Skip to main content
Top
Published in: Annals of Nuclear Medicine 2/2013

01-02-2013 | Original Article

Quantitative evaluation improves specificity of myocardial perfusion SPECT in the assessment of functionally significant intermediate coronary artery stenoses: a comparative study with fractional flow reserve measurements

Authors: Ilgin Sahiner, Umit O. Akdemir, Sinan A. Kocaman, Asife Sahinarslan, Timur Timurkaynak, Mustafa Unlu

Published in: Annals of Nuclear Medicine | Issue 2/2013

Login to get access

Abstract

Objective

Myocardial perfusion SPECT (MPS) is a noninvasive method commonly used for assessment of the hemodynamic significance of intermediate coronary stenoses. Fractional flow reserve (FFR) measurement is a well-validated invasive method used for the evaluation of intermediate stenoses. We aimed to determine the association between MPS and FFR findings in intermediate degree stenoses and evaluate the added value of quantification in MPS.

Methods

Fifty-eight patients who underwent intracoronary pressure measurement in the catheterization laboratory to assess the physiological significance of intermediate (40–70 %) left anterior descending (LAD) artery lesions, and who also underwent stress myocardial perfusion SPECT either for the assessment of an intermediate stenosis or for suspected coronary artery disease were analyzed retrospectively in the study. Quantitative analysis was performed using the 4DMSPECT program, with visual assessment performed by two experienced nuclear medicine physicians blinded to the angiographic findings. Summed stress scores (SSS) and summed difference scores (SDS) in the LAD artery territory according to the 20 segment model were calculated. A summed stress score of ≥3 and an SDS of ≥2 were assumed as pathologic, indicating significance of the lesion; a cutoff value of 0.75 was used to define abnormal FFR. Both visual and quantitative assessment results were compared with FFR using Chi-square (χ²) test.

Results

The mean time interval between two studies was 13 ± 11 days. FFR was normal in 45 and abnormal in 13 patients. Considering the FFR results as the gold standard method for assessing the significance of the lesion, the sensitivity and specificity of quantitative analysis determining the abnormal flow reserve were 85 and 84 %, respectively, while visual analysis had a sensitivity of 77 % and a specificity of 51 %. There was a good agreement between the observers (κ = 0.856). Summed stress and difference scores demonstrated moderate inverse correlations with FFR values (r = −0.542, p < 0.001 and r = −0.506, p < 0.001, respectively).

Conclusions

Quantitative analysis of the myocardial perfusion SPECT increases the specificity in evaluating the significance of intermediate degree coronary lesions.
Literature
1.
go back to reference Gould KL. Coronary artery stenosis. New York: Elsevier Science; 1991. Gould KL. Coronary artery stenosis. New York: Elsevier Science; 1991.
2.
go back to reference Giesler T, Lamprecht S, Voigt JU, Ropers D, Pohle K, Ludwig J, et al. Long term follow up after deferral of revascularisation in patients with intermediate coronary stenoses and negative dobutamine stress echocardiography. Heart. 2002;88:645–6.PubMedCrossRef Giesler T, Lamprecht S, Voigt JU, Ropers D, Pohle K, Ludwig J, et al. Long term follow up after deferral of revascularisation in patients with intermediate coronary stenoses and negative dobutamine stress echocardiography. Heart. 2002;88:645–6.PubMedCrossRef
3.
go back to reference Ragosta M, Bishop AH, Lipson LC, Watson DD, Gimple LW, Sarembock IJ, et al. Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am J Cardiol. 2007;99:896–902.PubMedCrossRef Ragosta M, Bishop AH, Lipson LC, Watson DD, Gimple LW, Sarembock IJ, et al. Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am J Cardiol. 2007;99:896–902.PubMedCrossRef
4.
go back to reference Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49:2105–11.PubMedCrossRef Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49:2105–11.PubMedCrossRef
5.
go back to reference Bech GJ, De Bruyne B, Bonnier HJ, Bartunek J, Wijns W, Peels K, et al. Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol. 1998;31:841–7.PubMedCrossRef Bech GJ, De Bruyne B, Bonnier HJ, Bartunek J, Wijns W, Peels K, et al. Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol. 1998;31:841–7.PubMedCrossRef
6.
go back to reference Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation. 1995;91:635–40.PubMedCrossRef Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation. 1995;91:635–40.PubMedCrossRef
7.
go back to reference Bishop AH, Samady H. Fractional flow reserve: critical review of an important physiologic adjunct to angiography. Am Heart J. 2004;147:792–802.PubMedCrossRef Bishop AH, Samady H. Fractional flow reserve: critical review of an important physiologic adjunct to angiography. Am Heart J. 2004;147:792–802.PubMedCrossRef
8.
go back to reference Lopez-Palop R, Saura D, Pinar E, Lozano I, Perez-Lorente F, Pico F, et al. Adequate intracoronary adenosine doses to achieve maximum hyperaemia in coronary functional studies by pressure derived fractional flow reserve: a dose response study. Heart. 2004;90:95–6.PubMedCrossRef Lopez-Palop R, Saura D, Pinar E, Lozano I, Perez-Lorente F, Pico F, et al. Adequate intracoronary adenosine doses to achieve maximum hyperaemia in coronary functional studies by pressure derived fractional flow reserve: a dose response study. Heart. 2004;90:95–6.PubMedCrossRef
9.
go back to reference Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32:855–97.PubMedCrossRef Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32:855–97.PubMedCrossRef
10.
go back to reference Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99 m sestamibi myocardial perfusion single-photon emission computed tomography. JACC. 1995;26:639–47.PubMedCrossRef Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99 m sestamibi myocardial perfusion single-photon emission computed tomography. JACC. 1995;26:639–47.PubMedCrossRef
11.
go back to reference Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines and the Society for cardiovascular angiography and interventions. Circulation. 2011;124:e574–651.PubMedCrossRef Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines and the Society for cardiovascular angiography and interventions. Circulation. 2011;124:e574–651.PubMedCrossRef
12.
go back to reference Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.PubMedCrossRef Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.PubMedCrossRef
13.
go back to reference Christou MA, Siontis GC, Katritsis DG, Ioannidis JP. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. Am J Cardiol. 2007;99:450–6.PubMedCrossRef Christou MA, Siontis GC, Katritsis DG, Ioannidis JP. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. Am J Cardiol. 2007;99:450–6.PubMedCrossRef
14.
go back to reference Costa MA, Shoemaker S, Futamatsu H, Klassen C, Angiolillo DJ, Nguyen M, et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. Am J Cardiol. 2007;50:514–22.CrossRef Costa MA, Shoemaker S, Futamatsu H, Klassen C, Angiolillo DJ, Nguyen M, et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. Am J Cardiol. 2007;50:514–22.CrossRef
15.
go back to reference Gebker R, Frick M, Jahnke C, Berger A, Schneeweis C, Manka R, et al. Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease. Int J Cardiovasc Imaging. 2012;28:89–97.PubMedCrossRef Gebker R, Frick M, Jahnke C, Berger A, Schneeweis C, Manka R, et al. Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease. Int J Cardiovasc Imaging. 2012;28:89–97.PubMedCrossRef
16.
go back to reference Lee CH, Tai BC, Soon CY, Low AF, Poh KK, Yeo TC, et al. New set of intravascular ultrasound-derived anatomic criteria for defining functionally significant stenoses in small coronary arteries (results from Intravascular Ultrasound Diagnostic Evaluation of Atherosclerosis in Singapore [IDEAS] study). Am J Cardiol. 2010;105:1378–84.PubMedCrossRef Lee CH, Tai BC, Soon CY, Low AF, Poh KK, Yeo TC, et al. New set of intravascular ultrasound-derived anatomic criteria for defining functionally significant stenoses in small coronary arteries (results from Intravascular Ultrasound Diagnostic Evaluation of Atherosclerosis in Singapore [IDEAS] study). Am J Cardiol. 2010;105:1378–84.PubMedCrossRef
17.
go back to reference Chamuleau SA, van Eck-Smit BL, Meuwissen M, Koch KT, Dijkgraaf MG, Verberne HJ, et al. Long-term prognostic value of CFVR and FFR versus perfusion scintigraphy in patients with multivessel disease. Neth Heart J. 2007;15:369–74.PubMedCrossRef Chamuleau SA, van Eck-Smit BL, Meuwissen M, Koch KT, Dijkgraaf MG, Verberne HJ, et al. Long-term prognostic value of CFVR and FFR versus perfusion scintigraphy in patients with multivessel disease. Neth Heart J. 2007;15:369–74.PubMedCrossRef
18.
go back to reference Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–34.PubMedCrossRef Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–34.PubMedCrossRef
19.
go back to reference Legalery P, Schiele F, Seronde MF, Meneveau N, Wei H, Didier K, et al. One-year outcome of patients submitted to routine fractional flow reserve assessment to determine the need for angioplasty. Eur Heart J. 2005;26:2623–9.PubMedCrossRef Legalery P, Schiele F, Seronde MF, Meneveau N, Wei H, Didier K, et al. One-year outcome of patients submitted to routine fractional flow reserve assessment to determine the need for angioplasty. Eur Heart J. 2005;26:2623–9.PubMedCrossRef
20.
go back to reference Potvin JM, Rodes-Cabau J, Bertrand OF, Gleeton O, Nguyen CN, Barbeau G, et al. Usefulness of fractional flow reserve measurements to defer revascularization in patients with stable or unstable angina pectoris, non-ST-elevation and ST-elevation acute myocardial infarction, or atypical chest pain. Am J Cardiol. 2006;98:289–97.PubMedCrossRef Potvin JM, Rodes-Cabau J, Bertrand OF, Gleeton O, Nguyen CN, Barbeau G, et al. Usefulness of fractional flow reserve measurements to defer revascularization in patients with stable or unstable angina pectoris, non-ST-elevation and ST-elevation acute myocardial infarction, or atypical chest pain. Am J Cardiol. 2006;98:289–97.PubMedCrossRef
21.
go back to reference Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.PubMedCrossRef Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.PubMedCrossRef
22.
go back to reference Guner LA, Karabacak NI, Cakir T, Akdemir OU, Kocaman SA, Cengel A, et al. Comparison of diagnostic performances of three different software packages in detecting coronary artery disease. Eur J Nucl Med Mol Imaging. 2010;37:2070–8.PubMedCrossRef Guner LA, Karabacak NI, Cakir T, Akdemir OU, Kocaman SA, Cengel A, et al. Comparison of diagnostic performances of three different software packages in detecting coronary artery disease. Eur J Nucl Med Mol Imaging. 2010;37:2070–8.PubMedCrossRef
23.
go back to reference Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12:66–77.PubMedCrossRef Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12:66–77.PubMedCrossRef
24.
go back to reference Pijls NH, Sels JW. Functional measurement of coronary stenosis. J Am Coll Cardiol. 2012;59:1045–57.PubMedCrossRef Pijls NH, Sels JW. Functional measurement of coronary stenosis. J Am Coll Cardiol. 2012;59:1045–57.PubMedCrossRef
25.
go back to reference Pijls NH, De Bruyne B. Coronary pressure measurement and fractional flow reserve. Heart. 1998;80:539–42.PubMed Pijls NH, De Bruyne B. Coronary pressure measurement and fractional flow reserve. Heart. 1998;80:539–42.PubMed
27.
go back to reference Hacker M, Rieber J, Schmid R, Lafougere C, Tausig A, Theisen K, et al. Comparison of Tc-99m sestamibi SPECT with fractional flow reserve in patients with intermediate coronary artery stenoses. J Nucl Cardiol. 2005;12:645–54.PubMedCrossRef Hacker M, Rieber J, Schmid R, Lafougere C, Tausig A, Theisen K, et al. Comparison of Tc-99m sestamibi SPECT with fractional flow reserve in patients with intermediate coronary artery stenoses. J Nucl Cardiol. 2005;12:645–54.PubMedCrossRef
28.
go back to reference Melikian N, De Bondt P, Tonino P, De Winter O, Wyffels E, Bartunek J, et al. Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv. 2010;3:307–14.PubMedCrossRef Melikian N, De Bondt P, Tonino P, De Winter O, Wyffels E, Bartunek J, et al. Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv. 2010;3:307–14.PubMedCrossRef
29.
go back to reference Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31:261–91.PubMedCrossRef Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31:261–91.PubMedCrossRef
30.
go back to reference De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, et al. Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107:1877–83.PubMedCrossRef De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, et al. Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107:1877–83.PubMedCrossRef
31.
go back to reference Murtagh B, Higano S, Lennon R, Mathew V, Holmes DR Jr, Lerman A. Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. Am Heart J. 2003;146:99–105.PubMedCrossRef Murtagh B, Higano S, Lennon R, Mathew V, Holmes DR Jr, Lerman A. Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. Am Heart J. 2003;146:99–105.PubMedCrossRef
Metadata
Title
Quantitative evaluation improves specificity of myocardial perfusion SPECT in the assessment of functionally significant intermediate coronary artery stenoses: a comparative study with fractional flow reserve measurements
Authors
Ilgin Sahiner
Umit O. Akdemir
Sinan A. Kocaman
Asife Sahinarslan
Timur Timurkaynak
Mustafa Unlu
Publication date
01-02-2013
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 2/2013
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-012-0666-4

Other articles of this Issue 2/2013

Annals of Nuclear Medicine 2/2013 Go to the issue

Acknowledgements to Reviewers

Acknowledgements to Reviewers