Skip to main content
Top
Published in: Medical Oncology 5/2023

01-05-2023 | Colorectal Cancer | Letter to the Editor

Letter on “Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer”

Author: Luis Vitetta

Published in: Medical Oncology | Issue 5/2023

Login to get access

Abstract

Investigations that decipher the human microbiome have reformed the way medicine is focusing on bacteria. An interesting research review recently published in the journal of Digestive Diseases and Sciences conceivably linked adjunctive commensal intestinal bacteria with the capacity to modulate the immune microenvironment towards immune checkpoint inhibitor (ICIs) efficacy of cancer immunotherapy. Evidence has emerged that the intestinal microbiome can modulate outcomes to ICIs therapies via two major mechanisms, namely mechanisms that are antigen-specific (i.e., epitopes are shared between microbial and tumour antigens that can enhance or reduce anti-tumour immune responses) and those mechanisms that are antigen-independent (i.e., modulation of responses to ICIs by engaging innate and/or adaptive immune cells).
Literature
1.
go back to reference Shi L, Xu Y, Feng M. Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer. Dig Dis Sci. 2023;68:370–9.CrossRefPubMed Shi L, Xu Y, Feng M. Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer. Dig Dis Sci. 2023;68:370–9.CrossRefPubMed
2.
go back to reference Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med. 2021;13:107.CrossRefPubMedPubMedCentral Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med. 2021;13:107.CrossRefPubMedPubMedCentral
3.
go back to reference Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut. 2023;72(4):772–86.CrossRefPubMed Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut. 2023;72(4):772–86.CrossRefPubMed
4.
go back to reference Adel-Khattab D, Groeger S, Domann E, Chakraborty T, Lochnit G, Meyle J. Porphyromonas gingivalis induced up-regulation of PD-L1 in colon carcinoma cells. Mol Oral Microbiol. 2021;36:172–81.CrossRefPubMed Adel-Khattab D, Groeger S, Domann E, Chakraborty T, Lochnit G, Meyle J. Porphyromonas gingivalis induced up-regulation of PD-L1 in colon carcinoma cells. Mol Oral Microbiol. 2021;36:172–81.CrossRefPubMed
5.
go back to reference Groeger S, Jarzina F, Mamat U, Meyle J. Induction of B7–H1 receptor by bacterial cells fractions of Porphyromonas gingivalis on human oral epithelial cells: B7–H1 induction by Porphyromonas gingivalis fractions. Immunobiology. 2017;222:137–47.CrossRefPubMed Groeger S, Jarzina F, Mamat U, Meyle J. Induction of B7–H1 receptor by bacterial cells fractions of Porphyromonas gingivalis on human oral epithelial cells: B7–H1 induction by Porphyromonas gingivalis fractions. Immunobiology. 2017;222:137–47.CrossRefPubMed
6.
go back to reference Groeger S, Denter F, Lochnit G, Schmitz ML, Meyle J. Porphyromonas gingivalis cell wall components induce Programmed Death Ligand 1 (PD-L1) expression on human oral carcinoma cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-dependent mechanism. Infect Immun. 2020;88:e00051-20.CrossRefPubMedPubMedCentral Groeger S, Denter F, Lochnit G, Schmitz ML, Meyle J. Porphyromonas gingivalis cell wall components induce Programmed Death Ligand 1 (PD-L1) expression on human oral carcinoma cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-dependent mechanism. Infect Immun. 2020;88:e00051-20.CrossRefPubMedPubMedCentral
7.
go back to reference Okumura S, Konishi Y, Narukawa M, Sugiura Y, Yoshimoto S, Arai Y, Sato S, Yoshida Y, Tsuji S, Uemura K, Wakita M, Matsudaira T, Matsumoto T, Kawamoto S, Takahashi A, Itatani Y, Miki H, Takamatsu M, Obama K, Takeuchi K, Suematsu M, Ohtani N, Fukunaga Y, Ueno M, Sakai Y, Nagayama S, Hara E. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun. 2021;12:5674.CrossRefPubMedPubMedCentral Okumura S, Konishi Y, Narukawa M, Sugiura Y, Yoshimoto S, Arai Y, Sato S, Yoshida Y, Tsuji S, Uemura K, Wakita M, Matsudaira T, Matsumoto T, Kawamoto S, Takahashi A, Itatani Y, Miki H, Takamatsu M, Obama K, Takeuchi K, Suematsu M, Ohtani N, Fukunaga Y, Ueno M, Sakai Y, Nagayama S, Hara E. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun. 2021;12:5674.CrossRefPubMedPubMedCentral
8.
go back to reference Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27:409–16.CrossRefPubMed Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27:409–16.CrossRefPubMed
9.
go back to reference Liu S, Zhou X, Peng X, Li M, Ren B, Cheng G, Cheng L. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J Immunol. 2020;205:282–9.CrossRefPubMed Liu S, Zhou X, Peng X, Li M, Ren B, Cheng G, Cheng L. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J Immunol. 2020;205:282–9.CrossRefPubMed
10.
go back to reference Mu W, Jia Y, Chen X, Li H, Wang Z, Cheng B. Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front Cell Infect Microbiol. 2020;10:584798.CrossRefPubMedPubMedCentral Mu W, Jia Y, Chen X, Li H, Wang Z, Cheng B. Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front Cell Infect Microbiol. 2020;10:584798.CrossRefPubMedPubMedCentral
11.
go back to reference Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165:1708–20.CrossRefPubMedPubMedCentral Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165:1708–20.CrossRefPubMedPubMedCentral
12.
go back to reference Niederman R, Buyle-Bodin Y, Lu BY, Robinson P, Naleway C. Short-chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res. 1997;76:575–9.CrossRefPubMed Niederman R, Buyle-Bodin Y, Lu BY, Robinson P, Naleway C. Short-chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res. 1997;76:575–9.CrossRefPubMed
13.
Metadata
Title
Letter on “Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer”
Author
Luis Vitetta
Publication date
01-05-2023
Publisher
Springer US
Published in
Medical Oncology / Issue 5/2023
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-023-02006-9

Other articles of this Issue 5/2023

Medical Oncology 5/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine