Skip to main content
Top
Published in: Immunologic Research 3/2016

01-06-2016 | Review

The role of complement system in adipose tissue-related inflammation

Authors: Sonia I. Vlaicu, Alexandru Tatomir, Dallas Boodhoo, Stefan Vesa, Petru A. Mircea, Horea Rus

Published in: Immunologic Research | Issue 3/2016

Login to get access

Abstract

As the common factor linking adipose tissue to the metabolic context of obesity, insulin resistance and atherosclerosis are associated with a low-grade chronic inflammatory status, to which the complement system is an important contributor. Adipose tissue synthesizes complement proteins and is a target of complement activation. C3a-desArg/acylation-stimulating protein stimulates lipogenesis and affects lipid metabolism. The C3a receptor and C5aR are involved in the development of adipocytes’ insulin resistance through macrophage infiltration and the activation of adipose tissue. The terminal complement pathway has been found to be instrumental in promoting hyperglycemia-associated tissue damage, which is characteristic of the major vascular complications of diabetes mellitus and diabetic ketoacidosis. As a mediator of the effects of the terminal complement complex C5b-9, RGC-32 has an impact on energy expenditure as well as lipid and glucose metabolic homeostasis. All of this evidence, taken together, indicates an important role for complement activation in metabolic diseases.
Literature
1.
go back to reference Niculescu F, Niculescu T, Rus H. C5b-9 terminal complement complex assembly on apoptotic cells in human arterial wall with atherosclerosis. Exp Mol Pathol. 2004;76:17–23.PubMedCrossRef Niculescu F, Niculescu T, Rus H. C5b-9 terminal complement complex assembly on apoptotic cells in human arterial wall with atherosclerosis. Exp Mol Pathol. 2004;76:17–23.PubMedCrossRef
2.
3.
go back to reference Vlaicu SI, Tatomir A, Rus V, Mekala AP, Mircea PA, et al. The role of complement activation in atherogenesis: the first 40 years. Immunol Res. 2015;. doi:10.1007/s12026-015-8669-6. Vlaicu SI, Tatomir A, Rus V, Mekala AP, Mircea PA, et al. The role of complement activation in atherogenesis: the first 40 years. Immunol Res. 2015;. doi:10.​1007/​s12026-015-8669-6.
4.
go back to reference Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20:34–50.PubMedCrossRef Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20:34–50.PubMedCrossRef
5.
go back to reference Cole DS, Morgan BP. Beyond lysis: how complement influences cell fate. Clin Sci (Lond). 2003;104:455–66.CrossRef Cole DS, Morgan BP. Beyond lysis: how complement influences cell fate. Clin Sci (Lond). 2003;104:455–66.CrossRef
6.
go back to reference Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol Res. 2004;30:73–80.PubMedCrossRef Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol Res. 2004;30:73–80.PubMedCrossRef
7.
go back to reference Vlaicu SI, Tegla CA, Cudrici CD, Danoff J, Madani H, et al. Role of C5b-9 complement complex and response gene to complement-32 (RGC-32) in cancer. Immunol Res. 2013;56:109–21.PubMedCrossRef Vlaicu SI, Tegla CA, Cudrici CD, Danoff J, Madani H, et al. Role of C5b-9 complement complex and response gene to complement-32 (RGC-32) in cancer. Immunol Res. 2013;56:109–21.PubMedCrossRef
8.
go back to reference Hu VW, Esser AF, Podack ER, Wisnieski BJ. The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol. 1981;127:380–6.PubMed Hu VW, Esser AF, Podack ER, Wisnieski BJ. The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol. 1981;127:380–6.PubMed
9.
go back to reference Laine RO, Esser AF. Detection of refolding conformers of complement protein C9 during insertion into membranes. Nature. 1989;341:63–5.PubMedCrossRef Laine RO, Esser AF. Detection of refolding conformers of complement protein C9 during insertion into membranes. Nature. 1989;341:63–5.PubMedCrossRef
10.
go back to reference Podack ER, Tschopp J. Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci USA. 1982;79:574–8.PubMedPubMedCentralCrossRef Podack ER, Tschopp J. Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci USA. 1982;79:574–8.PubMedPubMedCentralCrossRef
11.
go back to reference Tschopp J, Podack ER, Muller-Eberhard HJ. The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization. J Immunol. 1985;134:495–9.PubMed Tschopp J, Podack ER, Muller-Eberhard HJ. The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization. J Immunol. 1985;134:495–9.PubMed
12.
go back to reference Whitlow MB, Ramm LE, Mayer MM. Penetration of C8 and C9 in the C5b-9 complex across the erythrocyte membrane into the cytoplasmic space. J Biol Chem. 1985;260:998–1005.PubMed Whitlow MB, Ramm LE, Mayer MM. Penetration of C8 and C9 in the C5b-9 complex across the erythrocyte membrane into the cytoplasmic space. J Biol Chem. 1985;260:998–1005.PubMed
13.
go back to reference Tegla CA, Cudrici C, Patel S, Trippe R 3rd, Rus V, et al. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res. 2011;51:45–60.PubMedPubMedCentralCrossRef Tegla CA, Cudrici C, Patel S, Trippe R 3rd, Rus V, et al. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res. 2011;51:45–60.PubMedPubMedCentralCrossRef
14.
go back to reference Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233:104–12.PubMedCrossRef Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233:104–12.PubMedCrossRef
15.
go back to reference Richardson VR, Smith KA, Carter AM. Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus. Immunobiology. 2013;218:1497–504.PubMedCrossRef Richardson VR, Smith KA, Carter AM. Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus. Immunobiology. 2013;218:1497–504.PubMedCrossRef
16.
go back to reference Cianflone K, Maslowska M. Differentiation-induced production of ASP in human adipocytes. Eur J Clin Invest. 1995;25:817–25.PubMedCrossRef Cianflone K, Maslowska M. Differentiation-induced production of ASP in human adipocytes. Eur J Clin Invest. 1995;25:817–25.PubMedCrossRef
17.
go back to reference Phieler J, Garcia-Martin R, Lambris JD, Chavakis T. The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol. 2013;25:47–53.PubMedPubMedCentralCrossRef Phieler J, Garcia-Martin R, Lambris JD, Chavakis T. The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol. 2013;25:47–53.PubMedPubMedCentralCrossRef
18.
go back to reference Sissons JG, West RJ, Fallows J, Williams DG, Boucher BJ, et al. The complement abnormalities of lipodystrophy. N Engl J Med. 1976;294:461–5.PubMedCrossRef Sissons JG, West RJ, Fallows J, Williams DG, Boucher BJ, et al. The complement abnormalities of lipodystrophy. N Engl J Med. 1976;294:461–5.PubMedCrossRef
19.
go back to reference McLean RH, Hoefnagel D. Partial lipodystrophy and familial C3 deficiency. Hum Hered. 1980;30:149–54.PubMedCrossRef McLean RH, Hoefnagel D. Partial lipodystrophy and familial C3 deficiency. Hum Hered. 1980;30:149–54.PubMedCrossRef
20.
go back to reference White RT, Damm D, Hancock N, Rosen BS, Lowell BB, et al. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem. 1992;267:9210–3.PubMed White RT, Damm D, Hancock N, Rosen BS, Lowell BB, et al. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem. 1992;267:9210–3.PubMed
21.
go back to reference Choy LN, Rosen BS, Spiegelman BM. Adipsin and an endogenous pathway of complement from adipose cells. J Biol Chem. 1992;267:12736–41.PubMed Choy LN, Rosen BS, Spiegelman BM. Adipsin and an endogenous pathway of complement from adipose cells. J Biol Chem. 1992;267:12736–41.PubMed
22.
go back to reference Peake PW, O’Grady S, Pussell BA, Charlesworth JA. Detection and quantification of the control proteins of the alternative pathway of complement in 3T3-L1 adipocytes. Eur J Clin Invest. 1997;27:922–7.PubMedCrossRef Peake PW, O’Grady S, Pussell BA, Charlesworth JA. Detection and quantification of the control proteins of the alternative pathway of complement in 3T3-L1 adipocytes. Eur J Clin Invest. 1997;27:922–7.PubMedCrossRef
23.
go back to reference Mathieson PW, Wurzner R, Oliveria DB, Lachmann PJ, Peters DK. Complement-mediated adipocyte lysis by nephritic factor sera. J Exp Med. 1993;177:1827–31.PubMedCrossRef Mathieson PW, Wurzner R, Oliveria DB, Lachmann PJ, Peters DK. Complement-mediated adipocyte lysis by nephritic factor sera. J Exp Med. 1993;177:1827–31.PubMedCrossRef
24.
go back to reference Barbu A, Hamad OA, Lind L, Ekdahl KN, Nilsson B. The role of complement factor C3 in lipid metabolism. Mol Immunol. 2015;67:101–7.PubMedCrossRef Barbu A, Hamad OA, Lind L, Ekdahl KN, Nilsson B. The role of complement factor C3 in lipid metabolism. Mol Immunol. 2015;67:101–7.PubMedCrossRef
25.
go back to reference Gauvreau D, Roy C, Tom FQ, Lu H, Miegueu P, et al. A new effector of lipid metabolism: complement factor properdin. Mol Immunol. 2012;51:73–81.PubMedCrossRef Gauvreau D, Roy C, Tom FQ, Lu H, Miegueu P, et al. A new effector of lipid metabolism: complement factor properdin. Mol Immunol. 2012;51:73–81.PubMedCrossRef
26.
27.
go back to reference MacLaren RE, Cui W, Lu H, Simard S, Cianflone K. Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects. BMC Med Genomics. 2010;3:3.PubMedPubMedCentralCrossRef MacLaren RE, Cui W, Lu H, Simard S, Cianflone K. Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects. BMC Med Genomics. 2010;3:3.PubMedPubMedCentralCrossRef
28.
go back to reference Moreno-Navarrete JM, Martinez-Barricarte R, Catalan V, Sabater M, Gomez-Ambrosi J, et al. Complement factor H is expressed in adipose tissue in association with insulin resistance. Diabetes. 2010;59:200–9.PubMedPubMedCentralCrossRef Moreno-Navarrete JM, Martinez-Barricarte R, Catalan V, Sabater M, Gomez-Ambrosi J, et al. Complement factor H is expressed in adipose tissue in association with insulin resistance. Diabetes. 2010;59:200–9.PubMedPubMedCentralCrossRef
29.
go back to reference Gabrielsson BG, Johansson JM, Lonn M, Jernas M, Olbers T, et al. High expression of complement components in omental adipose tissue in obese men. Obes Res. 2003;11:699–708.PubMedCrossRef Gabrielsson BG, Johansson JM, Lonn M, Jernas M, Olbers T, et al. High expression of complement components in omental adipose tissue in obese men. Obes Res. 2003;11:699–708.PubMedCrossRef
30.
go back to reference Gupta A, Rezvani R, Lapointe M, Poursharifi P, Marceau P, et al. Downregulation of complement C3 and C3aR expression in subcutaneous adipose tissue in obese women. PLoS ONE. 2014;9:e95478.PubMedPubMedCentralCrossRef Gupta A, Rezvani R, Lapointe M, Poursharifi P, Marceau P, et al. Downregulation of complement C3 and C3aR expression in subcutaneous adipose tissue in obese women. PLoS ONE. 2014;9:e95478.PubMedPubMedCentralCrossRef
31.
go back to reference Hillian AD, McMullen MR, Sebastian BM, Roychowdhury S, Kashyap SR, et al. Mice lacking C1q are protected from high fat diet-induced hepatic insulin resistance and impaired glucose homeostasis. J Biol Chem. 2013;288:22565–75.PubMedPubMedCentralCrossRef Hillian AD, McMullen MR, Sebastian BM, Roychowdhury S, Kashyap SR, et al. Mice lacking C1q are protected from high fat diet-induced hepatic insulin resistance and impaired glucose homeostasis. J Biol Chem. 2013;288:22565–75.PubMedPubMedCentralCrossRef
32.
go back to reference Diawara MR, Hue C, Wilder SP, Venteclef N, Aron-Wisnewsky J, et al. Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men. PLoS ONE. 2014;9:e91375.PubMedPubMedCentralCrossRef Diawara MR, Hue C, Wilder SP, Venteclef N, Aron-Wisnewsky J, et al. Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men. PLoS ONE. 2014;9:e91375.PubMedPubMedCentralCrossRef
33.
go back to reference van Greevenbroek MM, Ghosh S, van der Kallen CJ, Brouwers MC, Schalkwijk CG, et al. Up-regulation of the complement system in subcutaneous adipocytes from nonobese, hypertriglyceridemic subjects is associated with adipocyte insulin resistance. J Clin Endocrinol Metab. 2012;97:4742–52.PubMedPubMedCentralCrossRef van Greevenbroek MM, Ghosh S, van der Kallen CJ, Brouwers MC, Schalkwijk CG, et al. Up-regulation of the complement system in subcutaneous adipocytes from nonobese, hypertriglyceridemic subjects is associated with adipocyte insulin resistance. J Clin Endocrinol Metab. 2012;97:4742–52.PubMedPubMedCentralCrossRef
34.
go back to reference Cero C, Vostrikov VV, Verardi R, Severini C, Gopinath T, et al. The TLQP-21 peptide activates the G-protein-coupled receptor C3aR1 via a folding-upon-binding mechanism. Structure. 2014;22:1744–53.PubMedPubMedCentralCrossRef Cero C, Vostrikov VV, Verardi R, Severini C, Gopinath T, et al. The TLQP-21 peptide activates the G-protein-coupled receptor C3aR1 via a folding-upon-binding mechanism. Structure. 2014;22:1744–53.PubMedPubMedCentralCrossRef
35.
go back to reference Lim J, Iyer A, Suen JY, Seow V, Reid RC, et al. C5aR and C3aR antagonists each inhibit diet-induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling. Faseb J. 2013;27:822–31.PubMedCrossRef Lim J, Iyer A, Suen JY, Seow V, Reid RC, et al. C5aR and C3aR antagonists each inhibit diet-induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling. Faseb J. 2013;27:822–31.PubMedCrossRef
36.
go back to reference Mamane Y, Chung Chan C, Lavallee G, Morin N, Xu LJ, et al. The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes. 2009;58:2006–17.PubMedPubMedCentralCrossRef Mamane Y, Chung Chan C, Lavallee G, Morin N, Xu LJ, et al. The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes. 2009;58:2006–17.PubMedPubMedCentralCrossRef
37.
go back to reference Schaffler A, Scholmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31:228–35.PubMedCrossRef Schaffler A, Scholmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31:228–35.PubMedCrossRef
38.
go back to reference Blogowski W, Budkowska M, Salata D, Serwin K, Dolegowska B, et al. Clinical analysis of selected complement-derived molecules in human adipose tissue. J Transl Med. 2013;11:11.PubMedPubMedCentralCrossRef Blogowski W, Budkowska M, Salata D, Serwin K, Dolegowska B, et al. Clinical analysis of selected complement-derived molecules in human adipose tissue. J Transl Med. 2013;11:11.PubMedPubMedCentralCrossRef
39.
go back to reference Phieler J, Chung KJ, Chatzigeorgiou A, Klotzsche-von Ameln A, Garcia-Martin R, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191:4367–74.PubMedCrossRef Phieler J, Chung KJ, Chatzigeorgiou A, Klotzsche-von Ameln A, Garcia-Martin R, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191:4367–74.PubMedCrossRef
40.
go back to reference Zhang J, Wright W, Bernlohr DA, Cushman SW, Chen X. Alterations of the classic pathway of complement in adipose tissue of obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2007;292:E1433–40.PubMedCrossRef Zhang J, Wright W, Bernlohr DA, Cushman SW, Chen X. Alterations of the classic pathway of complement in adipose tissue of obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2007;292:E1433–40.PubMedCrossRef
41.
go back to reference Fraser DA, Laust AK, Nelson EL, Tenner AJ. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J Immunol. 2009;183:6175–85.PubMedPubMedCentralCrossRef Fraser DA, Laust AK, Nelson EL, Tenner AJ. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J Immunol. 2009;183:6175–85.PubMedPubMedCentralCrossRef
42.
go back to reference Alkhouri N, Gornicka A, Berk MP, Thapaliya S, Dixon LJ, et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem. 2010;285:3428–38.PubMedPubMedCentralCrossRef Alkhouri N, Gornicka A, Berk MP, Thapaliya S, Dixon LJ, et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem. 2010;285:3428–38.PubMedPubMedCentralCrossRef
43.
go back to reference Cianflone K, Zakarian R, Couillard C, Delplanque B, Despres JP, et al. Fasting acylation-stimulating protein is predictive of postprandial triglyceride clearance. J Lipid Res. 2004;45:124–31.PubMedCrossRef Cianflone K, Zakarian R, Couillard C, Delplanque B, Despres JP, et al. Fasting acylation-stimulating protein is predictive of postprandial triglyceride clearance. J Lipid Res. 2004;45:124–31.PubMedCrossRef
44.
go back to reference MacLaren R, Cui W, Cianflone K. Adipokines and the immune system: an adipocentric view. Adv Exp Med Biol. 2008;632:1–21.PubMedCrossRef MacLaren R, Cui W, Cianflone K. Adipokines and the immune system: an adipocentric view. Adv Exp Med Biol. 2008;632:1–21.PubMedCrossRef
45.
go back to reference Maslowska M, Sniderman AD, Germinario R, Cianflone K. ASP stimulates glucose transport in cultured human adipocytes. Int J Obes Relat Metab Disord. 1997;21:261–6.PubMedCrossRef Maslowska M, Sniderman AD, Germinario R, Cianflone K. ASP stimulates glucose transport in cultured human adipocytes. Int J Obes Relat Metab Disord. 1997;21:261–6.PubMedCrossRef
46.
go back to reference Murray I, Sniderman AD, Cianflone K. Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein in C57BL/6 mice. Am J Physiol. 1999;277:E474–80.PubMed Murray I, Sniderman AD, Cianflone K. Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein in C57BL/6 mice. Am J Physiol. 1999;277:E474–80.PubMed
47.
go back to reference Murray I, Sniderman AD, Cianflone K. Mice lacking acylation stimulating protein (ASP) have delayed postprandial triglyceride clearance. J Lipid Res. 1999;40:1671–6.PubMed Murray I, Sniderman AD, Cianflone K. Mice lacking acylation stimulating protein (ASP) have delayed postprandial triglyceride clearance. J Lipid Res. 1999;40:1671–6.PubMed
48.
go back to reference Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273:26977–81.PubMedCrossRef Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273:26977–81.PubMedCrossRef
49.
go back to reference Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, et al. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277:502–8.PubMedCrossRef Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, et al. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277:502–8.PubMedCrossRef
50.
go back to reference Tegla CA, Cudrici CD, Nguyen V, Danoff J, Kruszewski AM, et al. RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Exp Mol Pathol. 2015;98:328–37.PubMedCrossRef Tegla CA, Cudrici CD, Nguyen V, Danoff J, Kruszewski AM, et al. RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Exp Mol Pathol. 2015;98:328–37.PubMedCrossRef
51.
go back to reference Vlaicu SI, Cudrici C, Ito T, Fosbrink M, Tegla CA, et al. Role of response gene to complement 32 in diseases. Arch Immunol Ther Exp (Warsz). 2008;56:115–22.CrossRef Vlaicu SI, Cudrici C, Ito T, Fosbrink M, Tegla CA, et al. Role of response gene to complement 32 in diseases. Arch Immunol Ther Exp (Warsz). 2008;56:115–22.CrossRef
52.
go back to reference Wang JN, Shi N, Xie WB, Guo X, Chen SY. Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration. Arterioscler Thromb Vasc Biol. 2011;31:e19–26.PubMedPubMedCentralCrossRef Wang JN, Shi N, Xie WB, Guo X, Chen SY. Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration. Arterioscler Thromb Vasc Biol. 2011;31:e19–26.PubMedPubMedCentralCrossRef
53.
go back to reference Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, et al. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol. 2009;86:87–94.PubMedPubMedCentralCrossRef Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, et al. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol. 2009;86:87–94.PubMedPubMedCentralCrossRef
54.
55.
go back to reference Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med. 2014;7:2541–9.PubMedPubMedCentral Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med. 2014;7:2541–9.PubMedPubMedCentral
56.
go back to reference Cui XB, Luan JN, Ye J, Chen SY. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol. 2015;224:127–37.PubMedPubMedCentralCrossRef Cui XB, Luan JN, Ye J, Chen SY. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol. 2015;224:127–37.PubMedPubMedCentralCrossRef
57.
go back to reference Ghosh P, Sahoo R, Vaidya A, Chorev M, Halperin JA. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev. 2015;36:272–88.PubMedCrossRef Ghosh P, Sahoo R, Vaidya A, Chorev M, Halperin JA. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev. 2015;36:272–88.PubMedCrossRef
58.
59.
go back to reference Geng P, Ding Y, Qiu L, Lu Y. Serum mannose-binding lectin is a strong biomarker of diabetic retinopathy in chinese patients with diabetes. Diabetes Care. 2015;38:868–75.PubMedCrossRef Geng P, Ding Y, Qiu L, Lu Y. Serum mannose-binding lectin is a strong biomarker of diabetic retinopathy in chinese patients with diabetes. Diabetes Care. 2015;38:868–75.PubMedCrossRef
60.
go back to reference Hovind P, Hansen TK, Tarnow L, Thiel S, Steffensen R, et al. Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes: an inception cohort study. Diabetes. 2005;54:1523–7.PubMedCrossRef Hovind P, Hansen TK, Tarnow L, Thiel S, Steffensen R, et al. Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes: an inception cohort study. Diabetes. 2005;54:1523–7.PubMedCrossRef
61.
go back to reference Jenny L, Ajjan R, King R, Thiel S, Schroeder V. Plasma levels of mannan-binding lectin-associated serine proteases MASP-1 and MASP-2 are elevated in type 1 diabetes and correlate with glycaemic control. Clin Exp Immunol. 2015;180:227–32.PubMedCrossRef Jenny L, Ajjan R, King R, Thiel S, Schroeder V. Plasma levels of mannan-binding lectin-associated serine proteases MASP-1 and MASP-2 are elevated in type 1 diabetes and correlate with glycaemic control. Clin Exp Immunol. 2015;180:227–32.PubMedCrossRef
62.
go back to reference Vlaicu R, Niculescu F, Rus HG, Cristea A. Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis. 1985;57:163–77.PubMedCrossRef Vlaicu R, Niculescu F, Rus HG, Cristea A. Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis. 1985;57:163–77.PubMedCrossRef
63.
go back to reference Niculescu F, Hugo F, Rus HG, Vlaicu R, Bhakdi S. Quantitative evaluation of the terminal C5b-9 complement complex by ELISA in human atherosclerotic arteries. Clin Exp Immunol. 1987;69:477–83.PubMedPubMedCentral Niculescu F, Hugo F, Rus HG, Vlaicu R, Bhakdi S. Quantitative evaluation of the terminal C5b-9 complement complex by ELISA in human atherosclerotic arteries. Clin Exp Immunol. 1987;69:477–83.PubMedPubMedCentral
64.
go back to reference Niculescu F, Rus HG, Vlaicu R. Activation of the human terminal complement pathway in atherosclerosis. Clin Immunol Immunopathol. 1987;45:147–55.PubMedCrossRef Niculescu F, Rus HG, Vlaicu R. Activation of the human terminal complement pathway in atherosclerosis. Clin Immunol Immunopathol. 1987;45:147–55.PubMedCrossRef
65.
go back to reference Rus HG, Niculescu F, Constantinescu E, Cristea A, Vlaicu R. Immunoelectron-microscopic localization of the terminal C5b-9 complement complex in human atherosclerotic fibrous plaque. Atherosclerosis. 1986;61:35–42.PubMedCrossRef Rus HG, Niculescu F, Constantinescu E, Cristea A, Vlaicu R. Immunoelectron-microscopic localization of the terminal C5b-9 complement complex in human atherosclerotic fibrous plaque. Atherosclerosis. 1986;61:35–42.PubMedCrossRef
66.
go back to reference Rus HG, Niculescu F, Porutiu D, Ghiurca V, Vlaicu R. Cells carrying C5b-9 complement complexes in human atherosclerotic wall. Immunol Lett. 1989;20:305–10.PubMedCrossRef Rus HG, Niculescu F, Porutiu D, Ghiurca V, Vlaicu R. Cells carrying C5b-9 complement complexes in human atherosclerotic wall. Immunol Lett. 1989;20:305–10.PubMedCrossRef
67.
go back to reference Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.PubMedCrossRef Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.PubMedCrossRef
68.
go back to reference Fosbrink M, Niculescu F, Rus V, Shin ML, Rus H. C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1. J Biol Chem. 2006;281:19009–18.PubMedCrossRef Fosbrink M, Niculescu F, Rus V, Shin ML, Rus H. C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1. J Biol Chem. 2006;281:19009–18.PubMedCrossRef
69.
go back to reference Vasil KE, Magro CM. Cutaneous vascular deposition of C5b-9 and its role as a diagnostic adjunct in the setting of diabetes mellitus and porphyria cutanea tarda. J Am Acad Dermatol. 2007;56:96–104.PubMedCrossRef Vasil KE, Magro CM. Cutaneous vascular deposition of C5b-9 and its role as a diagnostic adjunct in the setting of diabetes mellitus and porphyria cutanea tarda. J Am Acad Dermatol. 2007;56:96–104.PubMedCrossRef
70.
go back to reference Falk RJ, Sisson SP, Dalmasso AP, Kim Y, Michael AF, et al. Ultrastructural localization of the membrane attack complex of complement in human renal tissues. Am J Kidney Dis. 1987;9:121–8.PubMedCrossRef Falk RJ, Sisson SP, Dalmasso AP, Kim Y, Michael AF, et al. Ultrastructural localization of the membrane attack complex of complement in human renal tissues. Am J Kidney Dis. 1987;9:121–8.PubMedCrossRef
71.
go back to reference Gerl VB, Bohl J, Pitz S, Stoffelns B, Pfeiffer N, et al. Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2002;43:1104–8.PubMed Gerl VB, Bohl J, Pitz S, Stoffelns B, Pfeiffer N, et al. Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2002;43:1104–8.PubMed
72.
go back to reference Rosoklija GB, Dwork AJ, Younger DS, Karlikaya G, Latov N, et al. Local activation of the complement system in endoneurial microvessels of diabetic neuropathy. Acta Neuropathol. 2000;99:55–62.PubMedCrossRef Rosoklija GB, Dwork AJ, Younger DS, Karlikaya G, Latov N, et al. Local activation of the complement system in endoneurial microvessels of diabetic neuropathy. Acta Neuropathol. 2000;99:55–62.PubMedCrossRef
73.
go back to reference Mellbin LG, Bjerre M, Thiel S, Hansen TK. Complement activation and prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Diabetes Care. 2012;35:911–7.PubMedPubMedCentralCrossRef Mellbin LG, Bjerre M, Thiel S, Hansen TK. Complement activation and prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Diabetes Care. 2012;35:911–7.PubMedPubMedCentralCrossRef
74.
go back to reference Qin X, Goldfine A, Krumrei N, Grubissich L, Acosta J, et al. Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes. 2004;53:2653–61.PubMedCrossRef Qin X, Goldfine A, Krumrei N, Grubissich L, Acosta J, et al. Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes. 2004;53:2653–61.PubMedCrossRef
75.
go back to reference Acosta J, Hettinga J, Fluckiger R, Krumrei N, Goldfine A, et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci USA. 2000;97:5450–5.PubMedPubMedCentralCrossRef Acosta J, Hettinga J, Fluckiger R, Krumrei N, Goldfine A, et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci USA. 2000;97:5450–5.PubMedPubMedCentralCrossRef
76.
go back to reference Ghosh P, Vaidya A, Sahoo R, Goldfine A, Herring N, et al. Glycation of the complement regulatory protein CD59 is a novel biomarker for glucose handling in humans. J Clin Endocrinol Metab. 2014;99:E999–1006.PubMedPubMedCentralCrossRef Ghosh P, Vaidya A, Sahoo R, Goldfine A, Herring N, et al. Glycation of the complement regulatory protein CD59 is a novel biomarker for glucose handling in humans. J Clin Endocrinol Metab. 2014;99:E999–1006.PubMedPubMedCentralCrossRef
77.
go back to reference Krus U, King BC, Nagaraj V, Gandasi NR, Sjolander J, et al. The complement inhibitor CD59 regulates insulin secretion by modulating exocytotic events. Cell Metab. 2014;19:883–90.PubMedCrossRef Krus U, King BC, Nagaraj V, Gandasi NR, Sjolander J, et al. The complement inhibitor CD59 regulates insulin secretion by modulating exocytotic events. Cell Metab. 2014;19:883–90.PubMedCrossRef
78.
go back to reference Hoffman WH, Cudrici CD, Zafranskaia E, Rus H. Complement activation in diabetic ketoacidosis brains. Exp Mol Pathol. 2006;80:283–8.PubMedCrossRef Hoffman WH, Cudrici CD, Zafranskaia E, Rus H. Complement activation in diabetic ketoacidosis brains. Exp Mol Pathol. 2006;80:283–8.PubMedCrossRef
79.
go back to reference Jerath RS, Burek CL, Hoffman WH, Passmore GG. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol. 2005;116:11–7.PubMedCrossRef Jerath RS, Burek CL, Hoffman WH, Passmore GG. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol. 2005;116:11–7.PubMedCrossRef
80.
go back to reference Niculescu F, Soane L, Badea T, Shin M, Rus H. Tyrosine phosphorylation and activation of Janus kinase 1 and STAT3 by sublytic C5b-9 complement complex in aortic endothelial cells. Immunopharmacology. 1999;42:187–93.PubMedCrossRef Niculescu F, Soane L, Badea T, Shin M, Rus H. Tyrosine phosphorylation and activation of Janus kinase 1 and STAT3 by sublytic C5b-9 complement complex in aortic endothelial cells. Immunopharmacology. 1999;42:187–93.PubMedCrossRef
81.
go back to reference Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med. 1994;179:985–92.PubMedCrossRef Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med. 1994;179:985–92.PubMedCrossRef
82.
83.
go back to reference Saleh J, Al-Wardy N, Farhan H, Al-Khanbashi M, Cianflone K. Acylation stimulating protein: a female lipogenic factor? Obes Rev. 2011;12:440–8.PubMedCrossRef Saleh J, Al-Wardy N, Farhan H, Al-Khanbashi M, Cianflone K. Acylation stimulating protein: a female lipogenic factor? Obes Rev. 2011;12:440–8.PubMedCrossRef
84.
go back to reference Yasruel Z, Cianflone K, Sniderman AD, Rosenbloom M, Walsh M, et al. Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose tissue. Lipids. 1991;26:495–9.PubMedCrossRef Yasruel Z, Cianflone K, Sniderman AD, Rosenbloom M, Walsh M, et al. Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose tissue. Lipids. 1991;26:495–9.PubMedCrossRef
85.
go back to reference Cianflone K, Maslowska M, Sniderman AD. Acylation stimulating protein (ASP), an adipocyte autocrine: new directions. Semin Cell Dev Biol. 1999;10:31–41.PubMedCrossRef Cianflone K, Maslowska M, Sniderman AD. Acylation stimulating protein (ASP), an adipocyte autocrine: new directions. Semin Cell Dev Biol. 1999;10:31–41.PubMedCrossRef
86.
go back to reference Murray I, Havel PJ, Sniderman AD, Cianflone K. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology. 2000;141:1041–9.PubMed Murray I, Havel PJ, Sniderman AD, Cianflone K. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology. 2000;141:1041–9.PubMed
87.
go back to reference Murray I, Sniderman AD, Havel PJ, Cianflone K. Acylation stimulating protein (ASP) deficiency alters postprandial and adipose tissue metabolism in male mice. J Biol Chem. 1999;274:36219–25.PubMedCrossRef Murray I, Sniderman AD, Havel PJ, Cianflone K. Acylation stimulating protein (ASP) deficiency alters postprandial and adipose tissue metabolism in male mice. J Biol Chem. 1999;274:36219–25.PubMedCrossRef
88.
go back to reference Xia Z, Stanhope KL, Digitale E, Simion OM, Chen L, et al. Acylation-stimulating protein (ASP)/complement C3adesArg deficiency results in increased energy expenditure in mice. J Biol Chem. 2004;279:4051–7.PubMedCrossRef Xia Z, Stanhope KL, Digitale E, Simion OM, Chen L, et al. Acylation-stimulating protein (ASP)/complement C3adesArg deficiency results in increased energy expenditure in mice. J Biol Chem. 2004;279:4051–7.PubMedCrossRef
89.
go back to reference Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37:710–7.PubMedPubMedCentralCrossRef Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37:710–7.PubMedPubMedCentralCrossRef
90.
go back to reference Munkonda MN, Lapointe M, Miegueu P, Roy C, Gauvreau D, et al. Recombinant acylation stimulating protein administration to C3-/- mice increases insulin resistance via adipocyte inflammatory mechanisms. PLoS ONE. 2012;7:e46883.PubMedPubMedCentralCrossRef Munkonda MN, Lapointe M, Miegueu P, Roy C, Gauvreau D, et al. Recombinant acylation stimulating protein administration to C3-/- mice increases insulin resistance via adipocyte inflammatory mechanisms. PLoS ONE. 2012;7:e46883.PubMedPubMedCentralCrossRef
91.
go back to reference Fisette A, Lapointe M, Cianflone K. Obesity-inducing diet promotes acylation stimulating protein resistance. Biochem Biophys Res Commun. 2013;437:403–7.PubMedCrossRef Fisette A, Lapointe M, Cianflone K. Obesity-inducing diet promotes acylation stimulating protein resistance. Biochem Biophys Res Commun. 2013;437:403–7.PubMedCrossRef
92.
go back to reference Paglialunga S, Schrauwen P, Roy C, Moonen-Kornips E, Lu H, et al. Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice. J Endocrinol. 2007;194:293–304.PubMedCrossRef Paglialunga S, Schrauwen P, Roy C, Moonen-Kornips E, Lu H, et al. Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice. J Endocrinol. 2007;194:293–304.PubMedCrossRef
93.
go back to reference Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37.
94.
go back to reference Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, et al. Adipsin is an adipokine that improves beta cell function in diabetes. Cell. 2014;158:41–53.PubMedPubMedCentralCrossRef Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, et al. Adipsin is an adipokine that improves beta cell function in diabetes. Cell. 2014;158:41–53.PubMedPubMedCentralCrossRef
95.
go back to reference Cianflone K, Lu H, Smith J, Yu W, Wang H. Adiponectin, acylation stimulating protein and complement C3 are altered in obesity in very young children. Clin Endocrinol (Oxf). 2005;62:567–72.CrossRef Cianflone K, Lu H, Smith J, Yu W, Wang H. Adiponectin, acylation stimulating protein and complement C3 are altered in obesity in very young children. Clin Endocrinol (Oxf). 2005;62:567–72.CrossRef
96.
go back to reference Engström G, Hedblad B, Eriksson K-F, Janzon L, Lindgärde F. Complement C3 is a risk factor for the development of diabetes: a population-based cohort study. Diabetes. 2005;54:570–5.PubMedCrossRef Engström G, Hedblad B, Eriksson K-F, Janzon L, Lindgärde F. Complement C3 is a risk factor for the development of diabetes: a population-based cohort study. Diabetes. 2005;54:570–5.PubMedCrossRef
97.
go back to reference Engstrom G, Hedblad B, Janzon L, Lindgarde F. Weight gain in relation to plasma levels of complement factor 3: results from a population-based cohort study. Diabetologia. 2005;48:2525–31.PubMedCrossRef Engstrom G, Hedblad B, Janzon L, Lindgarde F. Weight gain in relation to plasma levels of complement factor 3: results from a population-based cohort study. Diabetologia. 2005;48:2525–31.PubMedCrossRef
98.
go back to reference Nilsson B, Hamad OA, Ahlstrom H, Kullberg J, Johansson L, et al. C3 and C4 are strongly related to adipose tissue variables and cardiovascular risk factors. Eur J Clin Invest. 2014;44:587–96.PubMedCrossRef Nilsson B, Hamad OA, Ahlstrom H, Kullberg J, Johansson L, et al. C3 and C4 are strongly related to adipose tissue variables and cardiovascular risk factors. Eur J Clin Invest. 2014;44:587–96.PubMedCrossRef
99.
go back to reference Onat A, Uyarel H, Hergenc G, Karabulut A, Albayrak S, et al. Determinants and definition of abdominal obesity as related to risk of diabetes, metabolic syndrome and coronary disease in Turkish men: a prospective cohort study. Atherosclerosis. 2007;191:182–90.PubMedCrossRef Onat A, Uyarel H, Hergenc G, Karabulut A, Albayrak S, et al. Determinants and definition of abdominal obesity as related to risk of diabetes, metabolic syndrome and coronary disease in Turkish men: a prospective cohort study. Atherosclerosis. 2007;191:182–90.PubMedCrossRef
100.
go back to reference Qin X, Lu Y, Yang X, Peng Q, Wang J, et al. Determination of reference intervals for serum complement C3 and C4 levels in Chinese Han ethnic males. Clin Lab. 2014;60:775–81.PubMed Qin X, Lu Y, Yang X, Peng Q, Wang J, et al. Determination of reference intervals for serum complement C3 and C4 levels in Chinese Han ethnic males. Clin Lab. 2014;60:775–81.PubMed
101.
go back to reference Warnberg J, Nova E, Moreno LA, Romeo J, Mesana MI, et al. Inflammatory proteins are related to total and abdominal adiposity in a healthy adolescent population: the AVENA Study. Am J Clin Nutr. 2006;84:505–12.PubMed Warnberg J, Nova E, Moreno LA, Romeo J, Mesana MI, et al. Inflammatory proteins are related to total and abdominal adiposity in a healthy adolescent population: the AVENA Study. Am J Clin Nutr. 2006;84:505–12.PubMed
102.
go back to reference Hernandez-Mijares A, Jarabo-Bueno MM, Lopez-Ruiz A, Sola-Izquierdo E, Morillas-Arino C, et al. Levels of C3 in patients with severe, morbid and extreme obesity: its relationship to insulin resistance and different cardiovascular risk factors. Int J Obes (Lond). 2007;31:927–32.CrossRef Hernandez-Mijares A, Jarabo-Bueno MM, Lopez-Ruiz A, Sola-Izquierdo E, Morillas-Arino C, et al. Levels of C3 in patients with severe, morbid and extreme obesity: its relationship to insulin resistance and different cardiovascular risk factors. Int J Obes (Lond). 2007;31:927–32.CrossRef
103.
go back to reference Oberbach A, Bluher M, Wirth H, Till H, Kovacs P, et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J Proteome Res. 2011;10:4769–88.PubMedCrossRef Oberbach A, Bluher M, Wirth H, Till H, Kovacs P, et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J Proteome Res. 2011;10:4769–88.PubMedCrossRef
104.
go back to reference Sleddering MA, Markvoort AJ, Dharuri HK, Jeyakar S, Snel M, et al. Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers. PLoS ONE. 2014;9:e112835.PubMedPubMedCentralCrossRef Sleddering MA, Markvoort AJ, Dharuri HK, Jeyakar S, Snel M, et al. Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers. PLoS ONE. 2014;9:e112835.PubMedPubMedCentralCrossRef
105.
go back to reference Nestvold TK, Nielsen EW, Ludviksen JK, Fure H, Landsem A, et al. Lifestyle changes followed by bariatric surgery lower inflammatory markers and the cardiovascular risk factors C3 and C4. Metab Syndr Relat Disord. 2015;13:29–35.PubMedCrossRef Nestvold TK, Nielsen EW, Ludviksen JK, Fure H, Landsem A, et al. Lifestyle changes followed by bariatric surgery lower inflammatory markers and the cardiovascular risk factors C3 and C4. Metab Syndr Relat Disord. 2015;13:29–35.PubMedCrossRef
106.
go back to reference Wlazlo N, van Greevenbroek MM, Ferreira I, Jansen EJ, Feskens EJ, et al. Low-grade inflammation and insulin resistance independently explain substantial parts of the association between body fat and serum C3: the CODAM study. Metabolism. 2012;61:1787–96.PubMedCrossRef Wlazlo N, van Greevenbroek MM, Ferreira I, Jansen EJ, Feskens EJ, et al. Low-grade inflammation and insulin resistance independently explain substantial parts of the association between body fat and serum C3: the CODAM study. Metabolism. 2012;61:1787–96.PubMedCrossRef
107.
go back to reference Phillips CM, Kesse-Guyot E, Ahluwalia N, McManus R, Hercberg S, et al. Dietary fat, abdominal obesity and smoking modulate the relationship between plasma complement component 3 concentrations and metabolic syndrome risk. Atherosclerosis. 2012;220:513–9.PubMedCrossRef Phillips CM, Kesse-Guyot E, Ahluwalia N, McManus R, Hercberg S, et al. Dietary fat, abdominal obesity and smoking modulate the relationship between plasma complement component 3 concentrations and metabolic syndrome risk. Atherosclerosis. 2012;220:513–9.PubMedCrossRef
108.
go back to reference Wlazlo N, van Greevenbroek MM, Ferreira I, Feskens EJ, van der Kallen CJ, et al. Complement factor 3 is associated with insulin resistance and with incident type 2 diabetes over a 7-year follow-up period: the CODAM Study. Diabetes Care. 2014;37:1900–9.PubMedCrossRef Wlazlo N, van Greevenbroek MM, Ferreira I, Feskens EJ, van der Kallen CJ, et al. Complement factor 3 is associated with insulin resistance and with incident type 2 diabetes over a 7-year follow-up period: the CODAM Study. Diabetes Care. 2014;37:1900–9.PubMedCrossRef
109.
go back to reference De Pergola G, Tartagni M, Bartolomeo N, Bruno I, Masiello M, et al. Possible direct influence of complement 3 in decreasing insulin sensitivity in a cohort of overweight and obese subjects. Endocr Metab Immune Disord Drug Targets. 2013;13:301–5.PubMedCrossRef De Pergola G, Tartagni M, Bartolomeo N, Bruno I, Masiello M, et al. Possible direct influence of complement 3 in decreasing insulin sensitivity in a cohort of overweight and obese subjects. Endocr Metab Immune Disord Drug Targets. 2013;13:301–5.PubMedCrossRef
110.
go back to reference Muscari A, Antonelli S, Bianchi G, Cavrini G, Dapporto S, et al. Serum C3 is a stronger inflammatory marker of insulin resistance than C-reactive protein, leukocyte count, and erythrocyte sedimentation rate: comparison study in an elderly population. Diabetes Care. 2007;30:2362–8.PubMedCrossRef Muscari A, Antonelli S, Bianchi G, Cavrini G, Dapporto S, et al. Serum C3 is a stronger inflammatory marker of insulin resistance than C-reactive protein, leukocyte count, and erythrocyte sedimentation rate: comparison study in an elderly population. Diabetes Care. 2007;30:2362–8.PubMedCrossRef
111.
go back to reference Muscari A, Bozzoli C, Puddu GM, Sangiorgi Z, Dormi A, et al. Association of serum C3 levels with the risk of myocardial infarction. Am J Med. 1995;98:357–64.PubMedCrossRef Muscari A, Bozzoli C, Puddu GM, Sangiorgi Z, Dormi A, et al. Association of serum C3 levels with the risk of myocardial infarction. Am J Med. 1995;98:357–64.PubMedCrossRef
112.
go back to reference Vidigal Fde C, Ribeiro AQ, Babio N, Salas-Salvado J, Bressan J. Prevalence of metabolic syndrome and pre-metabolic syndrome in health professionals: LATINMETS Brazil study. Diabetol Metab Syndr. 2015;7:6.PubMedCrossRef Vidigal Fde C, Ribeiro AQ, Babio N, Salas-Salvado J, Bressan J. Prevalence of metabolic syndrome and pre-metabolic syndrome in health professionals: LATINMETS Brazil study. Diabetol Metab Syndr. 2015;7:6.PubMedCrossRef
113.
go back to reference Onat A, Can G, Rezvani R, Cianflone K. Complement C3 and cleavage products in cardiometabolic risk. Clin Chim Acta. 2011;412:1171–9.PubMedCrossRef Onat A, Can G, Rezvani R, Cianflone K. Complement C3 and cleavage products in cardiometabolic risk. Clin Chim Acta. 2011;412:1171–9.PubMedCrossRef
114.
go back to reference Van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, et al. Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J Biol Chem. 1999;274:18243–51.PubMedCrossRef Van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, et al. Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J Biol Chem. 1999;274:18243–51.PubMedCrossRef
115.
go back to reference Ahren B, Havel PJ, Pacini G, Cianflone K. Acylation stimulating protein stimulates insulin secretion. Int J Obes Relat Metab Disord. 2003;27:1037–43.PubMedCrossRef Ahren B, Havel PJ, Pacini G, Cianflone K. Acylation stimulating protein stimulates insulin secretion. Int J Obes Relat Metab Disord. 2003;27:1037–43.PubMedCrossRef
116.
go back to reference Saleh J, Wahab RA, Farhan H, Al-Amri I, Cianflone K. Plasma levels of acylation-stimulating protein are strongly predicted by waist/hip ratio and correlate with decreased LDL size in men. ISRN Obes. 2013;2013:342802.PubMedPubMedCentral Saleh J, Wahab RA, Farhan H, Al-Amri I, Cianflone K. Plasma levels of acylation-stimulating protein are strongly predicted by waist/hip ratio and correlate with decreased LDL size in men. ISRN Obes. 2013;2013:342802.PubMedPubMedCentral
117.
go back to reference Yang Y, Lu HL, Zhang J, Yu HY, Wang HW, et al. Relationships among acylation stimulating protein, adiponectin and complement C3 in lean vs obese type 2 diabetes. Int J Obes (Lond). 2006;30:439–46.CrossRef Yang Y, Lu HL, Zhang J, Yu HY, Wang HW, et al. Relationships among acylation stimulating protein, adiponectin and complement C3 in lean vs obese type 2 diabetes. Int J Obes (Lond). 2006;30:439–46.CrossRef
118.
go back to reference Cianflone K, Zhang XJ, Genest J Jr, Sniderman A. Plasma acylation-stimulating protein in coronary artery disease. Arterioscler Thromb Vasc Biol. 1997;17:1239–44.PubMed Cianflone K, Zhang XJ, Genest J Jr, Sniderman A. Plasma acylation-stimulating protein in coronary artery disease. Arterioscler Thromb Vasc Biol. 1997;17:1239–44.PubMed
119.
go back to reference Weyer C, Pratley RE. Fasting and postprandial plasma concentrations of acylation-stimulation protein (ASP) in lean and obese Pima Indians compared to Caucasians. Obes Res. 1999;7:444–52.PubMedCrossRef Weyer C, Pratley RE. Fasting and postprandial plasma concentrations of acylation-stimulation protein (ASP) in lean and obese Pima Indians compared to Caucasians. Obes Res. 1999;7:444–52.PubMedCrossRef
120.
go back to reference Wamba PC, Mi J, Zhao XY, Zhang MX, Wen Y, et al. Acylation stimulating protein but not complement C3 associates with metabolic syndrome components in Chinese children and adolescents. Eur J Endocrinol. 2008;159:781–90.PubMedCrossRef Wamba PC, Mi J, Zhao XY, Zhang MX, Wen Y, et al. Acylation stimulating protein but not complement C3 associates with metabolic syndrome components in Chinese children and adolescents. Eur J Endocrinol. 2008;159:781–90.PubMedCrossRef
121.
go back to reference Fujita T, Hemmi S, Kajiwara M, Yabuki M, Fuke Y, et al. Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes Metab Res Rev. 2013;29:220–6.PubMedCrossRef Fujita T, Hemmi S, Kajiwara M, Yabuki M, Fuke Y, et al. Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes Metab Res Rev. 2013;29:220–6.PubMedCrossRef
122.
go back to reference Somani R, Richardson VR, Standeven KF, Grant PJ, Carter AM. Elevated properdin and enhanced complement activation in first-degree relatives of South Asian subjects with type 2 diabetes. Diabetes Care. 2012;35:894–9.PubMedPubMedCentralCrossRef Somani R, Richardson VR, Standeven KF, Grant PJ, Carter AM. Elevated properdin and enhanced complement activation in first-degree relatives of South Asian subjects with type 2 diabetes. Diabetes Care. 2012;35:894–9.PubMedPubMedCentralCrossRef
123.
go back to reference Uza G, Cristea A, Cucuianu MP. Increased level of the complement C3 protein in endogenous hypertriglyceridemia. J Clin Lab Immunol. 1982;8:101–5.PubMed Uza G, Cristea A, Cucuianu MP. Increased level of the complement C3 protein in endogenous hypertriglyceridemia. J Clin Lab Immunol. 1982;8:101–5.PubMed
124.
go back to reference Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007;117:746–56.PubMedPubMedCentralCrossRef Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007;117:746–56.PubMedPubMedCentralCrossRef
Metadata
Title
The role of complement system in adipose tissue-related inflammation
Authors
Sonia I. Vlaicu
Alexandru Tatomir
Dallas Boodhoo
Stefan Vesa
Petru A. Mircea
Horea Rus
Publication date
01-06-2016
Publisher
Springer US
Published in
Immunologic Research / Issue 3/2016
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-015-8783-5

Other articles of this Issue 3/2016

Immunologic Research 3/2016 Go to the issue