Skip to main content
Top
Published in: Immunologic Research 2/2016

01-04-2016 | Original Article

Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjögren syndrome

Authors: Juan Wang, Huiyong Peng, Jie Tian, Jie Ma, Xinyi Tang, Ke Rui, Xinyu Tian, Yungang Wang, Jianguo Chen, Liwei Lu, Huaxi Xu, Shengjun Wang

Published in: Immunologic Research | Issue 2/2016

Login to get access

Abstract

Long noncoding RNAs (lncRNA) play key roles in regulating autoimmunity and immunity balance. LncRNA TMEVPG1, which is encoded by a gene located near the Ifn gene, contributes to interferon gamma expression. We investigated the expression of TMEVPG1 in patients with Sjögren syndrome (SS) to determine its role in the pathogenesis of SS. In this study, we detected the relative expression of TMEVPG1 in CD4+ T cells of 25 SS patients and 25 healthy donors. Moreover, the proportion of Th1 cells and T-bet levels was also analyzed. Furthermore, we explored the correlation between the expression of TMEVPG1 and the level of autoantibodies, erythrocyte sedimentation rate (ESR) and IgG in SS patients. Our results indicated that the proportion of Th1 cells and the levels of TMEVPG1 and T-bet were increased in SS patients. In addition, the level of expression of TMEVPG1 was correlated with the level of SSA, ESR and IgG. Our data suggest that upregulation of lncRNA TMEVPG1 may be involved in the pathogenesis of Sjögren syndrome.
Literature
2.
go back to reference Fox RI, Kang HI, Ando D, et al. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J Immunol. 1994;152:5532–9.PubMed Fox RI, Kang HI, Ando D, et al. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J Immunol. 1994;152:5532–9.PubMed
3.
go back to reference Boumba D, Skopouli FN, Moutsopoulos HM. Cytokine mRNA expression in the labial salivary gland tissues from patients with primary Sjögren’s syndrome. Br J Rheumatol. 1995;34:326–33.CrossRefPubMed Boumba D, Skopouli FN, Moutsopoulos HM. Cytokine mRNA expression in the labial salivary gland tissues from patients with primary Sjögren’s syndrome. Br J Rheumatol. 1995;34:326–33.CrossRefPubMed
4.
go back to reference Kolkowski EC, Reth P, Pelusa F, et al. Th1 predominance and perforin expression in minor salivary glands from patients with primary Sjögren’s syndrome. J Autoimmun. 1999;13(1):155–62.CrossRefPubMed Kolkowski EC, Reth P, Pelusa F, et al. Th1 predominance and perforin expression in minor salivary glands from patients with primary Sjögren’s syndrome. J Autoimmun. 1999;13(1):155–62.CrossRefPubMed
5.
go back to reference Li X, Xu B, Wang Y, et al. Anti-inflammatory effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on non-obese diabetic mice with Sjögren’s syndrome. Int J Clin Exp Pathol. 2014;7(8):4886–94.PubMedPubMedCentral Li X, Xu B, Wang Y, et al. Anti-inflammatory effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on non-obese diabetic mice with Sjögren’s syndrome. Int J Clin Exp Pathol. 2014;7(8):4886–94.PubMedPubMedCentral
6.
go back to reference Cha S, Brayer J, Gao J, et al. A dual role for interferon-gamma in the pathogenesis of Sjögren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand J Immunol. 2004;60(6):552–65.CrossRefPubMed Cha S, Brayer J, Gao J, et al. A dual role for interferon-gamma in the pathogenesis of Sjögren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand J Immunol. 2004;60(6):552–65.CrossRefPubMed
7.
go back to reference Lin X, Rui K, Deng J, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74(6):1302–10.CrossRefPubMed Lin X, Rui K, Deng J, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74(6):1302–10.CrossRefPubMed
8.
go back to reference Peng H, Liu Y, Tian J, et al. Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto’s thyroiditis. Immunol Res. 2015;62(2):129–36.CrossRefPubMed Peng H, Liu Y, Tian J, et al. Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto’s thyroiditis. Immunol Res. 2015;62(2):129–36.CrossRefPubMed
9.
go back to reference Chen J, Tian J, Tang X, et al. MiR-346 regulates CD4+ CXCR5+ T cells in the pathogenesis of Graves’ disease. Endocrine. 2015;49(3):752–60.CrossRefPubMed Chen J, Tian J, Tang X, et al. MiR-346 regulates CD4+ CXCR5+ T cells in the pathogenesis of Graves’ disease. Endocrine. 2015;49(3):752–60.CrossRefPubMed
10.
go back to reference Pauley KM, Stewart CM, Gauna AE, et al. Altered miR-146a expression in Sjögren syndrome and its functional role in innate immunity. Eur J Immunol. 2011;41(7):2029–39.CrossRefPubMedPubMedCentral Pauley KM, Stewart CM, Gauna AE, et al. Altered miR-146a expression in Sjögren syndrome and its functional role in innate immunity. Eur J Immunol. 2011;41(7):2029–39.CrossRefPubMedPubMedCentral
11.
go back to reference Spierings DC, McGoldrick D, Hamilton-Easton AM, et al. Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood. 2011;117(20):5340–9.CrossRefPubMedPubMedCentral Spierings DC, McGoldrick D, Hamilton-Easton AM, et al. Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood. 2011;117(20):5340–9.CrossRefPubMedPubMedCentral
12.
go back to reference Chiyomaru T, Fukuhara S, Saini S, et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem. 2014;289(18):12550–65.CrossRefPubMedPubMedCentral Chiyomaru T, Fukuhara S, Saini S, et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem. 2014;289(18):12550–65.CrossRefPubMedPubMedCentral
13.
go back to reference Van Roosbroeck K, Pollet J, Calin GA. MiRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn. 2013;13(2):183–204.CrossRefPubMed Van Roosbroeck K, Pollet J, Calin GA. MiRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn. 2013;13(2):183–204.CrossRefPubMed
14.
go back to reference Mourtada-Maarabouni M, Hasan AM, Farzaneh F, et al. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol. 2010;78(1):19–28.CrossRefPubMedPubMedCentral Mourtada-Maarabouni M, Hasan AM, Farzaneh F, et al. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol. 2010;78(1):19–28.CrossRefPubMedPubMedCentral
15.
go back to reference Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743–54.CrossRefPubMedPubMedCentral Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743–54.CrossRefPubMedPubMedCentral
16.
go back to reference Collier SP, Collins PL, Williams CL, et al. Cutting edge: influence of TMEVPG1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol. 2012;189(5):2084–8.CrossRefPubMedPubMedCentral Collier SP, Collins PL, Williams CL, et al. Cutting edge: influence of TMEVPG1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol. 2012;189(5):2084–8.CrossRefPubMedPubMedCentral
17.
go back to reference Collier SP, Henderson MA, Tossberg JT, et al. Regulation of the Th1 genomic locus from Ifn-g. through Tmevpg1 by T-bet. J Immunol. 2014;193(8):3959–65.CrossRefPubMedPubMedCentral Collier SP, Henderson MA, Tossberg JT, et al. Regulation of the Th1 genomic locus from Ifn-g. through Tmevpg1 by T-bet. J Immunol. 2014;193(8):3959–65.CrossRefPubMedPubMedCentral
18.
go back to reference Jonsson R, Vogelsang P, Volchenkov R, et al. The complexity of Sjögren’s syndrome: novel aspects on pathogenesis. Immunol Lett. 2011;141(1):1–9.CrossRefPubMed Jonsson R, Vogelsang P, Volchenkov R, et al. The complexity of Sjögren’s syndrome: novel aspects on pathogenesis. Immunol Lett. 2011;141(1):1–9.CrossRefPubMed
19.
go back to reference Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American- European Consensus Group. Ann Rheum Dis. 2002;61(6):554–8.CrossRefPubMedPubMedCentral Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American- European Consensus Group. Ann Rheum Dis. 2002;61(6):554–8.CrossRefPubMedPubMedCentral
21.
go back to reference Hernandez-Molina G, Leal-Alegre G, Michel-Peregrina M. The meaning of anti-Ro and anti-La antibodies in primary Sjögren’s syndrome. Autoimmun Rev. 2011;10(3):123–5.CrossRefPubMed Hernandez-Molina G, Leal-Alegre G, Michel-Peregrina M. The meaning of anti-Ro and anti-La antibodies in primary Sjögren’s syndrome. Autoimmun Rev. 2011;10(3):123–5.CrossRefPubMed
22.
go back to reference Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.CrossRefPubMedPubMedCentral Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.CrossRefPubMedPubMedCentral
23.
go back to reference Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.CrossRefPubMedPubMedCentral Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.CrossRefPubMedPubMedCentral
24.
go back to reference Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; 15 Spec No 1:R17-29. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; 15 Spec No 1:R17-29.
25.
go back to reference Jimenez SA, Piera-Velazquez S. Potential role of human-specific genes, human-specific microRNAs and human-specific non-coding regulatory RNAs in the pathogenesis of systemic sclerosis and Sjögren syndrome. Autoimmun Rev. 2013;12(11):1046–51.CrossRefPubMedPubMedCentral Jimenez SA, Piera-Velazquez S. Potential role of human-specific genes, human-specific microRNAs and human-specific non-coding regulatory RNAs in the pathogenesis of systemic sclerosis and Sjögren syndrome. Autoimmun Rev. 2013;12(11):1046–51.CrossRefPubMedPubMedCentral
26.
go back to reference Vigneau S, Rohrlich PS, Brahic M, et al. Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon. J Virol. 2003;77(10):5632–8.CrossRefPubMedPubMedCentral Vigneau S, Rohrlich PS, Brahic M, et al. Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon. J Virol. 2003;77(10):5632–8.CrossRefPubMedPubMedCentral
27.
go back to reference Gonzalez-Navajas JM, Lee J, David M, et al. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125–35.PubMedPubMedCentral Gonzalez-Navajas JM, Lee J, David M, et al. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125–35.PubMedPubMedCentral
28.
go back to reference Li H, Ice JA, Lessard CJ, et al. Interferons in Sjögren’s syndrome: genes, mechanisms, and effects. Front Immunol. 2013;4:290.PubMedPubMedCentral Li H, Ice JA, Lessard CJ, et al. Interferons in Sjögren’s syndrome: genes, mechanisms, and effects. Front Immunol. 2013;4:290.PubMedPubMedCentral
29.
go back to reference Hjelmervik TO, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52(5):1534–44.CrossRefPubMed Hjelmervik TO, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52(5):1534–44.CrossRefPubMed
30.
go back to reference Hall JC, Baer AN, Shah AA, et al. Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthriti Rheumatol. 2015;67(9):2437–46.CrossRef Hall JC, Baer AN, Shah AA, et al. Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthriti Rheumatol. 2015;67(9):2437–46.CrossRef
31.
go back to reference Nguyen CQ, Peck AB. The interferon-signature of Sjögren’s syndrome: how unique biomarkers can identify underlying inflammatory and immunopathological mechanisms of specific diseases. Front Immunol. 2013;4:142.CrossRefPubMedPubMedCentral Nguyen CQ, Peck AB. The interferon-signature of Sjögren’s syndrome: how unique biomarkers can identify underlying inflammatory and immunopathological mechanisms of specific diseases. Front Immunol. 2013;4:142.CrossRefPubMedPubMedCentral
32.
go back to reference Hall JC, Casciola-Rosen L, Berger AE, et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci USA. 2012;109(43):17609–14.CrossRefPubMedPubMedCentral Hall JC, Casciola-Rosen L, Berger AE, et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci USA. 2012;109(43):17609–14.CrossRefPubMedPubMedCentral
33.
go back to reference Hertzog P, Forster S, Samarajiwa S. Systems biology of interferon responses. J Interferon Cytokine Res. 2011;31(1):5–11.CrossRefPubMed Hertzog P, Forster S, Samarajiwa S. Systems biology of interferon responses. J Interferon Cytokine Res. 2011;31(1):5–11.CrossRefPubMed
34.
go back to reference Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjögren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjögren’s related lymphomagenesis. J Autoimmun. 2015;S0896–8411(15):30006–8. Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjögren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjögren’s related lymphomagenesis. J Autoimmun. 2015;S0896–8411(15):30006–8.
35.
go back to reference Ogawa N, Li P, Li Z, et al. Involvement of the interferon-gamma-induced T cell-attracting chemokines, interferon-gamma-inducible 10-kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis Rheum. 2002;46:2730–41.CrossRefPubMed Ogawa N, Li P, Li Z, et al. Involvement of the interferon-gamma-induced T cell-attracting chemokines, interferon-gamma-inducible 10-kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis Rheum. 2002;46:2730–41.CrossRefPubMed
Metadata
Title
Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjögren syndrome
Authors
Juan Wang
Huiyong Peng
Jie Tian
Jie Ma
Xinyi Tang
Ke Rui
Xinyu Tian
Yungang Wang
Jianguo Chen
Liwei Lu
Huaxi Xu
Shengjun Wang
Publication date
01-04-2016
Publisher
Springer US
Published in
Immunologic Research / Issue 2/2016
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-015-8715-4

Other articles of this Issue 2/2016

Immunologic Research 2/2016 Go to the issue