Skip to main content
Top
Published in: Neurocritical Care 3/2011

01-12-2011 | Review Article

Potential Non-Hypoxic/Ischemic Causes of Increased Cerebral Interstitial Fluid Lactate/Pyruvate Ratio: A Review of Available Literature

Authors: Daniel B. Larach, W. Andrew Kofke, Peter Le Roux

Published in: Neurocritical Care | Issue 3/2011

Login to get access

Abstract

Microdialysis, an in vivo technique that permits collection and analysis of small molecular weight substances from the interstitial space, was developed more than 30 years ago and introduced into the clinical neurosciences in the 1990s. Today cerebral microdialysis is an established, commercially available clinical tool that is focused primarily on markers of cerebral energy metabolism (glucose, lactate, and pyruvate) and cell damage (glycerol), and neurotransmitters (glutamate). Although the brain comprises only 2% of body weight, it consumes 20% of total body energy. Consequently, the ability to monitor cerebral metabolism can provide significant insights during clinical care. Measurements of lactate, pyruvate, and glucose give information about the comparative contributions of aerobic and anaerobic metabolisms to brain energy. The lactate/pyruvate ratio reflects cytoplasmic redox state and thus provides information about tissue oxygenation. An elevated lactate pyruvate ratio (>40) frequently is interpreted as a sign of cerebral hypoxia or ischemia. However, several other factors may contribute to an elevated LPR. This article reviews potential non-hypoxic/ischemic causes of an increased LPR.
Literature
1.
go back to reference Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30:44–55.PubMed Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30:44–55.PubMed
2.
go back to reference Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009;47:7.1.1–1.28. Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009;47:7.1.1–1.28.
3.
go back to reference Torregrossa MM, Kalivas PW. Microdialysis and the neurochemistry of addiction. Pharmacol Biochem Behav. 2008;90:261–72.PubMedCrossRef Torregrossa MM, Kalivas PW. Microdialysis and the neurochemistry of addiction. Pharmacol Biochem Behav. 2008;90:261–72.PubMedCrossRef
4.
go back to reference Meeusen R. Exercise and the brain: insight in new therapeutic modalities. Ann Transplant. 2005;10:49–51.PubMed Meeusen R. Exercise and the brain: insight in new therapeutic modalities. Ann Transplant. 2005;10:49–51.PubMed
5.
go back to reference van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH. Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav. 2008;90:135–47.PubMedCrossRef van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH. Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav. 2008;90:135–47.PubMedCrossRef
6.
go back to reference Li Y, Peris J, Zhong L, Derendorf H. Microdialysis as a tool in local pharmacodynamics. AAPS J. 2006;8:E222–35.PubMed Li Y, Peris J, Zhong L, Derendorf H. Microdialysis as a tool in local pharmacodynamics. AAPS J. 2006;8:E222–35.PubMed
7.
go back to reference Stiller CO, Taylor BK, Linderoth B, Gustafsson H, Warsame Afrah A, Brodin E. Microdialysis in pain research. Adv Drug Deliv Rev. 2003;55:1065–79.PubMedCrossRef Stiller CO, Taylor BK, Linderoth B, Gustafsson H, Warsame Afrah A, Brodin E. Microdialysis in pain research. Adv Drug Deliv Rev. 2003;55:1065–79.PubMedCrossRef
8.
go back to reference Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46:301–8.PubMedCrossRef Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46:301–8.PubMedCrossRef
9.
go back to reference Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.PubMedCrossRef Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.PubMedCrossRef
10.
go back to reference Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.PubMedCrossRef Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.PubMedCrossRef
11.
go back to reference Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9.CrossRef Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9.CrossRef
12.
go back to reference Adamides AA, Rosenfeldt FL, Winter CD, et al. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg. 2009;209:531–9.PubMedCrossRef Adamides AA, Rosenfeldt FL, Winter CD, et al. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg. 2009;209:531–9.PubMedCrossRef
13.
14.
go back to reference Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.PubMedCrossRef Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.PubMedCrossRef
15.
go back to reference Nordström CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–72.PubMedCrossRef Nordström CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–72.PubMedCrossRef
16.
go back to reference Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.PubMedCrossRef Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.PubMedCrossRef
17.
go back to reference Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.PubMedCrossRef Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.PubMedCrossRef
18.
go back to reference Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.PubMedCrossRef Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.PubMedCrossRef
19.
go back to reference Oddo M, Milby A, Chen I, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1275–81.PubMedCrossRef Oddo M, Milby A, Chen I, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1275–81.PubMedCrossRef
20.
go back to reference Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809–14.PubMedCrossRef Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809–14.PubMedCrossRef
21.
go back to reference Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.PubMedCrossRef Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.PubMedCrossRef
22.
go back to reference Hashemi P, Bhatia R, Nakamura H, et al. Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab. 2009;29:166–75.PubMedCrossRef Hashemi P, Bhatia R, Nakamura H, et al. Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab. 2009;29:166–75.PubMedCrossRef
23.
go back to reference Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001;32:1863–7.PubMedCrossRef Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001;32:1863–7.PubMedCrossRef
24.
go back to reference Nortje J, Coles JP, Timofeev I, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36:273–81.PubMedCrossRef Nortje J, Coles JP, Timofeev I, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36:273–81.PubMedCrossRef
25.
go back to reference Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.PubMedCrossRef Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.PubMedCrossRef
26.
go back to reference Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8.PubMedCrossRef Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8.PubMedCrossRef
27.
go back to reference Leegsma-Vogt G, van der Werf S, Venema K, Korf J. Modeling cerebral arteriovenous lactate kinetics after intravenous lactate infusion in the rat. J Cereb Blood Flow Metab. 2004;24:1071–80.PubMedCrossRef Leegsma-Vogt G, van der Werf S, Venema K, Korf J. Modeling cerebral arteriovenous lactate kinetics after intravenous lactate infusion in the rat. J Cereb Blood Flow Metab. 2004;24:1071–80.PubMedCrossRef
28.
go back to reference Miller LP, Oldendorf WH. Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J Neurochem. 1986;46:1412–6.PubMedCrossRef Miller LP, Oldendorf WH. Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J Neurochem. 1986;46:1412–6.PubMedCrossRef
29.
go back to reference Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.PubMedCrossRef Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.PubMedCrossRef
30.
go back to reference Nelson DL, Cox MM. Lehninger principles of biochemistry. 5th ed. New York: WH Freeman; 2008. Nelson DL, Cox MM. Lehninger principles of biochemistry. 5th ed. New York: WH Freeman; 2008.
31.
go back to reference Johnston AJ, Gupta AK. Advanced monitoring in the neurology intensive care unit: microdialysis. Curr Opin Crit Care. 2002;8:121–7.PubMedCrossRef Johnston AJ, Gupta AK. Advanced monitoring in the neurology intensive care unit: microdialysis. Curr Opin Crit Care. 2002;8:121–7.PubMedCrossRef
32.
go back to reference Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9.PubMed Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9.PubMed
33.
go back to reference Gårdenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordström CH. Cerebral physiological and biochemical changes during vasogenic brain edema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir. 2002;144:601–8.CrossRef Gårdenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordström CH. Cerebral physiological and biochemical changes during vasogenic brain edema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir. 2002;144:601–8.CrossRef
34.
go back to reference Dusick JR, Glenn TC, Lee WN, et al. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1, 2–13C2]glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27:1593–602.PubMedCrossRef Dusick JR, Glenn TC, Lee WN, et al. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1, 2–13C2]glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27:1593–602.PubMedCrossRef
35.
go back to reference Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–4.PubMedCrossRef Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–4.PubMedCrossRef
36.
go back to reference Simpson NE, Han Z, Berendzen KM, et al. Magnetic resonance spectroscopic investigation of mitochondrial fuel metabolism and energetics in cultured human fibroblasts: effects of pyruvate dehydrogenase complex deficiency and dichloroacetate. Mol Genet Metab. 2006;89:97–105.PubMedCrossRef Simpson NE, Han Z, Berendzen KM, et al. Magnetic resonance spectroscopic investigation of mitochondrial fuel metabolism and energetics in cultured human fibroblasts: effects of pyruvate dehydrogenase complex deficiency and dichloroacetate. Mol Genet Metab. 2006;89:97–105.PubMedCrossRef
37.
go back to reference Nakasaki H, Ohta M, Soeda J, et al. Clinical and biochemical aspects of thiamine treatment for metabolic acidosis during total parenteral nutrition. Nutrition. 1997;13:110–7.PubMedCrossRef Nakasaki H, Ohta M, Soeda J, et al. Clinical and biochemical aspects of thiamine treatment for metabolic acidosis during total parenteral nutrition. Nutrition. 1997;13:110–7.PubMedCrossRef
38.
go back to reference Tinsa F, Ben Amor S, Kaabachi N, Ben Lasouad M, Boussetta K, Bousnina S. Unusual case of thiamine responsive megaloblastic anemia. Tunis Med. 2009;87:159–63.PubMed Tinsa F, Ben Amor S, Kaabachi N, Ben Lasouad M, Boussetta K, Bousnina S. Unusual case of thiamine responsive megaloblastic anemia. Tunis Med. 2009;87:159–63.PubMed
39.
go back to reference Poggi-Travert F, Martin D, Billette de Villemeur T, et al. Metabolic intermediates in lactic acidosis: compounds, samples and interpretation. J Inherit Metab Dis. 1996;19:478–88.PubMedCrossRef Poggi-Travert F, Martin D, Billette de Villemeur T, et al. Metabolic intermediates in lactic acidosis: compounds, samples and interpretation. J Inherit Metab Dis. 1996;19:478–88.PubMedCrossRef
40.
go back to reference Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. NEJM. 1992;327:1564–9.PubMedCrossRef Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. NEJM. 1992;327:1564–9.PubMedCrossRef
41.
go back to reference Hoppel CL, Kerr DS, Dahms B, Roessmann U. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest. 1987;80:71–7.PubMedCrossRef Hoppel CL, Kerr DS, Dahms B, Roessmann U. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest. 1987;80:71–7.PubMedCrossRef
42.
go back to reference Moreadith RW, Batshaw ML, Ohnishi T, et al. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984;74:685–97.PubMedCrossRef Moreadith RW, Batshaw ML, Ohnishi T, et al. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984;74:685–97.PubMedCrossRef
43.
go back to reference Robinson BH, McKay N, Goodyer P, Lancaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacitcacidemia. Am J Hum Genet. 1985;37:938–46.PubMed Robinson BH, McKay N, Goodyer P, Lancaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacitcacidemia. Am J Hum Genet. 1985;37:938–46.PubMed
44.
go back to reference Van Hove JL, Saenz MS, Thomas JA, et al. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res. 2010;68:159–64.PubMedCrossRef Van Hove JL, Saenz MS, Thomas JA, et al. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res. 2010;68:159–64.PubMedCrossRef
45.
go back to reference Chesney RW, Kaplan BS, Colle E, et al. Abnormalities of carbohydrate metabolism in idiopathic Fanconi syndrome. Pediatr Res. 1980;14:209–15.PubMed Chesney RW, Kaplan BS, Colle E, et al. Abnormalities of carbohydrate metabolism in idiopathic Fanconi syndrome. Pediatr Res. 1980;14:209–15.PubMed
46.
go back to reference Boustany RN, Aprille JR, Halperin J, Levy H, DeLong GR. Mitochondrial cytochrome deficiency presenting as a myopathy with hypotonia, external ophthalmoplegia, and lactic acidosis in an infant and as fatal hepatopathy in a second cousin. Ann Neurol. 1983;14:462–70.PubMedCrossRef Boustany RN, Aprille JR, Halperin J, Levy H, DeLong GR. Mitochondrial cytochrome deficiency presenting as a myopathy with hypotonia, external ophthalmoplegia, and lactic acidosis in an infant and as fatal hepatopathy in a second cousin. Ann Neurol. 1983;14:462–70.PubMedCrossRef
47.
go back to reference Komaki H, Nishigaki Y, Fuku N, et al. Pyruvate therapy for Leigh syndrome due to cytochrome c oxidase deficiency. Biochim Biophys Acta. 2010;1800:313–5.PubMedCrossRef Komaki H, Nishigaki Y, Fuku N, et al. Pyruvate therapy for Leigh syndrome due to cytochrome c oxidase deficiency. Biochim Biophys Acta. 2010;1800:313–5.PubMedCrossRef
48.
go back to reference Mannan AA, Sharma MC, Shrivastava P, et al. Leigh’s syndrome. Indian J Pediatr. 2004;71:1029–33.PubMedCrossRef Mannan AA, Sharma MC, Shrivastava P, et al. Leigh’s syndrome. Indian J Pediatr. 2004;71:1029–33.PubMedCrossRef
49.
go back to reference Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis. 2007;22:199–218.PubMedCrossRef Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis. 2007;22:199–218.PubMedCrossRef
50.
go back to reference Lin S, Raabe W. Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem. 1985;44:1252–8.PubMedCrossRef Lin S, Raabe W. Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem. 1985;44:1252–8.PubMedCrossRef
51.
go back to reference Adams JM, Feustel PJ, Donnelly DF, Dutton RE. Hypoxia, hyperammonemia, and cerebrospinal fluid metabolites. Adv Shock Res. 1978;1:209–20.PubMed Adams JM, Feustel PJ, Donnelly DF, Dutton RE. Hypoxia, hyperammonemia, and cerebrospinal fluid metabolites. Adv Shock Res. 1978;1:209–20.PubMed
52.
go back to reference O’Connor JE, Costell M, Grisolía S. Prevention of ammonia toxicity by L-carnitine: metabolic changes in brain. Neurochem Res. 1984;9:563–70.PubMedCrossRef O’Connor JE, Costell M, Grisolía S. Prevention of ammonia toxicity by L-carnitine: metabolic changes in brain. Neurochem Res. 1984;9:563–70.PubMedCrossRef
53.
go back to reference Hindfelt B, Plum F, Duffy TE. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977;59:386–96.PubMedCrossRef Hindfelt B, Plum F, Duffy TE. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977;59:386–96.PubMedCrossRef
54.
go back to reference Bjerring PN, Hauerberg J, Frederiksen HJ, et al. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care. 2008;9:3–7.PubMedCrossRef Bjerring PN, Hauerberg J, Frederiksen HJ, et al. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care. 2008;9:3–7.PubMedCrossRef
55.
go back to reference Ratnakumari L, Murthy CR. Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci Lett. 1993;161:37–40.PubMedCrossRef Ratnakumari L, Murthy CR. Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci Lett. 1993;161:37–40.PubMedCrossRef
56.
go back to reference Qureshi K, Rama Rao KV, Qureshi IA. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res. 1998;23:855–61.PubMedCrossRef Qureshi K, Rama Rao KV, Qureshi IA. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res. 1998;23:855–61.PubMedCrossRef
57.
go back to reference Ratnakumari L, Qureshi IA, Butterworth RF. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem Biophys Res Commun. 1992;184:746–51.PubMedCrossRef Ratnakumari L, Qureshi IA, Butterworth RF. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem Biophys Res Commun. 1992;184:746–51.PubMedCrossRef
58.
go back to reference She P, Zhou Y, Zhang Z, Griffin K, Gowda K, Lynch CJ. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance. J Appl Physiol. 2010;108:941–9.PubMedCrossRef She P, Zhou Y, Zhang Z, Griffin K, Gowda K, Lynch CJ. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance. J Appl Physiol. 2010;108:941–9.PubMedCrossRef
59.
go back to reference Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta. 1987;930:173–8.PubMedCrossRef Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta. 1987;930:173–8.PubMedCrossRef
60.
go back to reference Nagasaka H, Okano Y, Tsukahara H, et al. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab. 2009;97:21–6.PubMedCrossRef Nagasaka H, Okano Y, Tsukahara H, et al. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab. 2009;97:21–6.PubMedCrossRef
61.
go back to reference Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687–93.PubMedCrossRef Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687–93.PubMedCrossRef
62.
go back to reference Michenfelder JD, Theye RA. In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol. 1975;229:1050–5.PubMed Michenfelder JD, Theye RA. In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol. 1975;229:1050–5.PubMed
63.
go back to reference Dahlbacka S, Mäkelä J, Kaakinen T, et al. Propofol is associated with impaired brain metabolism during hypothermic circulatory arrest: an experimental microdialysis study. Heart Surg Forum. 2006;9:E710–8.PubMedCrossRef Dahlbacka S, Mäkelä J, Kaakinen T, et al. Propofol is associated with impaired brain metabolism during hypothermic circulatory arrest: an experimental microdialysis study. Heart Surg Forum. 2006;9:E710–8.PubMedCrossRef
64.
go back to reference Carles M, Dellamonica J, Roux J, et al. Sevoflurane but not propofol increases interstitial glycolysis metabolites availability during tourniquet-induced ischaemia-reperfusion. Br J Anaesth. 2008;100:29–35.PubMedCrossRef Carles M, Dellamonica J, Roux J, et al. Sevoflurane but not propofol increases interstitial glycolysis metabolites availability during tourniquet-induced ischaemia-reperfusion. Br J Anaesth. 2008;100:29–35.PubMedCrossRef
65.
go back to reference Marian M, Parrino C, Leo AM, Vincenti E, Bindoli A, Scutari G. Effect of the intravenous anesthetic 2,6-diisopropylphenol on respiration and energy production by rat brain synaptosomes. Neurochem Res. 1997;22:287–92.PubMedCrossRef Marian M, Parrino C, Leo AM, Vincenti E, Bindoli A, Scutari G. Effect of the intravenous anesthetic 2,6-diisopropylphenol on respiration and energy production by rat brain synaptosomes. Neurochem Res. 1997;22:287–92.PubMedCrossRef
66.
go back to reference Branca D, Roberti MS, Lorenzin P, Vincenti E, Scutari G. Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol. 1991;42:87–90.PubMedCrossRef Branca D, Roberti MS, Lorenzin P, Vincenti E, Scutari G. Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol. 1991;42:87–90.PubMedCrossRef
67.
go back to reference Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol. 2009;75:339–44.PubMed Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol. 2009;75:339–44.PubMed
68.
go back to reference Pisapia JM, Wendell LC, Kumar MA, Zager EL, Levine JM. Lactate-to-pyruvate ratio as a marker of propofol infusion syndrome after subarachnoid hemorrhage. Neurocrit Care. 2010. doi:10.1007/s12028-010-9467-6. Pisapia JM, Wendell LC, Kumar MA, Zager EL, Levine JM. Lactate-to-pyruvate ratio as a marker of propofol infusion syndrome after subarachnoid hemorrhage. Neurocrit Care. 2010. doi:10.​1007/​s12028-010-9467-6.
69.
go back to reference Nam YT, Kim JS, Park KW. Effects of hypotensive anesthesia with sodium nitroprusside or isoflurane on hemodynamic and metabolic changes. Yonsei Med J. 1992;33:320–5.PubMed Nam YT, Kim JS, Park KW. Effects of hypotensive anesthesia with sodium nitroprusside or isoflurane on hemodynamic and metabolic changes. Yonsei Med J. 1992;33:320–5.PubMed
70.
go back to reference Michenfelder JD. Cyanide release from sodium nitroprusside in the dog. Anesthesiology. 1977;46:196–201.PubMedCrossRef Michenfelder JD. Cyanide release from sodium nitroprusside in the dog. Anesthesiology. 1977;46:196–201.PubMedCrossRef
71.
go back to reference Tinker JH, Michenfelder JD. Cardiac cyanide toxicity induced by nitroprusside in the dog: potential for reversal. Anesthesiology. 1978;49:109–16.PubMedCrossRef Tinker JH, Michenfelder JD. Cardiac cyanide toxicity induced by nitroprusside in the dog: potential for reversal. Anesthesiology. 1978;49:109–16.PubMedCrossRef
72.
go back to reference Dai YL, Luk TH, Siu CW, et al. Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol. 2010;10:130–8.PubMedCrossRef Dai YL, Luk TH, Siu CW, et al. Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol. 2010;10:130–8.PubMedCrossRef
73.
go back to reference Ruddick JA. Toxicology, metabolism, and biochemistry of 1,2-propanediol. Toxicol Appl Pharmacol. 1972;21:102–11.PubMedCrossRef Ruddick JA. Toxicology, metabolism, and biochemistry of 1,2-propanediol. Toxicol Appl Pharmacol. 1972;21:102–11.PubMedCrossRef
74.
go back to reference Saini M, Nagpaul JP, Amma MK. Effect of propane-1,2-diol ingestion on carbohydrate metabolism in female rat erythrocytes. J Appl Toxicol. 1993;13:69–75.PubMedCrossRef Saini M, Nagpaul JP, Amma MK. Effect of propane-1,2-diol ingestion on carbohydrate metabolism in female rat erythrocytes. J Appl Toxicol. 1993;13:69–75.PubMedCrossRef
75.
go back to reference Morshed KM, Nagpaul JP, Majumdar S, Amma MKP. Kinetics of oral propylene glycol-induced acute hyperlactatemia. Biochem Med Metab Biol. 1989;42:87–94.PubMedCrossRef Morshed KM, Nagpaul JP, Majumdar S, Amma MKP. Kinetics of oral propylene glycol-induced acute hyperlactatemia. Biochem Med Metab Biol. 1989;42:87–94.PubMedCrossRef
76.
go back to reference Schölmerich J, Kitamura S, Miyai K. Effects of propylene glycol on redox state of the perfused rat liver—a note of caution. Res Exp Med (Berl). 1989;189:39–42.CrossRef Schölmerich J, Kitamura S, Miyai K. Effects of propylene glycol on redox state of the perfused rat liver—a note of caution. Res Exp Med (Berl). 1989;189:39–42.CrossRef
77.
go back to reference Wilson KC, Reardon C, Theodore AC, Farber HW. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines. Chest. 2005;128:1674–81.PubMedCrossRef Wilson KC, Reardon C, Theodore AC, Farber HW. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines. Chest. 2005;128:1674–81.PubMedCrossRef
78.
go back to reference Barnes BJ, Gerst C, Smith JR, Terrell AR, Mullins ME. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy. 2006;26:23–33.PubMedCrossRef Barnes BJ, Gerst C, Smith JR, Terrell AR, Mullins ME. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy. 2006;26:23–33.PubMedCrossRef
79.
go back to reference Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20:290–3.PubMedCrossRef Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20:290–3.PubMedCrossRef
80.
go back to reference Szajewski J. Poisons information monographs: Propylene glycol. No. 443. Geneva, Switzerland: International Programme on Chemical Safety, 1994. Szajewski J. Poisons information monographs: Propylene glycol. No. 443. Geneva, Switzerland: International Programme on Chemical Safety, 1994.
81.
go back to reference Zar T, Graeber C, Perazella MA. Recognition, treatment, and prevention of propylene glycol toxicity. Sem Dial. 2007;20:217–9.CrossRef Zar T, Graeber C, Perazella MA. Recognition, treatment, and prevention of propylene glycol toxicity. Sem Dial. 2007;20:217–9.CrossRef
82.
go back to reference Rengel-Aranda M, Gougoux A, Vinay P, Lopez-Novoa JM. Effect of valproate on renal metabolism in the intact dog. Kidney Int. 1988;34:645–54.PubMedCrossRef Rengel-Aranda M, Gougoux A, Vinay P, Lopez-Novoa JM. Effect of valproate on renal metabolism in the intact dog. Kidney Int. 1988;34:645–54.PubMedCrossRef
83.
go back to reference Dubas TC, Johnson WJ. Metformin-induced lactic acidosis: potentiation by ethanol. Res Commun Chem Pathol Pharmacol. 1981;33:21–31.PubMed Dubas TC, Johnson WJ. Metformin-induced lactic acidosis: potentiation by ethanol. Res Commun Chem Pathol Pharmacol. 1981;33:21–31.PubMed
84.
go back to reference Jalling O, Olsen C. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell. Acta Pharmacol Toxicol (Copenh). 1984;54:327–32.CrossRef Jalling O, Olsen C. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell. Acta Pharmacol Toxicol (Copenh). 1984;54:327–32.CrossRef
85.
go back to reference Nattrass M, Hinks L, Smythe P, Todd PG, Alberti KGMM. Metabolic effects of combined sulphonylurea and metformin therapy in maturity-onset diabetes. Horm Metab Res. 1979;11:332–7.PubMedCrossRef Nattrass M, Hinks L, Smythe P, Todd PG, Alberti KGMM. Metabolic effects of combined sulphonylurea and metformin therapy in maturity-onset diabetes. Horm Metab Res. 1979;11:332–7.PubMedCrossRef
86.
go back to reference Ramanathan S, Masih AK, Ashok U, Arismendy J, Turndorf H. Concentrations of lactate and pyruvate in maternal and neonatal blood with different intravenous fluids used for prehydration before epidural anesthesia. Anesth Analg. 1984;63:69–74.PubMedCrossRef Ramanathan S, Masih AK, Ashok U, Arismendy J, Turndorf H. Concentrations of lactate and pyruvate in maternal and neonatal blood with different intravenous fluids used for prehydration before epidural anesthesia. Anesth Analg. 1984;63:69–74.PubMedCrossRef
87.
go back to reference Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.PubMedCrossRef Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.PubMedCrossRef
88.
89.
go back to reference Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 1996;16:1079–89.PubMedCrossRef Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 1996;16:1079–89.PubMedCrossRef
90.
go back to reference Abi-Saab WM, Maggs DG, Jones T, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab. 2002;22:271–9.PubMedCrossRef Abi-Saab WM, Maggs DG, Jones T, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab. 2002;22:271–9.PubMedCrossRef
91.
go back to reference Agardh CD, Folbergrová J, Siesjö BK. Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem. 1978;31:1135–42.PubMedCrossRef Agardh CD, Folbergrová J, Siesjö BK. Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem. 1978;31:1135–42.PubMedCrossRef
92.
go back to reference Cardell M, Siesjö BK, Wieloch T. Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 1991;11:122–8.PubMedCrossRef Cardell M, Siesjö BK, Wieloch T. Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 1991;11:122–8.PubMedCrossRef
93.
go back to reference Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34:1200–7.PubMedCrossRef Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34:1200–7.PubMedCrossRef
94.
go back to reference Vespa P, Boonyaputthikul R, McArthur DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.PubMedCrossRef Vespa P, Boonyaputthikul R, McArthur DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.PubMedCrossRef
95.
go back to reference Kennan RP, Takahashi K, Pan C, Shamoon H, Pan JW. Human cerebral blood flow and metabolism in acute insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 2005;25:527–34.PubMedCrossRef Kennan RP, Takahashi K, Pan C, Shamoon H, Pan JW. Human cerebral blood flow and metabolism in acute insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 2005;25:527–34.PubMedCrossRef
96.
go back to reference Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab. 2001;21:653–63.PubMedCrossRef Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab. 2001;21:653–63.PubMedCrossRef
97.
go back to reference Eckert B, Ryding E, Agardh CD. Sustained elevation of cerebral blood flow after hypoglycaemia in normal man. Diabetes Res Clin Pract. 1998;40:91–100.PubMedCrossRef Eckert B, Ryding E, Agardh CD. Sustained elevation of cerebral blood flow after hypoglycaemia in normal man. Diabetes Res Clin Pract. 1998;40:91–100.PubMedCrossRef
98.
go back to reference Rosdahl H, Samuelsson AC, Ungerstedt U, Henriksson J. Influence of adrenergic agonists on the release of amino acids from rat skeletal muscle studied by microdialysis. Acta Physiol Scand. 1998;163:349–60.PubMedCrossRef Rosdahl H, Samuelsson AC, Ungerstedt U, Henriksson J. Influence of adrenergic agonists on the release of amino acids from rat skeletal muscle studied by microdialysis. Acta Physiol Scand. 1998;163:349–60.PubMedCrossRef
99.
go back to reference Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP. Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med. 2003;29:292–300.PubMed Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP. Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med. 2003;29:292–300.PubMed
100.
go back to reference Levy B, Bollaert PE, Charpentier C, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.PubMedCrossRef Levy B, Bollaert PE, Charpentier C, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.PubMedCrossRef
101.
go back to reference Pernet A, Walker M, Gill GV, Ørskov H, Alberti KGMM, Johnston DG. Metabolic effects of adrenaline and noradrenaline in man: studies with somatostatin. Diabete Metab. 1984;10:98–105.PubMed Pernet A, Walker M, Gill GV, Ørskov H, Alberti KGMM, Johnston DG. Metabolic effects of adrenaline and noradrenaline in man: studies with somatostatin. Diabete Metab. 1984;10:98–105.PubMed
102.
go back to reference Christensen NJ, Alberti KG, Brandsborg O. Plasma catecholamines and blood substrate concentrations: studies in insulin induced hypoglycaemia and after adrenaline infusions. Eur J Clin Invest. 1975;5:415–23.PubMed Christensen NJ, Alberti KG, Brandsborg O. Plasma catecholamines and blood substrate concentrations: studies in insulin induced hypoglycaemia and after adrenaline infusions. Eur J Clin Invest. 1975;5:415–23.PubMed
103.
go back to reference Heringlake M, Wernerus M, Grünefeld J, et al. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care. 2007;11:R51.PubMedCrossRef Heringlake M, Wernerus M, Grünefeld J, et al. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care. 2007;11:R51.PubMedCrossRef
104.
go back to reference Cano A, Martínez P, Parrilla JJ, Abad L. Effects of intravenous ritodrine on lactate and pyruvate levels: role of glycemia and anaerobiosis. Obstet Gynecol. 1985;66:207–10.PubMed Cano A, Martínez P, Parrilla JJ, Abad L. Effects of intravenous ritodrine on lactate and pyruvate levels: role of glycemia and anaerobiosis. Obstet Gynecol. 1985;66:207–10.PubMed
105.
go back to reference d’Avila JC, Santiago AP, Amâncio RT, et al. Sepsis induces brain mitochondrial dysfunction. Crit Care Med. 2008;36:1925–32.PubMedCrossRef d’Avila JC, Santiago AP, Amâncio RT, et al. Sepsis induces brain mitochondrial dysfunction. Crit Care Med. 2008;36:1925–32.PubMedCrossRef
106.
go back to reference Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol. 1986;250:E634–40.PubMed Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol. 1986;250:E634–40.PubMed
107.
go back to reference Malaisse WJ, Nadi AB, Ladriere L, Zhang TM. Protective effects of succinic acid dimethyl ester infusion in experimental endotoxemia. Nutrition. 1997;13:330–41.PubMed Malaisse WJ, Nadi AB, Ladriere L, Zhang TM. Protective effects of succinic acid dimethyl ester infusion in experimental endotoxemia. Nutrition. 1997;13:330–41.PubMed
108.
go back to reference Gnaegi A, Feihl F, Boulat O, Waeber B, Liaudet L. Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia. Intensive Care Med. 2009;35:1297–304.PubMedCrossRef Gnaegi A, Feihl F, Boulat O, Waeber B, Liaudet L. Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia. Intensive Care Med. 2009;35:1297–304.PubMedCrossRef
109.
go back to reference Chvojka J, Sykora R, Krouzecky A, et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008;12:R164.PubMedCrossRef Chvojka J, Sykora R, Krouzecky A, et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008;12:R164.PubMedCrossRef
110.
go back to reference Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994;22:640–50.PubMedCrossRef Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994;22:640–50.PubMedCrossRef
111.
go back to reference Astiz M, Rackow EC, Weil MH, Schumer W. Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock. 1988;26:311–20.PubMed Astiz M, Rackow EC, Weil MH, Schumer W. Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock. 1988;26:311–20.PubMed
112.
go back to reference Blennow G, Folbergrová J, Nilsson B, Siesjö BK. Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res. 1979;179:129–46.PubMedCrossRef Blennow G, Folbergrová J, Nilsson B, Siesjö BK. Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res. 1979;179:129–46.PubMedCrossRef
113.
go back to reference Folbergrová J, Jesina P, Drahota Z, et al. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204:597–609.PubMedCrossRef Folbergrová J, Jesina P, Drahota Z, et al. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204:597–609.PubMedCrossRef
114.
go back to reference Howse DCN. Metabolic responses to status epilepticus in the rat, cat, and mouse. Can J Physiol Pharmacol. 1979;57:205–12.PubMedCrossRef Howse DCN. Metabolic responses to status epilepticus in the rat, cat, and mouse. Can J Physiol Pharmacol. 1979;57:205–12.PubMedCrossRef
115.
go back to reference Folbergrová J, Ingvar M, Nevander G, Siesjö BK. Cerebral metabolic changes during and following fluorothyl-induced seizures in ventilated rats. J Neurochem. 1985;44:1419–26.PubMedCrossRef Folbergrová J, Ingvar M, Nevander G, Siesjö BK. Cerebral metabolic changes during and following fluorothyl-induced seizures in ventilated rats. J Neurochem. 1985;44:1419–26.PubMedCrossRef
116.
go back to reference Ingvar M, Folbergrová J, Siesjö BK. Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. J Cereb Blood Flow Metab. 1987;7:103–8.PubMedCrossRef Ingvar M, Folbergrová J, Siesjö BK. Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. J Cereb Blood Flow Metab. 1987;7:103–8.PubMedCrossRef
117.
go back to reference Chapman AG, Meldrum BS, Siesjö BK. Cerebral metabolic changes during prolonged epileptic seizures in rats. J Neurochem. 1977;28:1025–35.PubMedCrossRef Chapman AG, Meldrum BS, Siesjö BK. Cerebral metabolic changes during prolonged epileptic seizures in rats. J Neurochem. 1977;28:1025–35.PubMedCrossRef
118.
go back to reference Johansson BB, Fredriksson K. Cerebral energy metabolism during bicuculline-induced status epilepticus in spontaneously hypertensive rats. Acta Phys Scand. 1985;123:299–302.CrossRef Johansson BB, Fredriksson K. Cerebral energy metabolism during bicuculline-induced status epilepticus in spontaneously hypertensive rats. Acta Phys Scand. 1985;123:299–302.CrossRef
119.
go back to reference Slais K, Vorisek I, Zoremba N, Homola A, Dmytrenko L, Sykova E. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol. 2008;209:145–54.PubMedCrossRef Slais K, Vorisek I, Zoremba N, Homola A, Dmytrenko L, Sykova E. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol. 2008;209:145–54.PubMedCrossRef
120.
go back to reference Darbin O, Risso JJ, Carre E, Lonjon M, Naritoku DK. Metabolic changes in rat striatum following convulsive seizures. Brain Res. 2005;1050:124–9.PubMedCrossRef Darbin O, Risso JJ, Carre E, Lonjon M, Naritoku DK. Metabolic changes in rat striatum following convulsive seizures. Brain Res. 2005;1050:124–9.PubMedCrossRef
121.
go back to reference Claassen J, Jetté N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1256–65.CrossRef Claassen J, Jetté N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1256–65.CrossRef
122.
go back to reference Folbergrová J, MacMillan V, Siesjö BK. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH-NAD+ ratio of the rat brain. J Neurochem. 1972;19:2497–505.PubMedCrossRef Folbergrová J, MacMillan V, Siesjö BK. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH-NAD+ ratio of the rat brain. J Neurochem. 1972;19:2497–505.PubMedCrossRef
123.
go back to reference Folbergrová J, Pontén U, Siesjö BK. Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J Neurochem. 1974;22:1115–25.PubMedCrossRef Folbergrová J, Pontén U, Siesjö BK. Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J Neurochem. 1974;22:1115–25.PubMedCrossRef
124.
go back to reference Weyne J, Demeester G, Leusen I. Effects of carbon dioxide, bicarbonate, and pH on lactate and pyruvate in the brain of rats. Pflugers Arch. 1970;31:292–311.CrossRef Weyne J, Demeester G, Leusen I. Effects of carbon dioxide, bicarbonate, and pH on lactate and pyruvate in the brain of rats. Pflugers Arch. 1970;31:292–311.CrossRef
125.
go back to reference Kjällquist Å, Nardini M, Siesjö BK. The regulation of extra- and intracellular acid-base parameters in the rat brain during hyper- and hypocapnia. Acta Physiol Scand. 1969;76:485–94.PubMedCrossRef Kjällquist Å, Nardini M, Siesjö BK. The regulation of extra- and intracellular acid-base parameters in the rat brain during hyper- and hypocapnia. Acta Physiol Scand. 1969;76:485–94.PubMedCrossRef
126.
go back to reference Granholm L, Siesjö BK. The effects of hypercapnia and hypocapnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of cat brain tissue. Acta Physiol Scand. 1969;75:257–66.PubMedCrossRef Granholm L, Siesjö BK. The effects of hypercapnia and hypocapnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of cat brain tissue. Acta Physiol Scand. 1969;75:257–66.PubMedCrossRef
127.
go back to reference Frauendorf E, Hartmann N, Hübner G, Meng W, Weber A. Das verhalten des laktat/pyruvat-quotienten im rahmen moderner schilddrüsendiagnostik. Z Gesamte Inn Med. 1980;35:155–61.PubMed Frauendorf E, Hartmann N, Hübner G, Meng W, Weber A. Das verhalten des laktat/pyruvat-quotienten im rahmen moderner schilddrüsendiagnostik. Z Gesamte Inn Med. 1980;35:155–61.PubMed
128.
go back to reference Hübner G, Schwinger E, Meng W. Zum verhalten von laktat und pyruvat sowie des laktat/pyruvat-quotienten im blut bei schilddrüsenfunktionsstörungen des menschen. Z Gesamte Inn Med. 1975;30:786–9.PubMed Hübner G, Schwinger E, Meng W. Zum verhalten von laktat und pyruvat sowie des laktat/pyruvat-quotienten im blut bei schilddrüsenfunktionsstörungen des menschen. Z Gesamte Inn Med. 1975;30:786–9.PubMed
129.
go back to reference Katyare SS, Joshi MV, Fatterpaker P, Sreenivasan A. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney, and brain mitochondria. Arch Biochem Biophys. 1977;182:155–63.PubMedCrossRef Katyare SS, Joshi MV, Fatterpaker P, Sreenivasan A. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney, and brain mitochondria. Arch Biochem Biophys. 1977;182:155–63.PubMedCrossRef
130.
go back to reference Lecky FE, Little RA, Maycock PF, et al. Effect of alcohol on the lactate/pyruvate ratio of recently injured adults. Crit Care Med. 2002;30:981–5.PubMedCrossRef Lecky FE, Little RA, Maycock PF, et al. Effect of alcohol on the lactate/pyruvate ratio of recently injured adults. Crit Care Med. 2002;30:981–5.PubMedCrossRef
131.
go back to reference Yap M, Mascord DJ, Starmer GA, Whitfield JB. Studies on the chronopharmacology of ethanol. Alcohol Alcohol. 1993;28:17–24.PubMed Yap M, Mascord DJ, Starmer GA, Whitfield JB. Studies on the chronopharmacology of ethanol. Alcohol Alcohol. 1993;28:17–24.PubMed
132.
go back to reference Myrsten AL, Rydberg U, Ideström CM, Lamble R. Alcohol intoxication and hangover: modification of hangover by chlormethiazole. Psychopharmacology (Berl). 1980;69:117–25.CrossRef Myrsten AL, Rydberg U, Ideström CM, Lamble R. Alcohol intoxication and hangover: modification of hangover by chlormethiazole. Psychopharmacology (Berl). 1980;69:117–25.CrossRef
133.
go back to reference Ginestal da Cruz A, Correia JP, Menezes L. Ethanol metabolism in liver cirrhosis and chronic alcoholism. Acta Hepatogastroenterol (Stuttg). 1975;22:369–74. Ginestal da Cruz A, Correia JP, Menezes L. Ethanol metabolism in liver cirrhosis and chronic alcoholism. Acta Hepatogastroenterol (Stuttg). 1975;22:369–74.
134.
go back to reference Frayn KN, Coppack SW, Walsh PE, Butterworth HC, Humphreys SM, Pedrosa HC. Metabolic responses of forearm and adipose tissues to acute ethanol ingestion. Metabolism. 1990;39:958–66.PubMedCrossRef Frayn KN, Coppack SW, Walsh PE, Butterworth HC, Humphreys SM, Pedrosa HC. Metabolic responses of forearm and adipose tissues to acute ethanol ingestion. Metabolism. 1990;39:958–66.PubMedCrossRef
135.
go back to reference Hollstedt C, Rydberg U, Olsson O, Buijten J. Effects of ethanol on the developing rat. I. Ethanol metabolism and effects on lactate, pyruvate, and glucose concentrations. Med Biol. 1980;58:158–63.PubMed Hollstedt C, Rydberg U, Olsson O, Buijten J. Effects of ethanol on the developing rat. I. Ethanol metabolism and effects on lactate, pyruvate, and glucose concentrations. Med Biol. 1980;58:158–63.PubMed
136.
go back to reference Pronko PS, Velichko MG, Moroz AR, Rubanovich NN. Low-molecular-weight metabolites relevant to ethanol metabolism: correlation with alcohol withdrawal severity and utility for identification of alcoholics. Alcohol Alcohol. 1997;32:761–8.PubMed Pronko PS, Velichko MG, Moroz AR, Rubanovich NN. Low-molecular-weight metabolites relevant to ethanol metabolism: correlation with alcohol withdrawal severity and utility for identification of alcoholics. Alcohol Alcohol. 1997;32:761–8.PubMed
137.
go back to reference Krebs HA, Freedland RA, Hems R, Stubbs M. Inhibition of hepatic gluconeogenesis by ethanol. Biochem J. 1969;112:117–24.PubMed Krebs HA, Freedland RA, Hems R, Stubbs M. Inhibition of hepatic gluconeogenesis by ethanol. Biochem J. 1969;112:117–24.PubMed
138.
go back to reference Tskuamoto S, Kanegae T, Saito M, et al. Concentrations of blood and urine ethanol, acetaldehyde, acetate and acetone during experimental hangover in volunteers. Arukoru Kenkyuto Yakubutsu Ison. 1991;26:500–10. Tskuamoto S, Kanegae T, Saito M, et al. Concentrations of blood and urine ethanol, acetaldehyde, acetate and acetone during experimental hangover in volunteers. Arukoru Kenkyuto Yakubutsu Ison. 1991;26:500–10.
139.
go back to reference Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res. 2005;79:240–7.PubMedCrossRef Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res. 2005;79:240–7.PubMedCrossRef
140.
go back to reference Ehrig K, Heckel R, Lajios G. Molecular analysis of metabolic pathway with graph transformation. Lect Notes Comput Sci. 2006;4178:107–21.CrossRef Ehrig K, Heckel R, Lajios G. Molecular analysis of metabolic pathway with graph transformation. Lect Notes Comput Sci. 2006;4178:107–21.CrossRef
Metadata
Title
Potential Non-Hypoxic/Ischemic Causes of Increased Cerebral Interstitial Fluid Lactate/Pyruvate Ratio: A Review of Available Literature
Authors
Daniel B. Larach
W. Andrew Kofke
Peter Le Roux
Publication date
01-12-2011
Publisher
Humana Press Inc
Published in
Neurocritical Care / Issue 3/2011
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-011-9517-8

Other articles of this Issue 3/2011

Neurocritical Care 3/2011 Go to the issue