Skip to main content
Top
Published in: Clinical and Translational Oncology 9/2013

01-09-2013 | Brief Research Article

Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography

Authors: A. Fiorentino, R. Caivano, P. Pedicini, V. Fusco

Published in: Clinical and Translational Oncology | Issue 9/2013

Login to get access

Abstract

Purpose

To assess the differences between the target delineation using computed tomography (CT) and imaging fusion CT/magnetic resonance imaging (MRI) for the radiotherapy planning of glioblastoma.

Methods

One hundred-twenty gross tumor volume and clinical target volume on CT and MRI (GTVCT/CTVCT, GTVMRI/CTVMRI, respectively) were contoured and evaluated. The treatments planning (total dose 60 Gy) based on CTVCT were analysed in terms of percentage of CTVCT and CTVMRI receiving 95 % of the prescribed dose (V95-CTVCT, V95-CTVMRI).

Results

GTVs and CTVs contoured on MRI were significantly larger than those delineated on CT (p = 0.0003, p = 0.0006, respectively). Nighty-two percent of CTVCT was coincident with the CTVMRI and 8 % was normal tissue; 20 % of CTVMRI, considered as tumor volume, was not included on CTVCT. The V95-CTVMRI was significantly lower than the V95-CTVCT (p = 0.0005).

Conclusions

In the delineation of glioblastoma target volume, fusion CT/MRI was preferred. The CT only is insufficient for the CTV dose coverage.
Literature
1.
go back to reference Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef
2.
go back to reference Balducci M, Chiesa S, Diletto B et al (2012) Low-dose fractionated radiotherapy and concomitant chemotherapy in glioblastoma multiforme with poor prognosis: a feasibility study. Neuro Oncol 14(1):79–86PubMedCrossRef Balducci M, Chiesa S, Diletto B et al (2012) Low-dose fractionated radiotherapy and concomitant chemotherapy in glioblastoma multiforme with poor prognosis: a feasibility study. Neuro Oncol 14(1):79–86PubMedCrossRef
3.
go back to reference Balducci M, Apicella G, Manfrida S et al (2010) Single-arm phase II study of conformal radiation therapy and temozolomide plus fractionated stereotactic conformal boost in high grade gliomas. Strahlen Onkol 186(10):558–564CrossRef Balducci M, Apicella G, Manfrida S et al (2010) Single-arm phase II study of conformal radiation therapy and temozolomide plus fractionated stereotactic conformal boost in high grade gliomas. Strahlen Onkol 186(10):558–564CrossRef
4.
go back to reference Baumert BG, Brada M, Bernier J et al (2008) EORTC 22972–26991/MRC BR10 trial: fractionated stereotactic boost following conventional radiotherapy of high grade gliomas. Clinical and quality assurance results of the stereotactic boost arm. Radiother Oncol 88:163–172PubMedCrossRef Baumert BG, Brada M, Bernier J et al (2008) EORTC 22972–26991/MRC BR10 trial: fractionated stereotactic boost following conventional radiotherapy of high grade gliomas. Clinical and quality assurance results of the stereotactic boost arm. Radiother Oncol 88:163–172PubMedCrossRef
5.
go back to reference Balducci M, Fiorentino A, De Bonis P et al (2012) Impact of age and co-morbidities in patients with newly diagnosed glioblastoma: a pooled data analysis of three prospective mono-institutional phase II studies. Med Oncol 29(5):3478–3483. doi:10.1007/s12032-012-0263-3 Balducci M, Fiorentino A, De Bonis P et al (2012) Impact of age and co-morbidities in patients with newly diagnosed glioblastoma: a pooled data analysis of three prospective mono-institutional phase II studies. Med Oncol 29(5):3478–3483. doi:10.​1007/​s12032-012-0263-3
6.
go back to reference Chan JL, Lee SW, Fraass BA et al (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20:1635–1642PubMedCrossRef Chan JL, Lee SW, Fraass BA et al (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20:1635–1642PubMedCrossRef
7.
go back to reference Aydin H, Sillenberg I, von Lieven H (2001) Patterns of failure following CT-based 3-D irradiation for malignant glioma. Strahlenther Onkol 177:424–431PubMedCrossRef Aydin H, Sillenberg I, von Lieven H (2001) Patterns of failure following CT-based 3-D irradiation for malignant glioma. Strahlenther Onkol 177:424–431PubMedCrossRef
8.
go back to reference Chang EL, Akyurek S, Avalos T et al (2007) Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. Int J Radiat Oncol Biol Phys 68:144–150PubMedCrossRef Chang EL, Akyurek S, Avalos T et al (2007) Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. Int J Radiat Oncol Biol Phys 68:144–150PubMedCrossRef
9.
go back to reference Oppitz U, Maessen D, Zunterer H, Richter S, Flentje M (1999) 3-D recurrence patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol 53:53–57PubMedCrossRef Oppitz U, Maessen D, Zunterer H, Richter S, Flentje M (1999) 3-D recurrence patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol 53:53–57PubMedCrossRef
10.
go back to reference Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911PubMedCrossRef Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911PubMedCrossRef
11.
go back to reference Farace P, Giri MG, Meliadò G et al (2011) Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI. British J Radiol 84:271–278CrossRef Farace P, Giri MG, Meliadò G et al (2011) Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI. British J Radiol 84:271–278CrossRef
12.
go back to reference Weber DC, Wangi H, Albrecht S et al (2008) Open low-field magnetic resonance imaging for target definition, dose calculation and set-up verification during three-dimensional CRT fo glioblastoma multiform. Clin Oncol 20:157–167CrossRef Weber DC, Wangi H, Albrecht S et al (2008) Open low-field magnetic resonance imaging for target definition, dose calculation and set-up verification during three-dimensional CRT fo glioblastoma multiform. Clin Oncol 20:157–167CrossRef
13.
go back to reference Krempien RC, Schubert K, Zierhut D et al (2002) Open low-field magnetic resonance imaging in radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 53:1350–1360PubMedCrossRef Krempien RC, Schubert K, Zierhut D et al (2002) Open low-field magnetic resonance imaging in radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 53:1350–1360PubMedCrossRef
14.
go back to reference Thornton AF Jr, Sandler HM, Ten Haken RK et al (1992) The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 24:767–775PubMedCrossRef Thornton AF Jr, Sandler HM, Ten Haken RK et al (1992) The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 24:767–775PubMedCrossRef
15.
go back to reference Just M, Rosler HP, Higer HP et al (1991) MRI-assisted radiation therapy planning of brain tumors clinical experiences in 17 patients. Magn Reson Imaging 9:173–177PubMedCrossRef Just M, Rosler HP, Higer HP et al (1991) MRI-assisted radiation therapy planning of brain tumors clinical experiences in 17 patients. Magn Reson Imaging 9:173–177PubMedCrossRef
16.
go back to reference Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76(3 Suppl):S20–S27PubMedCrossRef Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76(3 Suppl):S20–S27PubMedCrossRef
17.
go back to reference Halperin EC, Bentel G, Heinz ER, Burger PC (1989) Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys 17:1347–1350PubMedCrossRef Halperin EC, Bentel G, Heinz ER, Burger PC (1989) Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys 17:1347–1350PubMedCrossRef
18.
go back to reference Minniti G, Amelio D, Amichetti M et al (2010) Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol 97(3):377–381PubMedCrossRef Minniti G, Amelio D, Amichetti M et al (2010) Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol 97(3):377–381PubMedCrossRef
19.
go back to reference Lattanzi JP, Fein DA, McNeeley SW et al (1997) Computed tomography-magnetic resonance image fusion: a clinical evaluation of an innovative approach for improved tumor localization in primary central nervous system lesions. Radiat Oncol Investig 5:195–205PubMedCrossRef Lattanzi JP, Fein DA, McNeeley SW et al (1997) Computed tomography-magnetic resonance image fusion: a clinical evaluation of an innovative approach for improved tumor localization in primary central nervous system lesions. Radiat Oncol Investig 5:195–205PubMedCrossRef
20.
go back to reference Myrianthopoulos LC, Vijayakumar S, Spelbring DR et al (1992) Quantitation of treatment volumes from CT and MRI in high grade gliomas: implications for radiotherapy. Magn Reson Imaging 10:375–383PubMedCrossRef Myrianthopoulos LC, Vijayakumar S, Spelbring DR et al (1992) Quantitation of treatment volumes from CT and MRI in high grade gliomas: implications for radiotherapy. Magn Reson Imaging 10:375–383PubMedCrossRef
Metadata
Title
Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography
Authors
A. Fiorentino
R. Caivano
P. Pedicini
V. Fusco
Publication date
01-09-2013
Publisher
Springer Milan
Published in
Clinical and Translational Oncology / Issue 9/2013
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-012-0992-y

Other articles of this Issue 9/2013

Clinical and Translational Oncology 9/2013 Go to the issue

Educational Series - Blue Series

Proteomic biomarkers in lung cancer

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine