Skip to main content
Top
Published in: Annals of Nuclear Medicine 2/2020

Open Access 01-02-2020 | Alzheimer's Disease | Original Article

Evaluation of PiB visual interpretation with CSF Aβ and longitudinal SUVR in J-ADNI study

Authors: Yusuke Okada, Takashi Kato, Kaori Iwata, Yasuyuki Kimura, Akinori Nakamura, Hideyuki Hattori, Hiroshi Toyama, Kazunari Ishii, Kenji Ishii, Michio Senda, Kengo Ito, Takeshi Iwatsubo, Japanese Alzheimer’s Disease Neuroimaging Initiative

Published in: Annals of Nuclear Medicine | Issue 2/2020

Login to get access

Abstract

Objective

The objectives of the present study were to investigate (1) whether trinary visual interpretation of amyloid positron emission tomography (PET) imaging (negative/equivocal/positive) reflects quantitative amyloid measurements and the time course of 11C-Pittsburgh compound B (PiB) amyloid accumulation, and (2) whether visually equivocal scans represent an early stage of the Alzheimer’s disease (AD) continuum in terms of an intermediate state of quantitative amyloid measurements and the changes in amyloid accumulation over time.

Methods

From the National Bioscience Database Center Human Database of the Japanese Alzheimer’s Disease Neuroimaging Initiative, we selected 133 individuals for this study including 33 with Alzheimer’s disease dementia (ADD), 52 with late mild cognitive impairment (LMCI), and 48 cognitively normal (CN) subjects who underwent clinical assessment, PiB PET, and structural magnetic resonance imaging (MRI) with 2 or 3-years of follow-up. Sixty-eight of the 133 individuals underwent cerebrospinal fluid amyloid-β1-42 (CSF-Ab42) analysis at baseline. The standard uptake value ratio (SUVR) of PiB PET was calculated with a method using MRI at each visit. The cross-sectional values, longitudinal changes in SUVR, and baseline CSF-Ab42 were compared among groups, which were categorized based on trinary visual reads of amyloid PET (negative/equivocal/positive).

Results

From the trinary visual interpretation of the PiB PET images, 55 subjects were negative, 8 were equivocal, and 70 were positive. Negative interpretation was most frequent in the CN group (70.8/10.4/18.8%: negative/equivocal/positive), and positive was most frequent in the LMCI group (34.6/1.9/63.5%) and in the ADD group (9.1/6.1/84.8%). The baseline SUVRs were 1.08 ± 0.06 in the negative group, 1.23 ± 0.15 in the equivocal group, and 1.86 ± 0.31 in the positive group (F = 174.9, p < 0.001). The baseline CSF-Ab42 level was 463 ± 112 pg/mL in the negative group, 383 ± 125 pg/mL in the equivocal group, and 264 ± 69 pg/mL in the positive group (F = 37, p < 0.001). Over the 3-year follow-up, annual changes in SUVR were − 0.00 ± 0.02 in the negative group, 0.02 ± 0.02 in the equivocal group, and 0.04 ± 0.07 in the positive group (F = 8.4, p < 0.001).

Conclusions

Trinary visual interpretation (negative/equivocal/positive) of amyloid PET imaging reflects quantitative amyloid measurements evaluated with PET and the CSF amyloid test as well as the amyloid accumulation over time evaluated with PET over 3 years. Subjects in the early stage of the AD continuum could be identified with an equivocal scan, because they showed intermediate quantitative amyloid PET, CSF measurements, and the amyloid accumulation over time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535–62.PubMedPubMedCentralCrossRef Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535–62.PubMedPubMedCentralCrossRef
2.
go back to reference Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain. 2008;131(Pt 6):1630–45.PubMedPubMedCentralCrossRef Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain. 2008;131(Pt 6):1630–45.PubMedPubMedCentralCrossRef
3.
go back to reference Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77(23):2034–42.PubMedPubMedCentralCrossRef Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77(23):2034–42.PubMedPubMedCentralCrossRef
4.
go back to reference Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–67.PubMedCrossRef Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–67.PubMedCrossRef
5.
go back to reference Resnick SM, Bilgel M, Moghekar A, An Y, Cai Q, Wang MC, et al. Changes in Abeta biomarkers and associations with APOE genotype in 2 longitudinal cohorts. Neurobiol Aging. 2015;36(8):2333–9.PubMedPubMedCentralCrossRef Resnick SM, Bilgel M, Moghekar A, An Y, Cai Q, Wang MC, et al. Changes in Abeta biomarkers and associations with APOE genotype in 2 longitudinal cohorts. Neurobiol Aging. 2015;36(8):2333–9.PubMedPubMedCentralCrossRef
6.
go back to reference Bilgel M, An Y, Zhou Y, Wong DF, Prince JL, Ferrucci L, et al. Individual estimates of age at detectable amyloid onset for risk factor assessment. Alzheimers Dement. 2016;12(4):373–9.PubMedCrossRef Bilgel M, An Y, Zhou Y, Wong DF, Prince JL, Ferrucci L, et al. Individual estimates of age at detectable amyloid onset for risk factor assessment. Alzheimers Dement. 2016;12(4):373–9.PubMedCrossRef
7.
go back to reference Gordon BA, Blazey T, Su Y, Fagan AM, Holtzman DM, Morris JC, et al. Longitudinal beta-amyloid deposition and hippocampal volume in preclinical Alzheimer disease and suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 2016;73(10):1192–200.PubMedPubMedCentralCrossRef Gordon BA, Blazey T, Su Y, Fagan AM, Holtzman DM, Morris JC, et al. Longitudinal beta-amyloid deposition and hippocampal volume in preclinical Alzheimer disease and suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 2016;73(10):1192–200.PubMedPubMedCentralCrossRef
8.
go back to reference Mishra S, Blazey TM, Holtzman DM, Cruchaga C, Su Y, Morris JC, et al. Longitudinal brain imaging in preclinical Alzheimer disease: impact of APOE epsilon4 genotype. Brain. 2018;141(6):1828–39.PubMedPubMedCentralCrossRef Mishra S, Blazey TM, Holtzman DM, Cruchaga C, Su Y, Morris JC, et al. Longitudinal brain imaging in preclinical Alzheimer disease: impact of APOE epsilon4 genotype. Brain. 2018;141(6):1828–39.PubMedPubMedCentralCrossRef
9.
go back to reference Cohen AD, Mowrey W, Weissfeld LA, Aizenstein HJ, McDade E, Mountz JM, et al. Classification of amyloid-positivity in controls: comparison of visual read and quantitative approaches. Neuroimage. 2013;71:207–15.PubMedPubMedCentralCrossRef Cohen AD, Mowrey W, Weissfeld LA, Aizenstein HJ, McDade E, Mountz JM, et al. Classification of amyloid-positivity in controls: comparison of visual read and quantitative approaches. Neuroimage. 2013;71:207–15.PubMedPubMedCentralCrossRef
10.
go back to reference Yamane T, Ishii K, Sakata M, Ikari Y, Nishio T, Ishii K, et al. Inter-rater variability of visual interpretation and comparison with quantitative evaluation of (11)C-PiB PET amyloid images of the Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI) multicenter study. Eur J Nucl Med Mol Imaging. 2017;44(5):850–7.PubMedCrossRef Yamane T, Ishii K, Sakata M, Ikari Y, Nishio T, Ishii K, et al. Inter-rater variability of visual interpretation and comparison with quantitative evaluation of (11)C-PiB PET amyloid images of the Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI) multicenter study. Eur J Nucl Med Mol Imaging. 2017;44(5):850–7.PubMedCrossRef
11.
go back to reference Hosokawa C, Ishii K, Hyodo T, Sakaguchi K, Usami K, Shimamoto K, et al. Investigation of 11 C-PiB equivocal PET findings. Ann Nucl Med. 2015;29(2):164–9.PubMedCrossRef Hosokawa C, Ishii K, Hyodo T, Sakaguchi K, Usami K, Shimamoto K, et al. Investigation of 11 C-PiB equivocal PET findings. Ann Nucl Med. 2015;29(2):164–9.PubMedCrossRef
12.
go back to reference Hosokawa C, Ishii K, Kimura Y, Hyodo T, Hosono M, Sakaguchi K, et al. Performance of 11C-pittsburgh compound B PET binding potential images in the detection of amyloid deposits on equivocal static images. J Nucl Med. 2015;56(12):1910–5.PubMedCrossRef Hosokawa C, Ishii K, Kimura Y, Hyodo T, Hosono M, Sakaguchi K, et al. Performance of 11C-pittsburgh compound B PET binding potential images in the detection of amyloid deposits on equivocal static images. J Nucl Med. 2015;56(12):1910–5.PubMedCrossRef
13.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's Dement. 2018;14(4):535–62.CrossRef Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's Dement. 2018;14(4):535–62.CrossRef
14.
go back to reference Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.PubMedCrossRef Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.PubMedCrossRef
15.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939–44.PubMedCrossRef McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939–44.PubMedCrossRef
16.
go back to reference Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. Recent publications from the Alzheimer's Disease Neuroimaging Initiative: reviewing progress toward improved AD clinical trials. Alzheimers Dement. 2017;13(4):e1–e85.PubMedPubMedCentralCrossRef Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. Recent publications from the Alzheimer's Disease Neuroimaging Initiative: reviewing progress toward improved AD clinical trials. Alzheimers Dement. 2017;13(4):e1–e85.PubMedPubMedCentralCrossRef
17.
go back to reference Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, et al. Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies: Harmonization for international trials. Alzheimers Dement. 2018;14(8):1077–87.PubMedCrossRef Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, et al. Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies: Harmonization for international trials. Alzheimers Dement. 2018;14(8):1077–87.PubMedCrossRef
18.
go back to reference Fujishima M, Kawaguchi A, Maikusa N, Kuwano R, Iwatsubo T, Matsuda H, et al. Sample size estimation for Alzheimer's disease trials from Japanese ADNI serial magnetic resonance imaging. J Alzheimers Dis. 2017;56(1):75–88.PubMedPubMedCentralCrossRef Fujishima M, Kawaguchi A, Maikusa N, Kuwano R, Iwatsubo T, Matsuda H, et al. Sample size estimation for Alzheimer's disease trials from Japanese ADNI serial magnetic resonance imaging. J Alzheimers Dis. 2017;56(1):75–88.PubMedPubMedCentralCrossRef
19.
go back to reference Tractenberg RE, Schafer K, Morris JC. Interobserver disagreements on clinical dementia rating assessment: interpretation and implications for training. Alzheimer Dis Assoc Disord. 2001;15(3):155–61.PubMedCrossRef Tractenberg RE, Schafer K, Morris JC. Interobserver disagreements on clinical dementia rating assessment: interpretation and implications for training. Alzheimer Dis Assoc Disord. 2001;15(3):155–61.PubMedCrossRef
20.
go back to reference Ikari Y, Nishio T, Makishi Y, Miya Y, Ito K, Koeppe RA, et al. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study. Ann Nucl Med. 2012;26(7):535–44.PubMedCrossRef Ikari Y, Nishio T, Makishi Y, Miya Y, Ito K, Koeppe RA, et al. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study. Ann Nucl Med. 2012;26(7):535–44.PubMedCrossRef
21.
go back to reference Matsuda H. Volumetry of cerebral gray and white matter using VSRAD(R). Brain Nerve. 2015;67(4):487–96.PubMed Matsuda H. Volumetry of cerebral gray and white matter using VSRAD(R). Brain Nerve. 2015;67(4):487–96.PubMed
22.
go back to reference Powell MJ. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J. 1964;7(2):155–62.CrossRef Powell MJ. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J. 1964;7(2):155–62.CrossRef
23.
go back to reference Mandal PK, Mahajan R, Dinov ID. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. J Alzheimers Dis. 2012;31(Suppl 3):S169–S188188.PubMedPubMedCentralCrossRef Mandal PK, Mahajan R, Dinov ID. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. J Alzheimers Dis. 2012;31(Suppl 3):S169–S188188.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.PubMedCrossRef
26.
go back to reference Kaneko N, Nakamura A, Washimi Y, Kato T, Sakurai T, Arahata Y, et al. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(9):353–64.PubMedPubMedCentralCrossRef Kaneko N, Nakamura A, Washimi Y, Kato T, Sakurai T, Arahata Y, et al. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(9):353–64.PubMedPubMedCentralCrossRef
27.
go back to reference Nakamura A, Cuesta P, Fernandez A, Arahata Y, Iwata K, Kuratsubo I, et al. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease. Brain. 2018;141(5):1470–85.PubMedPubMedCentralCrossRef Nakamura A, Cuesta P, Fernandez A, Arahata Y, Iwata K, Kuratsubo I, et al. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease. Brain. 2018;141(5):1470–85.PubMedPubMedCentralCrossRef
28.
go back to reference Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–13.PubMedPubMedCentralCrossRef Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–13.PubMedPubMedCentralCrossRef
29.
go back to reference Mormino EC, Brandel MG, Madison CM, Rabinovici GD, Marks S, Baker SL, et al. Not quite PIB-positive, not quite PIB-negative: slight PIB elevations in elderly normal control subjects are biologically relevant. Neuroimage. 2012;59(2):1152–60.PubMedCrossRef Mormino EC, Brandel MG, Madison CM, Rabinovici GD, Marks S, Baker SL, et al. Not quite PIB-positive, not quite PIB-negative: slight PIB elevations in elderly normal control subjects are biologically relevant. Neuroimage. 2012;59(2):1152–60.PubMedCrossRef
31.
go back to reference Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain. 2007;130(Pt 11):2837–44.PubMedCrossRef Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain. 2007;130(Pt 11):2837–44.PubMedCrossRef
32.
go back to reference Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL, et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain. 2009;132(Pt 5):1310–23.PubMedCrossRef Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL, et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain. 2009;132(Pt 5):1310–23.PubMedCrossRef
33.
go back to reference Landau SM, Horng A, Jagust WJ, Alzheimer's Disease Neuroimaging I. Memory decline accompanies subthreshold amyloid accumulation. Neurology. 2018;90(17):e1452–e14601460.PubMedPubMedCentralCrossRef Landau SM, Horng A, Jagust WJ, Alzheimer's Disease Neuroimaging I. Memory decline accompanies subthreshold amyloid accumulation. Neurology. 2018;90(17):e1452–e14601460.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181–92.PubMedPubMedCentralCrossRef Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181–92.PubMedPubMedCentralCrossRef
36.
go back to reference Vlassenko AG, Mintun MA, Xiong C, Sheline YI, Goate AM, Benzinger TL, et al. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol. 2011;70(5):857–61.PubMedPubMedCentralCrossRef Vlassenko AG, Mintun MA, Xiong C, Sheline YI, Goate AM, Benzinger TL, et al. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol. 2011;70(5):857–61.PubMedPubMedCentralCrossRef
37.
go back to reference Sojkova J, Zhou Y, An Y, Kraut MA, Ferrucci L, Wong DF, et al. Longitudinal patterns of beta-amyloid deposition in nondemented older adults. Arch Neurol. 2011;68(5):644–9.PubMedPubMedCentralCrossRef Sojkova J, Zhou Y, An Y, Kraut MA, Ferrucci L, Wong DF, et al. Longitudinal patterns of beta-amyloid deposition in nondemented older adults. Arch Neurol. 2011;68(5):644–9.PubMedPubMedCentralCrossRef
38.
go back to reference Jack CR Jr, Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, et al. Brain beta-amyloid load approaches a plateau. Neurology. 2013;80(10):890–6.PubMedPubMedCentralCrossRef Jack CR Jr, Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, et al. Brain beta-amyloid load approaches a plateau. Neurology. 2013;80(10):890–6.PubMedPubMedCentralCrossRef
39.
go back to reference Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain. 2006;129(11):2856–66.PubMedCrossRef Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain. 2006;129(11):2856–66.PubMedCrossRef
40.
go back to reference Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer's disease. Neurosci Biobehav Rev. 2013;37(8):1322–35.PubMedCrossRef Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer's disease. Neurosci Biobehav Rev. 2013;37(8):1322–35.PubMedCrossRef
Metadata
Title
Evaluation of PiB visual interpretation with CSF Aβ and longitudinal SUVR in J-ADNI study
Authors
Yusuke Okada
Takashi Kato
Kaori Iwata
Yasuyuki Kimura
Akinori Nakamura
Hideyuki Hattori
Hiroshi Toyama
Kazunari Ishii
Kenji Ishii
Michio Senda
Kengo Ito
Takeshi Iwatsubo
Japanese Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-02-2020
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 2/2020
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-019-01420-2

Other articles of this Issue 2/2020

Annals of Nuclear Medicine 2/2020 Go to the issue

Acknowledgment to Reviewers

Acknowledgment to Reviewers