2021;46(11):872–83.PubMed
30.
go back to reference Fu X, Bi L, Kumar A, Fulham M, Kim J. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation. IEEE J Biomed Health Inform. 2021;25(9):3507–16.PubMed Fu X, Bi L, Kumar A, Fulham M, Kim J. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation. IEEE J Biomed Health Inform. 2021;25(9):3507–16.PubMed
32.
go back to reference Amarasinghe KC, Lopes J, Beraldo J, Kiss N, Bucknell N, Everitt S, Jackson P, Litchfield C, Denehy L, Blyth BJ, et al. A deep learning model to automate skeletal muscle area measurement on computed tomography images. Front Oncol. 2021;11:580806.PubMedPubMedCentral Amarasinghe KC, Lopes J, Beraldo J, Kiss N, Bucknell N, Everitt S, Jackson P, Litchfield C, Denehy L, Blyth BJ, et al. A deep learning model to automate skeletal muscle area measurement on computed tomography images. Front Oncol. 2021;11:580806.PubMedPubMedCentral
33.
go back to reference Früh M, Fischer M, Schilling A, Gatidis S, Hepp T. Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging. J Med Imaging (Bellingham, Wash). 2021;8(5):054003. Früh M, Fischer M, Schilling A, Gatidis S, Hepp T. Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging. J Med Imaging (Bellingham, Wash). 2021;8(5):054003.
34.
go back to reference Guo R, Hu X, Song H, Xu P, Xu H, Rominger A, Lin X, Menze B, Li B, Shi K. Weakly supervised deep learning for determining the prognostic value of (18)F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type. Eur J Nucl Med Mol Imaging. 2021;48(10):3151–61.PubMedPubMedCentral Guo R, Hu X, Song H, Xu P, Xu H, Rominger A, Lin X, Menze B, Li B, Shi K. Weakly supervised deep learning for determining the prognostic value of (18)F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type. Eur J Nucl Med Mol Imaging. 2021;48(10):3151–61.PubMedPubMedCentral
35.
go back to reference Eyuboglu S, Angus G, Patel BN, Pareek A, Davidzon G, Long J, Dunnmon J, Lungren MP. Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT. Nat Commun. 2021;12(1):1880.PubMedPubMedCentral Eyuboglu S, Angus G, Patel BN, Pareek A, Davidzon G, Long J, Dunnmon J, Lungren MP. Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT. Nat Commun. 2021;12(1):1880.PubMedPubMedCentral
36.
go back to reference Hirata K, Manabe O, Magota K, Furuya S, Shiga T, Kudo K. A preliminary study to Use SUVmax of FDG PET-CT as an identifier of lesion for artificial intelligence. Front Med. 2021;8:647562. Hirata K, Manabe O, Magota K, Furuya S, Shiga T, Kudo K. A preliminary study to Use SUVmax of FDG PET-CT as an identifier of lesion for artificial intelligence. Front Med. 2021;8:647562.
37.
go back to reference Kawakami M, Hirata K, Furuya S, Kobayashi K, Sugimori H, Magota K, Katoh C. Development of combination methods for detecting malignant uptakes based on physiological uptake detection using object detection with PET-CT MIP images. Front Med. 2020;7:616746. Kawakami M, Hirata K, Furuya S, Kobayashi K, Sugimori H, Magota K, Katoh C. Development of combination methods for detecting malignant uptakes based on physiological uptake detection using object detection with PET-CT MIP images. Front Med. 2020;7:616746.
38.
go back to reference Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMed Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMed
39.
go back to reference Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to radiomics. J Nucl Med. 2020;61(4):488–95.PubMed Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to radiomics. J Nucl Med. 2020;61(4):488–95.PubMed
40.
go back to reference Bartoli M, Barat M, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassinotto C, Chassagnon G, Soyer P. CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol. 2020;38(12):1111–24.PubMed Bartoli M, Barat M, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassinotto C, Chassagnon G, Soyer P. CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol. 2020;38(12):1111–24.PubMed
41.
go back to reference Hotta M, Minamimoto R, Gohda Y, Miwa K, Otani K, Kiyomatsu T, Yano H. Prognostic value of (18)F-FDG PET/CT with texture analysis in patients with rectal cancer treated by surgery. Ann Nucl Med. 2021;35(7):843–52.PubMed Hotta M, Minamimoto R, Gohda Y, Miwa K, Otani K, Kiyomatsu T, Yano H. Prognostic value of (18)F-FDG PET/CT with texture analysis in patients with rectal cancer treated by surgery. Ann Nucl Med. 2021;35(7):843–52.PubMed
42.
go back to reference He J, Wang Q, Zhang Y, Wu H, Zhou Y, Zhao S. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on (18)F-FDG PET/CT and machine learning. Ann Nucl Med. 2021;35(5):617–27.PubMed He J, Wang Q, Zhang Y, Wu H, Zhou Y, Zhao S. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on (18)F-FDG PET/CT and machine learning. Ann Nucl Med. 2021;35(5):617–27.PubMed
43.
go back to reference Yoon H, Ha S, Kwon SJ, Park SY, Kim J, Yoo IR. Prognostic value of tumor metabolic imaging phenotype by FDG PET radiomics in HNSCC. Ann Nucl Med. 2021;35(3):370–7.PubMed Yoon H, Ha S, Kwon SJ, Park SY, Kim J, Yoo IR. Prognostic value of tumor metabolic imaging phenotype by FDG PET radiomics in HNSCC. Ann Nucl Med. 2021;35(3):370–7.PubMed
44.
go back to reference Peng L, Hong X, Yuan Q, Lu L, Wang Q, Chen W. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Ann Nucl Med. 2021;35(4):458–68.PubMed Peng L, Hong X, Yuan Q, Lu L, Wang Q, Chen W. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Ann Nucl Med. 2021;35(4):458–68.PubMed
45.
go back to reference Koyasu S, Nishio M, Isoda H, Nakamoto Y, Togashi K. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on (18)F FDG-PET/CT. Ann Nucl Med. 2020;34(1):49–57.PubMed Koyasu S, Nishio M, Isoda H, Nakamoto Y, Togashi K. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on (18)F FDG-PET/CT. Ann Nucl Med. 2020;34(1):49–57.PubMed
46.
go back to reference Parvez A, Tau N, Hussey D, Maganti M, Metser U. (18)F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med. 2018;32(6):410–6.PubMed Parvez A, Tau N, Hussey D, Maganti M, Metser U. (18)F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med. 2018;32(6):410–6.PubMed
47.
go back to reference Ferreira M, Lovinfosse P, Hermesse J, Decuypere M, Rousseau C, Lucia F, Schick U, Reinhold C, Robin P, Hatt M, et al. [(18)F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging. 2021;48(11):3432–43.PubMedPubMedCentral Ferreira M, Lovinfosse P, Hermesse J, Decuypere M, Rousseau C, Lucia F, Schick U, Reinhold C, Robin P, Hatt M, et al. [(18)F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging. 2021;48(11):3432–43.PubMedPubMedCentral
48.
go back to reference Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, Gao C, Sun Y, Tian J, Zhao X, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun. 2020;11(1):5228.PubMedPubMedCentral Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, Gao C, Sun Y, Tian J, Zhao X, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun. 2020;11(1):5228.PubMedPubMedCentral
50.
go back to reference Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Sakai O. Prediction of the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma by FDG-PET imaging dataset using deep learning analysis: a hypothesis-generating study. Eur J Radiol. 2020;126:108936.PubMed Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Sakai O. Prediction of the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma by FDG-PET imaging dataset using deep learning analysis: a hypothesis-generating study. Eur J Radiol. 2020;126:108936.PubMed
51.
go back to reference Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O. Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma. Eur Radiol. 2020;30(11):6322–30.PubMed Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O. Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma. Eur Radiol. 2020;30(11):6322–30.PubMed
52.
go back to reference Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Hirata K, Yasuda K, Kano S, Homma A, Kudo K, et al. Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images. BMC Cancer. 2021;21(1):900.PubMedPubMedCentral Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Hirata K, Yasuda K, Kano S, Homma A, Kudo K, et al. Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images. BMC Cancer. 2021;21(1):900.PubMedPubMedCentral
53.
go back to reference Li Z, Kitajima K, Hirata K, Togo R, Takenaka J, Miyoshi Y, Kudo K, Ogawa T, Haseyama M. Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res. 2021;11(1):10.PubMedPubMedCentral Li Z, Kitajima K, Hirata K, Togo R, Takenaka J, Miyoshi Y, Kudo K, Ogawa T, Haseyama M. Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res. 2021;11(1):10.PubMedPubMedCentral
54.
go back to reference Cheng NM, Yao J, Cai J, Ye X, Zhao S, Zhao K, Zhou W, Nogues I, Huo Y, Liao CT, et al. Deep learning for fully automated prediction of overall survival in patients with oropharyngeal cancer using FDG-PET imaging. Clin Cancer Res. 2021;27(14):3948–59.PubMed Cheng NM, Yao J, Cai J, Ye X, Zhao S, Zhao K, Zhou W, Nogues I, Huo Y, Liao CT, et al. Deep learning for fully automated prediction of overall survival in patients with oropharyngeal cancer using FDG-PET imaging. Clin Cancer Res. 2021;27(14):3948–59.PubMed
55.
go back to reference Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. 2016. arXiv:1611.07004. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. 2016. arXiv:1611.07004.
56.
go back to reference Chen X, Xu C, Yang X, Tao D. Attention-GAN for object transfiguration in wild images. 2018. arXiv:1803.06798. Chen X, Xu C, Yang X, Tao D. Attention-GAN for object transfiguration in wild images. 2018. arXiv:1803.06798.
57.
go back to reference Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.PubMed Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.PubMed
58.
go back to reference Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D, Zhou L. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.PubMed Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D, Zhou L. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.PubMed
60.
go back to reference Usman M, Latif S, Asim M, Lee BD, Qadir J. Retrospective motion correction in multishot MRI using generative adversarial network. Sci Rep. 2020;10(1):4786.PubMedPubMedCentral Usman M, Latif S, Asim M, Lee BD, Qadir J. Retrospective motion correction in multishot MRI using generative adversarial network. Sci Rep. 2020;10(1):4786.PubMedPubMedCentral
61.
go back to reference Shiyam Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass EM, Hienert M, Rischka L, Lanzenberger R, Hahn A, Pataraia E, et al. Conditional generative adversarial networks aided motion correction of dynamic (18)F-FDG PET brain studies. J Nucl Med. 2021;62(6):871–9.PubMedPubMedCentral Shiyam Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass EM, Hienert M, Rischka L, Lanzenberger R, Hahn A, Pataraia E, et al. Conditional generative adversarial networks aided motion correction of dynamic (18)F-FDG PET brain studies. J Nucl Med. 2021;62(6):871–9.PubMedPubMedCentral
62.
go back to reference Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, Berlin A, Veit-Haibach P. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging. 2021;48(12):3817–26.PubMed Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, Berlin A, Veit-Haibach P. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging. 2021;48(12):3817–26.PubMed
63.
go back to reference Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA, Yang X. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.PubMedPubMedCentral Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA, Yang X. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.PubMedPubMedCentral
64.
go back to reference Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 2019;46(8):3555–64.PubMed Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 2019;46(8):3555–64.PubMed
65.
go back to reference Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA, Yang X. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65(5):055011.PubMedPubMedCentral Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA, Yang X. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65(5):055011.PubMedPubMedCentral
66.
go back to reference Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, La Fougère C, Yang B, Gatidis S. Independent attenuation correction of whole body [(18)F]FDG-PET using a deep learning approach with generative adversarial networks. EJNMMI Res. 2020;10(1):53.PubMedPubMedCentral Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, La Fougère C, Yang B, Gatidis S. Independent attenuation correction of whole body [(18)F]FDG-PET using a deep learning approach with generative adversarial networks. EJNMMI Res. 2020;10(1):53.PubMedPubMedCentral
67.
go back to reference Wang R, Liu H, Toyonaga T, Shi L, Wu J, Onofrey JA, Tsai YJ, Naganawa M, Ma T, Liu Y, Chen MK, Mecca AP, O'Dell RS, van Dyck CH, Carson RE, Liu C. Generation of synthetic PET images of synaptic density and amyloidfrom 18 F-FDG images using deep learning. Med Phys. 2021;48(9):5115–29. https://doi.org/10.1002/mp.15073. Epub 2021 Jul 27. PMID: 34224153; PMCID: PMC8455448.CrossRefPubMed Wang R, Liu H, Toyonaga T, Shi L, Wu J, Onofrey JA, Tsai YJ, Naganawa M, Ma T, Liu Y, Chen MK, Mecca AP, O'Dell RS, van Dyck CH, Carson RE, Liu C. Generation of synthetic PET images of synaptic density and amyloidfrom 18 F-FDG images using deep learning. Med Phys. 2021;48(9):5115–29. https://​doi.​org/​10.​1002/​mp.​15073. Epub 2021 Jul 27. PMID: 34224153; PMCID: PMC8455448.CrossRefPubMed
68.
go back to reference von Ahn L. Augmented intelligence: the web and human intelligence. Philos Trans Series A Math Phys Eng Sci. 2013;371(1987):20120383. von Ahn L. Augmented intelligence: the web and human intelligence. Philos Trans Series A Math Phys Eng Sci. 2013;371(1987):20120383.
69.
go back to reference Sollini M, Bartoli F, Marciano A, Zanca R, Slart R, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging. 2020;4(1):24.PubMedPubMedCentral Sollini M, Bartoli F, Marciano A, Zanca R, Slart R, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging. 2020;4(1):24.PubMedPubMedCentral
70.
go back to reference Barucci A, Neri E. Adversarial radiomics: the rising of potential risks in medical imaging from adversarial learning. Eur J Nucl Med Mol Imaging. 2020;47(13):2941–3.PubMed Barucci A, Neri E. Adversarial radiomics: the rising of potential risks in medical imaging from adversarial learning. Eur J Nucl Med Mol Imaging. 2020;47(13):2941–3.PubMed
71.
go back to reference Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60(Suppl 2):29s–37s.PubMed Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60(Suppl 2):29s–37s.PubMed
72.
go back to reference Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inform Fusion. 2022;77:29–52. Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inform Fusion. 2022;77:29–52.
Metadata
Title
Artificial intelligence for nuclear medicine in oncology
Authors
Kenji Hirata
Hiroyuki Sugimori
Noriyuki Fujima
Takuya Toyonaga
Kohsuke Kudo
Publication date
01-02-2022
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 2/2022
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-021-01693-6

Other articles of this Issue 2/2022

Annals of Nuclear Medicine 2/2022 Go to the issue