Skip to main content
Top
Published in: Medical Oncology 3/2018

01-03-2018 | Review Article

Cell biology of glioblastoma multiforme: from basic science to diagnosis and treatment

Authors: George S. Stoyanov, Deyan Dzhenkov, Peter Ghenev, Bogomil Iliev, Yavor Enchev, Anton B. Tonchev

Published in: Medical Oncology | Issue 3/2018

Login to get access

Abstract

First described in the 1800s, glioblastoma multiforme (GBM), a class IV neoplasm with astrocytic differentiation, as per the revised 2016 World Health Organization classification of tumors of the central nervous system (CNS) is the most common malignant tumor of the CNS. GBM has an extremely wide set of alterations, both genetic and epigenetic, which yield a great number of mutation subgroups, some of which have an established role in independent patient survival and treatment response. All of those components not only represent a closed cycle but are also relevant to the tumor biological behavior and resistance to treatment as they form the pathobiological behavior and clinical course. The presence of different triggering mutations on the background of the presence of key mutations in the GBM stem cells (GBMsc) further separates GBM as primary arising de novo from neural stem cell precursors developing into GBMsc and secondary, by means of aggregated mutations. Some of the change in cellular biology in GBM can be observed via light microscope as they form the cellular and tissue hallmarks of the condition. Changes in genetic information, resulting in alteration, suppression and expression of genes compared to their physiological levels in healthy astrocytes lead to not only cellular, but also extracellular matrix reorganization. These changes result in a multiform number of micromorphological and purely immunological/biochemical forms. Therefore, in the twenty-first century the term multiforme, previously outcast from nomenclatures, has gained new popularity on the background of genotypic diversity in this neoplastic entry.
Literature
1.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefPubMed Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefPubMed
2.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.CrossRefPubMedPubMedCentral Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.CrossRefPubMedPubMedCentral
3.
go back to reference Stoyanov GS, Dzhenkov DL, Kitanova M, Ghenev P, Tonchev AB. Demographics and incidence of histologically confirmed intracranial tumors: a five-year, two-center prospective study. Cureus. 2017;9(7):e1476.PubMedPubMedCentral Stoyanov GS, Dzhenkov DL, Kitanova M, Ghenev P, Tonchev AB. Demographics and incidence of histologically confirmed intracranial tumors: a five-year, two-center prospective study. Cureus. 2017;9(7):e1476.PubMedPubMedCentral
4.
go back to reference de Carvalho LEW, Sarraf JS, Semblano AAP, Moreira MA, de Lemos MN, de Mello VJ, et al. Central nervous system tumours profile at a referral center in the Brazilian Amazon region, 1997–2014. PLoS One. 2017;12(4):e0174439.CrossRef de Carvalho LEW, Sarraf JS, Semblano AAP, Moreira MA, de Lemos MN, de Mello VJ, et al. Central nervous system tumours profile at a referral center in the Brazilian Amazon region, 1997–2014. PLoS One. 2017;12(4):e0174439.CrossRef
5.
go back to reference Yeung JT, Hamilton RL, Ohnishi K, Ikeura M, Potter DM, Nikiforova MN, et al. LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clin Cancer Res. 2013;19(7):1816–26.CrossRefPubMedPubMedCentral Yeung JT, Hamilton RL, Ohnishi K, Ikeura M, Potter DM, Nikiforova MN, et al. LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clin Cancer Res. 2013;19(7):1816–26.CrossRefPubMedPubMedCentral
6.
go back to reference Stoyanov GS, Dzhenkov DL, Kitanova M, Donev IS, Ghenev P. Correlation Between Ki-67 Index, World Health Organization grade and patient survival in glial tumors with astrocytic differentiation. Cureus. 2017;9(6):e1396.PubMedPubMedCentral Stoyanov GS, Dzhenkov DL, Kitanova M, Donev IS, Ghenev P. Correlation Between Ki-67 Index, World Health Organization grade and patient survival in glial tumors with astrocytic differentiation. Cureus. 2017;9(6):e1396.PubMedPubMedCentral
7.
go back to reference Krex D, Klink B, Hartmann C, Von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130(10):2596–606.CrossRefPubMed Krex D, Klink B, Hartmann C, Von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130(10):2596–606.CrossRefPubMed
8.
go back to reference Darefsky AS, King JT, Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of surveillance, epidemiology, and end results registries. Cancer. 2012;118(8):2163–72.CrossRefPubMed Darefsky AS, King JT, Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of surveillance, epidemiology, and end results registries. Cancer. 2012;118(8):2163–72.CrossRefPubMed
9.
go back to reference Scherer HJ. A critical review: the pathology of cerebral gliomas. J Neurol Neurosurg Psychiatry. 1940;3(2):147–77.CrossRef Scherer HJ. A critical review: the pathology of cerebral gliomas. J Neurol Neurosurg Psychiatry. 1940;3(2):147–77.CrossRef
10.
go back to reference Stoyanov GS, Dzhenkov DL. On the concepts and history of glioblastoma multiforme—morphology, genetics and epigenetics. Folia Med (Plovdiv). 2017; online ahead of print. Stoyanov GS, Dzhenkov DL. On the concepts and history of glioblastoma multiforme—morphology, genetics and epigenetics. Folia Med (Plovdiv). 2017; online ahead of print.
11.
go back to reference Nakayama K, Nakayama N, Wang TL, Shih IM. NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIP1, a candidate tumor suppressor. Cancer Res. 2007;67(17):8058–64.CrossRefPubMed Nakayama K, Nakayama N, Wang TL, Shih IM. NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIP1, a candidate tumor suppressor. Cancer Res. 2007;67(17):8058–64.CrossRefPubMed
12.
go back to reference Costa PM, Cardoso AL, Mano M, de Lima MCP. MicroRNAs in glioblastoma: role in pathogenesis and opportunities for targeted therapies. CNS Neurol Disord Drug Targets. 2015;14(2):222–38.CrossRefPubMed Costa PM, Cardoso AL, Mano M, de Lima MCP. MicroRNAs in glioblastoma: role in pathogenesis and opportunities for targeted therapies. CNS Neurol Disord Drug Targets. 2015;14(2):222–38.CrossRefPubMed
13.
go back to reference Kwak Y, Kim SI, Park CK, Paek SH, Lee ST, Park SH. C-MET overexpression and amplification in gliomas. Int J Clin Exp Pathol. 2015;8(11):14932–8.PubMedPubMedCentral Kwak Y, Kim SI, Park CK, Paek SH, Lee ST, Park SH. C-MET overexpression and amplification in gliomas. Int J Clin Exp Pathol. 2015;8(11):14932–8.PubMedPubMedCentral
14.
go back to reference De Almeida Sassi F, Lunardi Brunetto A, Schwartsmann G, Roesler R, Abujamra AL. Glioma revisited: from neurogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol. 2012;2012:1–20. De Almeida Sassi F, Lunardi Brunetto A, Schwartsmann G, Roesler R, Abujamra AL. Glioma revisited: from neurogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol. 2012;2012:1–20.
15.
go back to reference Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2(2):152–63.CrossRefPubMedPubMedCentral Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2(2):152–63.CrossRefPubMedPubMedCentral
16.
go back to reference Zhang J, Yang JH, Quan J, Kang X, Wang HJ, Dai PG. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas. Tumor Biol. 2016;37(10):13571–9.CrossRef Zhang J, Yang JH, Quan J, Kang X, Wang HJ, Dai PG. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas. Tumor Biol. 2016;37(10):13571–9.CrossRef
17.
go back to reference Stancheva G, Goranova T, Laleva M, Kamenova M, Mitkova A, Velinov N, et al. IDH1/IDH2 but not TP53 mutations predict prognosis in Bulgarian glioblastoma patients. Biomed Res Int. 2014;2014:654727.CrossRefPubMedPubMedCentral Stancheva G, Goranova T, Laleva M, Kamenova M, Mitkova A, Velinov N, et al. IDH1/IDH2 but not TP53 mutations predict prognosis in Bulgarian glioblastoma patients. Biomed Res Int. 2014;2014:654727.CrossRefPubMedPubMedCentral
18.
go back to reference Crespo I, Vital AL, Nieto AB, Rebelo O, Tão H, Lopes MC, et al. Detailed characterization of alterations of chromosomes 7, 9, and 10 in glioblastomas as assessed by single-nucleotide polymorphism arrays. J Mol Diagn. 2011;13(6):634–47.CrossRefPubMedPubMedCentral Crespo I, Vital AL, Nieto AB, Rebelo O, Tão H, Lopes MC, et al. Detailed characterization of alterations of chromosomes 7, 9, and 10 in glioblastomas as assessed by single-nucleotide polymorphism arrays. J Mol Diagn. 2011;13(6):634–47.CrossRefPubMedPubMedCentral
19.
go back to reference Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31(12):653–9.CrossRefPubMed Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31(12):653–9.CrossRefPubMed
20.
go back to reference De Angelis LM, Mellinghoff IK. Virchow 2011 or how to ID(H) human glioblastoma. J Clin Oncol. 2011;29(34):4473–4.CrossRef De Angelis LM, Mellinghoff IK. Virchow 2011 or how to ID(H) human glioblastoma. J Clin Oncol. 2011;29(34):4473–4.CrossRef
21.
go back to reference Yang P, Zhang W, Wang Y, Peng XJ, Chen B, Qiu X, et al. IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget. 2015;6(38):40896.CrossRefPubMedPubMedCentral Yang P, Zhang W, Wang Y, Peng XJ, Chen B, Qiu X, et al. IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget. 2015;6(38):40896.CrossRefPubMedPubMedCentral
22.
go back to reference Kramář F, Minárik M, Benešová L, Halková T, Netuka D, Bradáč O, et al. IDH1/2 mutation and MGMT promoter methylation—the relevant survival predictors in Czech patients with brain Gliomas. Folia Biol (Czech Republic). 2016;62(5):194–202. Kramář F, Minárik M, Benešová L, Halková T, Netuka D, Bradáč O, et al. IDH1/2 mutation and MGMT promoter methylation—the relevant survival predictors in Czech patients with brain Gliomas. Folia Biol (Czech Republic). 2016;62(5):194–202.
23.
go back to reference Combs SE, Rieken S, Wick W, Abdollahi A, von Deimling A, Debus J, et al. Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back? Radiat Oncol. 2011;6(1):115.CrossRefPubMedPubMedCentral Combs SE, Rieken S, Wick W, Abdollahi A, von Deimling A, Debus J, et al. Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back? Radiat Oncol. 2011;6(1):115.CrossRefPubMedPubMedCentral
24.
go back to reference Virchow R. Cellular pathology as based upon physiological and pathological histology; twenty lectures delivered in the Pathological Institute of Berlin during the months of February, March, and April, 1858. New York: Robert M. De Witt; 1860.CrossRef Virchow R. Cellular pathology as based upon physiological and pathological histology; twenty lectures delivered in the Pathological Institute of Berlin during the months of February, March, and April, 1858. New York: Robert M. De Witt; 1860.CrossRef
25.
go back to reference Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5(1):67.CrossRefPubMedPubMedCentral Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5(1):67.CrossRefPubMedPubMedCentral
26.
go back to reference Altaner C. Glioblastoma and stem cells—minireview. Neoplasma. 2008;55(5):369–74.PubMed Altaner C. Glioblastoma and stem cells—minireview. Neoplasma. 2008;55(5):369–74.PubMed
27.
go back to reference Park DM, Jung J, Masjkur J, Makrogkikas S, Ebermann D, Saha S, et al. Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics. Sci Rep. 2013;3(1):1095.CrossRefPubMedPubMedCentral Park DM, Jung J, Masjkur J, Makrogkikas S, Ebermann D, Saha S, et al. Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics. Sci Rep. 2013;3(1):1095.CrossRefPubMedPubMedCentral
29.
go back to reference Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Investig. 2000;80(1):65–72.CrossRefPubMed Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Investig. 2000;80(1):65–72.CrossRefPubMed
30.
go back to reference Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H. Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol. 2000;59(6):539–43.CrossRefPubMed Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H. Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol. 2000;59(6):539–43.CrossRefPubMed
31.
go back to reference Peiffer J, Kleihues P. Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol. 1999;9(2):241–5.CrossRefPubMed Peiffer J, Kleihues P. Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol. 1999;9(2):241–5.CrossRefPubMed
32.
go back to reference Scherer M. Some comments on the paper: Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol. 2013;23(4):485–7.CrossRefPubMed Scherer M. Some comments on the paper: Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol. 2013;23(4):485–7.CrossRefPubMed
34.
go back to reference Zainuddin N, Jaafar H, Isa MN, Abdullah JM. Loss of heterozygosity on chromosomes 10q, 9p, 17p and 13q in Malays with malignant glioma. Neurol Res. 2004;26(1):88–92.CrossRefPubMed Zainuddin N, Jaafar H, Isa MN, Abdullah JM. Loss of heterozygosity on chromosomes 10q, 9p, 17p and 13q in Malays with malignant glioma. Neurol Res. 2004;26(1):88–92.CrossRefPubMed
36.
go back to reference Kakkar A, Suri V, Jha P, Srivastava A, Sharma V, Pathak P, et al. Loss of heterozygosity on chromosome 10q in glioblastomas, and its association with other genetic alterations and survival in Indian patients. Neurol India. 2011;59(2):254–61.CrossRefPubMed Kakkar A, Suri V, Jha P, Srivastava A, Sharma V, Pathak P, et al. Loss of heterozygosity on chromosome 10q in glioblastomas, and its association with other genetic alterations and survival in Indian patients. Neurol India. 2011;59(2):254–61.CrossRefPubMed
37.
go back to reference Kuga D, Mizoguchi M, Guan Y, Hata N, Yoshimoto K, Shono T, et al. Prevalence of copy-number neutral LOH in glioblastomas revealed by genomewide analysis of laser-microdissected tissues. Neuro Oncol. 2008;10(6):995–1003.CrossRefPubMedPubMedCentral Kuga D, Mizoguchi M, Guan Y, Hata N, Yoshimoto K, Shono T, et al. Prevalence of copy-number neutral LOH in glioblastomas revealed by genomewide analysis of laser-microdissected tissues. Neuro Oncol. 2008;10(6):995–1003.CrossRefPubMedPubMedCentral
40.
go back to reference Guo Y, Su ZY, Kong ANT. Current perspectives on epigenetic modifications by dietary chemopreventive and herbal phytochemicals. Curr Pharmacol Rep. 2015;1(4):245–57.CrossRefPubMedPubMedCentral Guo Y, Su ZY, Kong ANT. Current perspectives on epigenetic modifications by dietary chemopreventive and herbal phytochemicals. Curr Pharmacol Rep. 2015;1(4):245–57.CrossRefPubMedPubMedCentral
41.
go back to reference Terada T. Expression of cytokeratins in glioblastoma multiforme. Pathol Oncol Res. 2015;21(3):817–9.CrossRefPubMed Terada T. Expression of cytokeratins in glioblastoma multiforme. Pathol Oncol Res. 2015;21(3):817–9.CrossRefPubMed
42.
go back to reference Goswami C, Chatterjee U, Sen S, Chatterjee S, Sarkar S. Expression of cytokeratins in gliomas. Indian J Pathol Microbiol. 2007;50(3):478–81.PubMed Goswami C, Chatterjee U, Sen S, Chatterjee S, Sarkar S. Expression of cytokeratins in gliomas. Indian J Pathol Microbiol. 2007;50(3):478–81.PubMed
43.
go back to reference Cosgrove MM, Rich KA, Kunin SA, Sherrod AE, Martin SE. Keratin intermediate filament expression in astrocytic neoplasms: analysis by immunocytochemistry, western blot, and northern hybridization. Mod Pathol. 1993;6(3):342–7.PubMed Cosgrove MM, Rich KA, Kunin SA, Sherrod AE, Martin SE. Keratin intermediate filament expression in astrocytic neoplasms: analysis by immunocytochemistry, western blot, and northern hybridization. Mod Pathol. 1993;6(3):342–7.PubMed
44.
go back to reference Stoyanov GS, Dzhenkov D, Ghenev P. Cytokeratin AE1/AE3 mimicry in Glioblastoma. Scr Sci Medica. 2017;49(1):47–52. Stoyanov GS, Dzhenkov D, Ghenev P. Cytokeratin AE1/AE3 mimicry in Glioblastoma. Scr Sci Medica. 2017;49(1):47–52.
45.
go back to reference Stoyanov G, Kitanova M, Dzhenkov D, Ghenev P. The diagnostic dilemma of epithelial marker expression in glioblastoma. Pathol Oncol Res. 2017; online ahead of print. Stoyanov G, Kitanova M, Dzhenkov D, Ghenev P. The diagnostic dilemma of epithelial marker expression in glioblastoma. Pathol Oncol Res. 2017; online ahead of print.
46.
go back to reference Oh D, Prayson RA. Evaluation of epithelial and keratin markers in glioblastoma multiforme: an immunohistochemical study. Arch Pathol Lab Med. 1999;123(10):917–20.PubMed Oh D, Prayson RA. Evaluation of epithelial and keratin markers in glioblastoma multiforme: an immunohistochemical study. Arch Pathol Lab Med. 1999;123(10):917–20.PubMed
47.
go back to reference Kriho VK, Yang HY, Moskal JR, Skalli O. Keratin expression in astrocytomas: an immunofluorescent and biochemical reassessment. Virchows Arch. 1997;431(2):139–47.CrossRefPubMed Kriho VK, Yang HY, Moskal JR, Skalli O. Keratin expression in astrocytomas: an immunofluorescent and biochemical reassessment. Virchows Arch. 1997;431(2):139–47.CrossRefPubMed
48.
go back to reference Stoyanov GS, Dzhenkov D, Ghenev P. The great imitator—EMA positive glioblastoma multiforme. Scr Sci Medica. 2017;49(1):21–5. Stoyanov GS, Dzhenkov D, Ghenev P. The great imitator—EMA positive glioblastoma multiforme. Scr Sci Medica. 2017;49(1):21–5.
49.
go back to reference Moon K-S, Jung S, Lee M-C, Kim I-Y, Kim H-W, Lee J-K, et al. Metastatic glioblastoma in cervical lymph node after repeated craniotomies: report of a case with diagnosis by fine needle aspiration. J Korean Med Sci. 2004;19(6):911–4.CrossRefPubMedPubMedCentral Moon K-S, Jung S, Lee M-C, Kim I-Y, Kim H-W, Lee J-K, et al. Metastatic glioblastoma in cervical lymph node after repeated craniotomies: report of a case with diagnosis by fine needle aspiration. J Korean Med Sci. 2004;19(6):911–4.CrossRefPubMedPubMedCentral
50.
go back to reference Forsyth PA, Laing TD, Gibson AW, Rewcastle NB, Brasher P, Sutherland G, et al. High levels of gelatinase-B and active gelatinase-A in metastatic glioblastoma. J Neurooncol. 1998;36(1):21–9.CrossRefPubMed Forsyth PA, Laing TD, Gibson AW, Rewcastle NB, Brasher P, Sutherland G, et al. High levels of gelatinase-B and active gelatinase-A in metastatic glioblastoma. J Neurooncol. 1998;36(1):21–9.CrossRefPubMed
51.
go back to reference Zappia JJ, Wolf GT. Cervical metastatic glioblastoma multiforme. Arch Otolaryngol Head Neck Surg. 1992;118(7):755–6.CrossRefPubMed Zappia JJ, Wolf GT. Cervical metastatic glioblastoma multiforme. Arch Otolaryngol Head Neck Surg. 1992;118(7):755–6.CrossRefPubMed
52.
go back to reference Kalokhe G, Grimm SA, Chandler JP, Helenowski I, Rademaker A, Raizer JJ. Metastatic glioblastoma: case presentations and a review of the literature. J Neurooncol. 2012;107(1):21–7.CrossRefPubMed Kalokhe G, Grimm SA, Chandler JP, Helenowski I, Rademaker A, Raizer JJ. Metastatic glioblastoma: case presentations and a review of the literature. J Neurooncol. 2012;107(1):21–7.CrossRefPubMed
53.
go back to reference González Cámpora R, Otal Salaverri C, Vázquez Ramirez F, Salguero Villadiego M, Galera Davidson H. Metastatic glioblastoma multiforme in cervical lymph nodes. Report of a case with diagnosis by fine needle aspiration. Acta Cytol. 1993;37(6):938–42.PubMed González Cámpora R, Otal Salaverri C, Vázquez Ramirez F, Salguero Villadiego M, Galera Davidson H. Metastatic glioblastoma multiforme in cervical lymph nodes. Report of a case with diagnosis by fine needle aspiration. Acta Cytol. 1993;37(6):938–42.PubMed
54.
55.
go back to reference Dziurzynski K, Blas-Boria D, Suki D, Cahill DP, Prabhu SS, Puduvalli V, et al. Butterfly glioblastomas: a retrospective review and qualitative assessment of outcomes. J Neurooncol. 2012;109(3):555–63.CrossRefPubMedPubMedCentral Dziurzynski K, Blas-Boria D, Suki D, Cahill DP, Prabhu SS, Puduvalli V, et al. Butterfly glioblastomas: a retrospective review and qualitative assessment of outcomes. J Neurooncol. 2012;109(3):555–63.CrossRefPubMedPubMedCentral
56.
go back to reference Stark AM, Nabavi A, Mehdorn HM, Blömer U. Glioblastoma multiforme—report of 267 cases treated at a single institution. Surg Neurol. 2005;63(2):162–9.CrossRefPubMed Stark AM, Nabavi A, Mehdorn HM, Blömer U. Glioblastoma multiforme—report of 267 cases treated at a single institution. Surg Neurol. 2005;63(2):162–9.CrossRefPubMed
57.
go back to reference Trabelsi A, Conan-Charlet V, Lhomme C, Morice P, Duvillard P, Sabourin JC. Peritoneal glioblastoma: recurrence of ovarian immature teratoma (report of a case). Ann Pathol. 2002;22(2):130–3.PubMed Trabelsi A, Conan-Charlet V, Lhomme C, Morice P, Duvillard P, Sabourin JC. Peritoneal glioblastoma: recurrence of ovarian immature teratoma (report of a case). Ann Pathol. 2002;22(2):130–3.PubMed
58.
go back to reference Yadav A, Lellouch-Tubiana A, Fournet JC, Quazza JE, Kalifa C, Sainte-Rose C, et al. Glioblastoma multiforme in a mature ovarian teratoma with recurring brain tumours. Histopathology. 1999;35(2):170–3.CrossRefPubMed Yadav A, Lellouch-Tubiana A, Fournet JC, Quazza JE, Kalifa C, Sainte-Rose C, et al. Glioblastoma multiforme in a mature ovarian teratoma with recurring brain tumours. Histopathology. 1999;35(2):170–3.CrossRefPubMed
59.
go back to reference Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W, Evans EP, et al. Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J Cell Sci. 1984;72(1):37–64.PubMed Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W, Evans EP, et al. Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J Cell Sci. 1984;72(1):37–64.PubMed
60.
go back to reference Nogales FF, Aguilar D. Neural tissues in human teratomas. In: Damjanov I, Knowles BB, Solter D, editors. The human teratomas. Contemporary biomedicine, vol. 3. New York: Humana Press; 1983. p. 173–90.CrossRef Nogales FF, Aguilar D. Neural tissues in human teratomas. In: Damjanov I, Knowles BB, Solter D, editors. The human teratomas. Contemporary biomedicine, vol. 3. New York: Humana Press; 1983. p. 173–90.CrossRef
61.
go back to reference Martínez R. Beyond genetics in glioma pathways: the ever-increasing crosstalk between epigenomic and genomic events. J Signal Transduct. 2012;2012:1–9.CrossRef Martínez R. Beyond genetics in glioma pathways: the ever-increasing crosstalk between epigenomic and genomic events. J Signal Transduct. 2012;2012:1–9.CrossRef
62.
go back to reference Thangarajah F, Enninga I, Malter W, Hamacher S, Markiefka B, Richters L, et al. A retrospective analysis of Ki-67 index and its prognostic significance in over 800 primary breast cancer cases. Anticancer Res. 2017;37(4):1957–64.CrossRefPubMed Thangarajah F, Enninga I, Malter W, Hamacher S, Markiefka B, Richters L, et al. A retrospective analysis of Ki-67 index and its prognostic significance in over 800 primary breast cancer cases. Anticancer Res. 2017;37(4):1957–64.CrossRefPubMed
63.
go back to reference Shibata T, Burger PC, Kleihues P. Ki-67 immunoperoxidase stain as marker for the histological grading of nervous system tumours. Acta Neurochir Suppl (Wien). 1988;43:103–6. Shibata T, Burger PC, Kleihues P. Ki-67 immunoperoxidase stain as marker for the histological grading of nervous system tumours. Acta Neurochir Suppl (Wien). 1988;43:103–6.
64.
go back to reference Litofsky NS, Mix TCH, Baker SP, Recht LD, Smith TW. Ki-67 (clone MIB-1) proliferation index in recurrent glial neoplasms: no prognostic significance. Surg Neurol. 1998;50(6):579–85.CrossRefPubMed Litofsky NS, Mix TCH, Baker SP, Recht LD, Smith TW. Ki-67 (clone MIB-1) proliferation index in recurrent glial neoplasms: no prognostic significance. Surg Neurol. 1998;50(6):579–85.CrossRefPubMed
65.
go back to reference Yábar A, Meléndez R, Muñoz S, Deneo H, Freire J, Domínguez V, et al. Effect of Ki-67 assessment in the distribution of breast cancer subtypes: evaluation in a cohort of Latin American patients. Mol Clin Oncol. 2017;6(4):503–9.CrossRefPubMedPubMedCentral Yábar A, Meléndez R, Muñoz S, Deneo H, Freire J, Domínguez V, et al. Effect of Ki-67 assessment in the distribution of breast cancer subtypes: evaluation in a cohort of Latin American patients. Mol Clin Oncol. 2017;6(4):503–9.CrossRefPubMedPubMedCentral
66.
go back to reference Sarkar SH, Ahmad A, Mittal S. The therapeutic role of microRNAs in human gliomas. In: Sarkar FH, editor. MicroRNA targeted cancer therapy. Cham: Springer International Publishing; 2014. p. 1–27.CrossRef Sarkar SH, Ahmad A, Mittal S. The therapeutic role of microRNAs in human gliomas. In: Sarkar FH, editor. MicroRNA targeted cancer therapy. Cham: Springer International Publishing; 2014. p. 1–27.CrossRef
67.
go back to reference Silber J, James CD, Hodgson JG. MicroRNAs in gliomas: small regulators of a big problem. NeuroMolecular Med. 2009;11(3):208–22.CrossRefPubMed Silber J, James CD, Hodgson JG. MicroRNAs in gliomas: small regulators of a big problem. NeuroMolecular Med. 2009;11(3):208–22.CrossRefPubMed
68.
go back to reference Li S-J, Zhou J, Zhang L, Xiang W, Hu Q, He Y-Y, et al. The effect of miR-21 on SWOZ2 glioma cells and its biological mechanism. J BUON. 2017;22(2):468–73.PubMed Li S-J, Zhou J, Zhang L, Xiang W, Hu Q, He Y-Y, et al. The effect of miR-21 on SWOZ2 glioma cells and its biological mechanism. J BUON. 2017;22(2):468–73.PubMed
69.
go back to reference Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, et al. Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep. 2010;24(1):195–201.PubMed Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, et al. Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep. 2010;24(1):195–201.PubMed
70.
go back to reference Becker Buscaglia LE, Li Y. Apoptosis and the target genes of miR-21. Chin J Cancer. 2011;30(6):371–80.CrossRef Becker Buscaglia LE, Li Y. Apoptosis and the target genes of miR-21. Chin J Cancer. 2011;30(6):371–80.CrossRef
71.
go back to reference Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, et al. PDGFRβ-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51(2):187–99.CrossRefPubMed Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, et al. PDGFRβ-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51(2):187–99.CrossRefPubMed
72.
go back to reference Crespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, et al. Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 2015;185(7):1820–33.CrossRefPubMed Crespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, et al. Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 2015;185(7):1820–33.CrossRefPubMed
73.
go back to reference Geraghty AV, Knott PD, Hanna HM. Prenatal diagnosis of fetal glioblastoma multiforme. Prenat Diagn. 1989;9(9):613–6.CrossRefPubMed Geraghty AV, Knott PD, Hanna HM. Prenatal diagnosis of fetal glioblastoma multiforme. Prenat Diagn. 1989;9(9):613–6.CrossRefPubMed
75.
go back to reference Ahmadloo N, Kani AA, Mohammadianpanah M, Nasrolahi H, Omidvari S, Mosalaei A, et al. Treatment outcome and prognostic factors of adult glioblastoma multiforme. J Egypt Natl Canc Inst. 2013;25(1):21–30.CrossRefPubMed Ahmadloo N, Kani AA, Mohammadianpanah M, Nasrolahi H, Omidvari S, Mosalaei A, et al. Treatment outcome and prognostic factors of adult glioblastoma multiforme. J Egypt Natl Canc Inst. 2013;25(1):21–30.CrossRefPubMed
76.
go back to reference Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16(suppl 4):iv1–63.CrossRefPubMedPubMedCentral Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16(suppl 4):iv1–63.CrossRefPubMedPubMedCentral
77.
go back to reference Enchev Y, Ferdinandov D, Kounin G, Encheva E, Bussarsky V. Radiation-induced gliomas following radiotherapy for craniopharyngiomas: a case report and review of the literature. Clin Neurol Neurosurg. 2009;111(7):591–6.CrossRefPubMed Enchev Y, Ferdinandov D, Kounin G, Encheva E, Bussarsky V. Radiation-induced gliomas following radiotherapy for craniopharyngiomas: a case report and review of the literature. Clin Neurol Neurosurg. 2009;111(7):591–6.CrossRefPubMed
78.
go back to reference Abadin SS, Zoellner NL, Schaeffer M, Porcelli B, Gutmann DH, Johnson KJ. Racial/ethnic differences in pediatric brain tumor diagnoses in patients with neurofibromatosis type 1. J Pediatr. 2015;167(3):613–20.CrossRefPubMedPubMedCentral Abadin SS, Zoellner NL, Schaeffer M, Porcelli B, Gutmann DH, Johnson KJ. Racial/ethnic differences in pediatric brain tumor diagnoses in patients with neurofibromatosis type 1. J Pediatr. 2015;167(3):613–20.CrossRefPubMedPubMedCentral
80.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentral
82.
go back to reference Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose metabolization in cancer cells. J Oncol Sci. 2017;3(2):45–51. Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose metabolization in cancer cells. J Oncol Sci. 2017;3(2):45–51.
83.
go back to reference Sarraf JS, Puty TC, de Brito GSA, Cunha RDPC, Lira GSA, de Carvalho LEW, et al. Glucose variations and their impact on the treatment response in advanced colorectal cancer. Scr Sci Vox Studentium. 2017;1(1):23–7. Sarraf JS, Puty TC, de Brito GSA, Cunha RDPC, Lira GSA, de Carvalho LEW, et al. Glucose variations and their impact on the treatment response in advanced colorectal cancer. Scr Sci Vox Studentium. 2017;1(1):23–7.
84.
go back to reference Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and trojan horses. Clin Cancer Res. 2007;13(6):1663–74.CrossRefPubMed Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and trojan horses. Clin Cancer Res. 2007;13(6):1663–74.CrossRefPubMed
Metadata
Title
Cell biology of glioblastoma multiforme: from basic science to diagnosis and treatment
Authors
George S. Stoyanov
Deyan Dzhenkov
Peter Ghenev
Bogomil Iliev
Yavor Enchev
Anton B. Tonchev
Publication date
01-03-2018
Publisher
Springer US
Published in
Medical Oncology / Issue 3/2018
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-018-1083-x

Other articles of this Issue 3/2018

Medical Oncology 3/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine