Skip to main content
Top
Published in: Immunologic Research 1-3/2008

01-10-2008

DNA vaccines: developing new strategies to enhance immune responses

Authors: Shaheed A. Abdulhaqq, David B. Weiner

Published in: Immunologic Research | Issue 1-3/2008

Login to get access

Abstract

We have focused our research on understanding the basic biology of and developing novel therapeutic and prophylactic DNA vaccines. We have among others three distinct primary areas of interest which include: 1. Enhancing in vivo delivery and transfection of DNA vaccine vectors 2. Improving DNA vaccine construct immunogenicity 3. Using molecular adjuvants to modulate and skew immune responses. Key to the immunogenicity of DNA vaccines is the presentation of expressed antigen to antigen-presenting cells. To improve expression and presentation of antigen, we have investigated various immunization methods with current focus on a combination of intramuscular injection and electroporation. To improve our vaccine constructs, we also employed methods such as RNA/codon optimization and antigen consensus to enhance expression and cellular/humoral cross-reactivity, respectively. Our lab also researches the potential of various molecular adjuvants to skew Th1/Th2 responses, enhance cellular/humoral responses, and improve protection in various animal models. Through improving our understanding of basic immunology as it is related to DNA vaccine technology, our goal is to develop the technology to the point of utility for human and animal health.
Literature
1.
go back to reference Stasney J, Paschkis KE, Cantarow A, Morris HP. The production of neoplasms by the injection of chromatin fractions. Acta Unio Int Contra Cancrum. 1955;11(6):715–20.PubMed Stasney J, Paschkis KE, Cantarow A, Morris HP. The production of neoplasms by the injection of chromatin fractions. Acta Unio Int Contra Cancrum. 1955;11(6):715–20.PubMed
2.
go back to reference Ito Y. Heat-resistance of the tumorigenic nucleic acid of shope papillomatosis. Proc Natl Acad Sci USA. 1961;47(12):1897–900.PubMedCrossRef Ito Y. Heat-resistance of the tumorigenic nucleic acid of shope papillomatosis. Proc Natl Acad Sci USA. 1961;47(12):1897–900.PubMedCrossRef
4.
go back to reference Will H, Cattaneo R, Koch HG, Darai G, Schaller H, Schellekens H, et al. Cloned HBV DNA causes hepatitis in chimpanzees. Nature. 1982;299(5885):740–2.PubMedCrossRef Will H, Cattaneo R, Koch HG, Darai G, Schaller H, Schellekens H, et al. Cloned HBV DNA causes hepatitis in chimpanzees. Nature. 1982;299(5885):740–2.PubMedCrossRef
5.
go back to reference Benvenisty N, Reshef L. Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci USA. 1986;83(24):9551–5.PubMedCrossRef Benvenisty N, Reshef L. Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci USA. 1986;83(24):9551–5.PubMedCrossRef
6.
go back to reference Seeger C, Ganem D, Varmus HE. The cloned genome of ground squirrel hepatitis virus is infectious in the animal. Proc Natl Acad Sci USA. 1984;81(18):5849–52.PubMedCrossRef Seeger C, Ganem D, Varmus HE. The cloned genome of ground squirrel hepatitis virus is infectious in the animal. Proc Natl Acad Sci USA. 1984;81(18):5849–52.PubMedCrossRef
7.
go back to reference Nicolau C, Le Pape A, Soriano P, Fargette F, Juhel MF. In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci USA. 1983;80(4):1068–72.PubMedCrossRef Nicolau C, Le Pape A, Soriano P, Fargette F, Juhel MF. In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci USA. 1983;80(4):1068–72.PubMedCrossRef
8.
go back to reference Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 1987;84(21):7413–7.PubMedCrossRef Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 1987;84(21):7413–7.PubMedCrossRef
9.
go back to reference Dubensky TW, Campbell BA, Villarreal LP. Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci USA. 1984;81(23):7529–33.PubMedCrossRef Dubensky TW, Campbell BA, Villarreal LP. Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci USA. 1984;81(23):7529–33.PubMedCrossRef
10.
go back to reference Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8.PubMedCrossRef Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8.PubMedCrossRef
11.
go back to reference Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–4.PubMedCrossRef Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–4.PubMedCrossRef
12.
go back to reference Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102):1745–9.PubMedCrossRef Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102):1745–9.PubMedCrossRef
13.
go back to reference Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA. 1993;90(24):11478–82.PubMedCrossRef Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA. 1993;90(24):11478–82.PubMedCrossRef
14.
go back to reference Wang B, Ugen KE, Srikantan V, Agadjanyan MG, Dang K, Refaeli Y, et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1993;90(9):4156–60.PubMedCrossRef Wang B, Ugen KE, Srikantan V, Agadjanyan MG, Dang K, Refaeli Y, et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1993;90(9):4156–60.PubMedCrossRef
15.
go back to reference Hawkins RE, Winter G, Hamblin TJ, Stevenson FK, Russell SJ. A genetic approach to idiotypic vaccination. J Immunother Emphasis Tumor Immunol. 1993;14(4):273–8.PubMed Hawkins RE, Winter G, Hamblin TJ, Stevenson FK, Russell SJ. A genetic approach to idiotypic vaccination. J Immunother Emphasis Tumor Immunol. 1993;14(4):273–8.PubMed
16.
go back to reference Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol. 2000;165(5):2850–8.PubMed Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol. 2000;165(5):2850–8.PubMed
17.
go back to reference Chattergoon MA, Kim JJ, Yang JS, Robinson TM, Lee DJ, Dentchev T, et al. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol. 2000;18(9):974–9.PubMedCrossRef Chattergoon MA, Kim JJ, Yang JS, Robinson TM, Lee DJ, Dentchev T, et al. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol. 2000;18(9):974–9.PubMedCrossRef
18.
go back to reference Rubartelli A, Poggi A, Zocchi MR. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol. 1997;27(8):1893–900.PubMedCrossRef Rubartelli A, Poggi A, Zocchi MR. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol. 1997;27(8):1893–900.PubMedCrossRef
19.
go back to reference Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 1998;188(7):1359–68.PubMedCrossRef Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 1998;188(7):1359–68.PubMedCrossRef
20.
go back to reference Harshyne LA, Zimmer MI, Watkins SC, Barratt-Boyes SM. A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol. 2003;170(5):2302–9.PubMed Harshyne LA, Zimmer MI, Watkins SC, Barratt-Boyes SM. A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol. 2003;170(5):2302–9.PubMed
21.
go back to reference Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest. 2002;109(12):1519–26.PubMed Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest. 2002;109(12):1519–26.PubMed
22.
go back to reference Mascola JR, Sambor A, Beaudry K, Santra S, Welcher B, Louder MK, et al. Neutralizing antibodies elicited by immunization of monkeys with DNA plasmids and recombinant adenoviral vectors expressing human immunodeficiency virus type 1 proteins. J Virol. 2005;79(2):771–9.PubMedCrossRef Mascola JR, Sambor A, Beaudry K, Santra S, Welcher B, Louder MK, et al. Neutralizing antibodies elicited by immunization of monkeys with DNA plasmids and recombinant adenoviral vectors expressing human immunodeficiency virus type 1 proteins. J Virol. 2005;79(2):771–9.PubMedCrossRef
23.
go back to reference Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.PubMedCrossRef Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.PubMedCrossRef
24.
go back to reference Tudor D, Dubuquoy C, Gaboriau V, Lefevre F, Charley B, Riffault S. TLR9 pathway is involved in adjuvant effects of plasmid DNA-based vaccines. Vaccine. 2005;23(10):1258–64.PubMedCrossRef Tudor D, Dubuquoy C, Gaboriau V, Lefevre F, Charley B, Riffault S. TLR9 pathway is involved in adjuvant effects of plasmid DNA-based vaccines. Vaccine. 2005;23(10):1258–64.PubMedCrossRef
25.
go back to reference Zhang L, Yang Y, Yang X, Zhao J, Yang J, Liu F, et al. T cell epitope-based peptide-DNA dual vaccine induces protective immunity against Schistosoma japonicum infection in C57BL/6 J mice. Microbes Infect. 2008;10(3):251–9.PubMedCrossRef Zhang L, Yang Y, Yang X, Zhao J, Yang J, Liu F, et al. T cell epitope-based peptide-DNA dual vaccine induces protective immunity against Schistosoma japonicum infection in C57BL/6 J mice. Microbes Infect. 2008;10(3):251–9.PubMedCrossRef
26.
go back to reference Zhu Y, Ren J, Harn DA, Si J, Yu C, Ming X, et al. Protective immunity induced with 23 kDa membrane protein dna vaccine of Schistosoma japonicum Chinese strain in infected C57BL/6 mice. Southeast Asian J Trop Med Public Health. 2003;34(4):697–701.PubMed Zhu Y, Ren J, Harn DA, Si J, Yu C, Ming X, et al. Protective immunity induced with 23 kDa membrane protein dna vaccine of Schistosoma japonicum Chinese strain in infected C57BL/6 mice. Southeast Asian J Trop Med Public Health. 2003;34(4):697–701.PubMed
27.
go back to reference Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561–4.PubMedCrossRef Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561–4.PubMedCrossRef
28.
go back to reference Zhu Y, Si J, Ham DA, Yu C, He W, Hua W, et al. The protective immunity produced in infected C57BL/6 mice of a DNA vaccine encoding Schistosoma japonicum Chinese strain triose-phosphate isomerase. Southeast Asian J Trop Med Public Health. 2002;33(2):207–13.PubMed Zhu Y, Si J, Ham DA, Yu C, He W, Hua W, et al. The protective immunity produced in infected C57BL/6 mice of a DNA vaccine encoding Schistosoma japonicum Chinese strain triose-phosphate isomerase. Southeast Asian J Trop Med Public Health. 2002;33(2):207–13.PubMed
29.
go back to reference Kodihalli S, Goto H, Kobasa DL, Krauss S, Kawaoka Y, Webster RG. DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice. J Virol. 1999;73(3):2094–8.PubMed Kodihalli S, Goto H, Kobasa DL, Krauss S, Kawaoka Y, Webster RG. DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice. J Virol. 1999;73(3):2094–8.PubMed
30.
go back to reference Casimiro DR, Chen L, Fu TM, Evans RK, Caulfield MJ, Davies ME, et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J Virol. 2003;77(11):6305–13.PubMedCrossRef Casimiro DR, Chen L, Fu TM, Evans RK, Caulfield MJ, Davies ME, et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J Virol. 2003;77(11):6305–13.PubMedCrossRef
31.
go back to reference Hokey DA, Weiner DB. DNA vaccines for HIV: challenges and opportunities. Springer Semin Immunopathol. 2006;28(3):267–79.PubMedCrossRef Hokey DA, Weiner DB. DNA vaccines for HIV: challenges and opportunities. Springer Semin Immunopathol. 2006;28(3):267–79.PubMedCrossRef
32.
go back to reference Laddy DJ, Yan J, Corbitt N, Kobasa D, Kobinger GP, Weiner DB. Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine. 2007;25(16):2984–9.PubMedCrossRef Laddy DJ, Yan J, Corbitt N, Kobasa D, Kobinger GP, Weiner DB. Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine. 2007;25(16):2984–9.PubMedCrossRef
33.
go back to reference Schoenly KA, Weiner DB. Human immunodeficiency virus type 1 vaccine development: recent advances in the cytotoxic T-lymphocyte platform “spotty business”. J Virol. 2008;82(7):3166–80.PubMedCrossRef Schoenly KA, Weiner DB. Human immunodeficiency virus type 1 vaccine development: recent advances in the cytotoxic T-lymphocyte platform “spotty business”. J Virol. 2008;82(7):3166–80.PubMedCrossRef
34.
go back to reference Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene. 1982;18(3):199–209.PubMedCrossRef Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene. 1982;18(3):199–209.PubMedCrossRef
35.
go back to reference Ko HJ, Ko SY, Kim YJ, Lee EG, Cho SN, Kang CY. Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B. Infect Immun. 2005;73(9):5666–74.PubMedCrossRef Ko HJ, Ko SY, Kim YJ, Lee EG, Cho SN, Kang CY. Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B. Infect Immun. 2005;73(9):5666–74.PubMedCrossRef
36.
go back to reference Nagata T, Uchijima M, Yoshida A, Kawashima M, Koide Y. Codon optimization effect on translational efficiency of DNA vaccine in mammalian cells: analysis of plasmid DNA encoding a CTL epitope derived from microorganisms. Biochem Biophys Res Commun. 1999;261(2):445–51.PubMedCrossRef Nagata T, Uchijima M, Yoshida A, Kawashima M, Koide Y. Codon optimization effect on translational efficiency of DNA vaccine in mammalian cells: analysis of plasmid DNA encoding a CTL epitope derived from microorganisms. Biochem Biophys Res Commun. 1999;261(2):445–51.PubMedCrossRef
37.
go back to reference Fauci AS. Pandemic influenza threat and preparedness. Emerg Infect Dis. 2006;12(1):73–7.PubMed Fauci AS. Pandemic influenza threat and preparedness. Emerg Infect Dis. 2006;12(1):73–7.PubMed
38.
go back to reference Elmowalid GA, Qiao M, Jeong SH, Borg BB, Baumert TF, Sapp RK, et al. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc Natl Acad Sci USA. 2007;104(20):8427–32.PubMedCrossRef Elmowalid GA, Qiao M, Jeong SH, Borg BB, Baumert TF, Sapp RK, et al. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc Natl Acad Sci USA. 2007;104(20):8427–32.PubMedCrossRef
39.
go back to reference Choi MJ, Kim JH, Maibach HI. Topical DNA vaccination with DNA/Lipid based complex. Curr Drug Deliv. 2006;3(1):37–45.PubMedCrossRef Choi MJ, Kim JH, Maibach HI. Topical DNA vaccination with DNA/Lipid based complex. Curr Drug Deliv. 2006;3(1):37–45.PubMedCrossRef
40.
go back to reference Hamajima K, Sasaki S, Fukushima J, Kaneko T, Xin KQ, Kudoh I, et al. Intranasal administration of HIV-DNA vaccine formulated with a polymer, carboxymethylcellulose, augments mucosal antibody production and cell-mediated immune response. Clin Immunol Immunopathol. 1998;88(2):205–10.PubMedCrossRef Hamajima K, Sasaki S, Fukushima J, Kaneko T, Xin KQ, Kudoh I, et al. Intranasal administration of HIV-DNA vaccine formulated with a polymer, carboxymethylcellulose, augments mucosal antibody production and cell-mediated immune response. Clin Immunol Immunopathol. 1998;88(2):205–10.PubMedCrossRef
41.
go back to reference Pachuk CJ, Ciccarelli RB, Samuel M, Bayer ME, Troutman RD, Zurawski DV, et al. Characterization of a new class of DNA delivery complexes formed by the local anesthetic bupivacaine. Biochim Biophys Acta. 2000;1468(1–2):20–30.PubMed Pachuk CJ, Ciccarelli RB, Samuel M, Bayer ME, Troutman RD, Zurawski DV, et al. Characterization of a new class of DNA delivery complexes formed by the local anesthetic bupivacaine. Biochim Biophys Acta. 2000;1468(1–2):20–30.PubMed
42.
go back to reference Tang CK, Lodding J, Minigo G, Pouniotis DS, Plebanski M, Scholzen A, et al. Mannan-mediated gene delivery for cancer immunotherapy. Immunology. 2007;120(3):325–35.PubMedCrossRef Tang CK, Lodding J, Minigo G, Pouniotis DS, Plebanski M, Scholzen A, et al. Mannan-mediated gene delivery for cancer immunotherapy. Immunology. 2007;120(3):325–35.PubMedCrossRef
43.
go back to reference Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods. 2006;40(1):86–97.PubMedCrossRef Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods. 2006;40(1):86–97.PubMedCrossRef
44.
go back to reference Rao SS, Gomez P, Mascola JR, Dang V, Krivulka GR, Yu F, et al. Comparative evaluation of three different intramuscular delivery methods for DNA immunization in a nonhuman primate animal model. Vaccine. 2006;24(3):367–73.PubMedCrossRef Rao SS, Gomez P, Mascola JR, Dang V, Krivulka GR, Yu F, et al. Comparative evaluation of three different intramuscular delivery methods for DNA immunization in a nonhuman primate animal model. Vaccine. 2006;24(3):367–73.PubMedCrossRef
45.
go back to reference Tarek M. Membrane electroporation: a molecular dynamics simulation. Biophys J. 2005;88(6):4045–53.PubMedCrossRef Tarek M. Membrane electroporation: a molecular dynamics simulation. Biophys J. 2005;88(6):4045–53.PubMedCrossRef
47.
go back to reference Murtaugh MP, Foss DL. Inflammatory cytokines and antigen presenting cell activation. Vet Immunol Immunopathol. 2002;87(3–4):109–21.PubMedCrossRef Murtaugh MP, Foss DL. Inflammatory cytokines and antigen presenting cell activation. Vet Immunol Immunopathol. 2002;87(3–4):109–21.PubMedCrossRef
48.
go back to reference Liu J, Kjeken R, Mathiesen I, Barouch DH. Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol. 2008;82(11):5643–9.PubMedCrossRef Liu J, Kjeken R, Mathiesen I, Barouch DH. Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol. 2008;82(11):5643–9.PubMedCrossRef
49.
go back to reference Hirao LA, Wu L, Khan AS, Hokey DA, Yan J, Dai A, et al. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine. 2008;26(25):3112–20.PubMedCrossRef Hirao LA, Wu L, Khan AS, Hokey DA, Yan J, Dai A, et al. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine. 2008;26(25):3112–20.PubMedCrossRef
50.
go back to reference Laddy DJ, Yan J, Kutzler M, Kobasa D, Kobinger GP, Khan AS, et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS ONE. 2008;3(6):e2517.PubMedCrossRef Laddy DJ, Yan J, Kutzler M, Kobasa D, Kobinger GP, Khan AS, et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS ONE. 2008;3(6):e2517.PubMedCrossRef
51.
go back to reference Muthumani K, Lankaraman KM, Laddy DJ, Sundaram SG, Chung CW, Sako E, Wu L, Khan A, Sardesai N, Kim JJ et al. Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine 2008. Muthumani K, Lankaraman KM, Laddy DJ, Sundaram SG, Chung CW, Sako E, Wu L, Khan A, Sardesai N, Kim JJ et al. Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine 2008.
52.
go back to reference Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine. 2008;26(3):440–8.PubMedCrossRef Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine. 2008;26(3):440–8.PubMedCrossRef
53.
54.
go back to reference Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260(5107):547–9.PubMedCrossRef Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260(5107):547–9.PubMedCrossRef
55.
go back to reference Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA. 1993;90(21):10188–92.PubMedCrossRef Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA. 1993;90(21):10188–92.PubMedCrossRef
56.
go back to reference Kim JJ, Ayyavoo V, Bagarazzi ML, Chattergoon MA, Dang K, Wang B, et al. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol. 1997;158(2):816–26.PubMed Kim JJ, Ayyavoo V, Bagarazzi ML, Chattergoon MA, Dang K, Wang B, et al. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol. 1997;158(2):816–26.PubMed
57.
go back to reference Sin JI, Kim JJ, Arnold RL, Shroff KE, McCallus D, Pachuk C, et al. IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. J Immunol. 1999;162(5):2912–21.PubMed Sin JI, Kim JJ, Arnold RL, Shroff KE, McCallus D, Pachuk C, et al. IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. J Immunol. 1999;162(5):2912–21.PubMed
58.
go back to reference Schluns KS, Klonowski KD, Lefrancois L. Transregulation of memory CD8 T-cell proliferation by IL-15Ralpha+ bone marrow-derived cells. Blood. 2004;103(3):988–94.PubMedCrossRef Schluns KS, Klonowski KD, Lefrancois L. Transregulation of memory CD8 T-cell proliferation by IL-15Ralpha+ bone marrow-derived cells. Blood. 2004;103(3):988–94.PubMedCrossRef
59.
go back to reference Boyer JD, Robinson TM, Kutzler MA, Vansant G, Hokey DA, Kumar S, et al. Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid. Proc Natl Acad Sci USA. 2007;104(47):18648–53.PubMedCrossRef Boyer JD, Robinson TM, Kutzler MA, Vansant G, Hokey DA, Kumar S, et al. Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid. Proc Natl Acad Sci USA. 2007;104(47):18648–53.PubMedCrossRef
60.
go back to reference Kim JJ, Nottingham LK, Sin JI, Tsai A, Morrison L, Oh J, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Invest. 1998;102(6):1112–24.PubMedCrossRef Kim JJ, Nottingham LK, Sin JI, Tsai A, Morrison L, Oh J, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Invest. 1998;102(6):1112–24.PubMedCrossRef
61.
go back to reference Sin J, Kim JJ, Pachuk C, Satishchandran C, Weiner DB. DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J Virol. 2000;74(23):11173–80.PubMedCrossRef Sin J, Kim JJ, Pachuk C, Satishchandran C, Weiner DB. DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J Virol. 2000;74(23):11173–80.PubMedCrossRef
62.
go back to reference Boyer JD, Ugen KE, Chattergoon M, Wang B, Shah A, Agadjanyan M, et al. DNA vaccination as anti-human immunodeficiency virus immunotherapy in infected chimpanzees. J Infect Dis. 1997;176(6):1501–9.PubMedCrossRef Boyer JD, Ugen KE, Chattergoon M, Wang B, Shah A, Agadjanyan M, et al. DNA vaccination as anti-human immunodeficiency virus immunotherapy in infected chimpanzees. J Infect Dis. 1997;176(6):1501–9.PubMedCrossRef
63.
go back to reference Boyer JD, Ugen KE, Wang B, Agadjanyan M, Gilbert L, Bagarazzi ML, et al. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med. 1997;3(5):526–32.PubMedCrossRef Boyer JD, Ugen KE, Wang B, Agadjanyan M, Gilbert L, Bagarazzi ML, et al. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med. 1997;3(5):526–32.PubMedCrossRef
64.
go back to reference Boyer JD, Wang B, Ugen KE, Agadjanyan M, Javadian A, Frost P, et al. In vivo protective anti-HIV immune responses in non-human primates through DNA immunization. J Med Primatol. 1996;25(3):242–50.PubMed Boyer JD, Wang B, Ugen KE, Agadjanyan M, Javadian A, Frost P, et al. In vivo protective anti-HIV immune responses in non-human primates through DNA immunization. J Med Primatol. 1996;25(3):242–50.PubMed
65.
go back to reference Wang B, Boyer J, Srikantan V, Ugen K, Gilbert L, Phan C, et al. Induction of humoral and cellular immune responses to the human immunodeficiency type 1 virus in nonhuman primates by in vivo DNA inoculation. Virology. 1995;211(1):102–12.PubMedCrossRef Wang B, Boyer J, Srikantan V, Ugen K, Gilbert L, Phan C, et al. Induction of humoral and cellular immune responses to the human immunodeficiency type 1 virus in nonhuman primates by in vivo DNA inoculation. Virology. 1995;211(1):102–12.PubMedCrossRef
66.
go back to reference MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis. 1998;178(1):92–100.PubMed MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis. 1998;178(1):92–100.PubMed
67.
go back to reference MacGregor RR, Boyer JD, Ciccarelli RB, Ginsberg RS, Weiner DB. Safety and immune responses to a DNA-based human immunodeficiency virus (HIV) type I env/rev vaccine in HIV-infected recipients: follow-up data. J Infect Dis. 2000;181(1):406.PubMedCrossRef MacGregor RR, Boyer JD, Ciccarelli RB, Ginsberg RS, Weiner DB. Safety and immune responses to a DNA-based human immunodeficiency virus (HIV) type I env/rev vaccine in HIV-infected recipients: follow-up data. J Infect Dis. 2000;181(1):406.PubMedCrossRef
68.
go back to reference Boyer JD, Nath B, Schumann K, Curley E, Manson K, Kim J, et al. IL-4 increases Simian immunodeficiency virus replication despite enhanced SIV immune responses in infected rhesus macaques. Int J Parasitol. 2002;32(5):543–50.PubMedCrossRef Boyer JD, Nath B, Schumann K, Curley E, Manson K, Kim J, et al. IL-4 increases Simian immunodeficiency virus replication despite enhanced SIV immune responses in infected rhesus macaques. Int J Parasitol. 2002;32(5):543–50.PubMedCrossRef
69.
go back to reference Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994;58(3):491–562.PubMed Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994;58(3):491–562.PubMed
70.
go back to reference Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol. 2007;88(Pt 9):2363–77.PubMedCrossRef Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol. 2007;88(Pt 9):2363–77.PubMedCrossRef
71.
go back to reference Korteweg C, Gu J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol. 2008;172(5):1155–70.PubMedCrossRef Korteweg C, Gu J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol. 2008;172(5):1155–70.PubMedCrossRef
72.
go back to reference Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, et al. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med. 2005;352(4):333–40.PubMedCrossRef Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, et al. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med. 2005;352(4):333–40.PubMedCrossRef
73.
go back to reference Normile D. Avian influenza. Human transmission but no pandemic in Indonesia. Science. 2006;312(5782):1855.CrossRef Normile D. Avian influenza. Human transmission but no pandemic in Indonesia. Science. 2006;312(5782):1855.CrossRef
74.
go back to reference Kutzler MA, Robinson TM, Chattergoon MA, Choo DK, Choo AY, Choe PY, et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J Immunol. 2005;175(1):112–23.PubMed Kutzler MA, Robinson TM, Chattergoon MA, Choo DK, Choo AY, Choe PY, et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J Immunol. 2005;175(1):112–23.PubMed
75.
go back to reference Lang KA, Weiner DB. HCV immunotherapies. Expert Rev Vaccines. 2008;7(7):915–23.CrossRef Lang KA, Weiner DB. HCV immunotherapies. Expert Rev Vaccines. 2008;7(7):915–23.CrossRef
76.
go back to reference Lang KA, Yan J, Weiner DB. Strong HCV NS3- and NS4A- Specific cellular immune responses induced in mice and rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Vaccine. 2008;26(49):6225–31.PubMedCrossRef Lang KA, Yan J, Weiner DB. Strong HCV NS3- and NS4A- Specific cellular immune responses induced in mice and rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Vaccine. 2008;26(49):6225–31.PubMedCrossRef
77.
go back to reference Kim JJ, Yang JS, Montaner L, Lee DJ, Chalian AA, Weiner DB. Coimmunization with IFN-gamma or IL-2, but not IL-13 or IL-4 cDNA can enhance Th1-type DNA vaccine-induced immune responses in vivo. J Interferon Cytokine Res. 2000;20(3):311–9.PubMedCrossRef Kim JJ, Yang JS, Montaner L, Lee DJ, Chalian AA, Weiner DB. Coimmunization with IFN-gamma or IL-2, but not IL-13 or IL-4 cDNA can enhance Th1-type DNA vaccine-induced immune responses in vivo. J Interferon Cytokine Res. 2000;20(3):311–9.PubMedCrossRef
78.
go back to reference Kim JJ, Trivedi NN, Nottingham LK, Morrison L, Tsai A, Hu Y, et al. Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur J Immunol. 1998;28(3):1089–103.PubMedCrossRef Kim JJ, Trivedi NN, Nottingham LK, Morrison L, Tsai A, Hu Y, et al. Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur J Immunol. 1998;28(3):1089–103.PubMedCrossRef
79.
go back to reference Sin JI, Kim J, Pachuk C, Weiner DB. Interleukin 7 can enhance antigen-specific cytotoxic-T-lymphocyte and/or Th2-type immune responses in vivo. Clin Diagn Lab Immunol. 2000;7(5):751–8.PubMedCrossRef Sin JI, Kim J, Pachuk C, Weiner DB. Interleukin 7 can enhance antigen-specific cytotoxic-T-lymphocyte and/or Th2-type immune responses in vivo. Clin Diagn Lab Immunol. 2000;7(5):751–8.PubMedCrossRef
80.
go back to reference Halwani R, Boyer JD, Yassine-Diab B, Haddad EK, Robinson TM, Kumar S, et al. Therapeutic vaccination with simian immunodeficiency virus (SIV)-DNA + IL-12 or IL-15 induces distinct CD8 memory subsets in SIV-infected macaques. J Immunol. 2008;180(12):7969–79.PubMed Halwani R, Boyer JD, Yassine-Diab B, Haddad EK, Robinson TM, Kumar S, et al. Therapeutic vaccination with simian immunodeficiency virus (SIV)-DNA + IL-12 or IL-15 induces distinct CD8 memory subsets in SIV-infected macaques. J Immunol. 2008;180(12):7969–79.PubMed
81.
go back to reference Chattergoon MA, Saulino V, Shames JP, Stein J, Montaner LJ, Weiner DB. Co-immunization with plasmid IL-12 generates a strong T-cell memory response in mice. Vaccine. 2004;22(13–14):1744–50.PubMedCrossRef Chattergoon MA, Saulino V, Shames JP, Stein J, Montaner LJ, Weiner DB. Co-immunization with plasmid IL-12 generates a strong T-cell memory response in mice. Vaccine. 2004;22(13–14):1744–50.PubMedCrossRef
82.
go back to reference Kim JJ, Nottingham LK, Tsai A, Lee DJ, Maguire HC, Oh J, et al. Antigen-specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN-gamma, IL-12, or IL-18 gene adjuvants. J Med Primatol. 1999;28(4–5):214–23.PubMed Kim JJ, Nottingham LK, Tsai A, Lee DJ, Maguire HC, Oh J, et al. Antigen-specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN-gamma, IL-12, or IL-18 gene adjuvants. J Med Primatol. 1999;28(4–5):214–23.PubMed
83.
go back to reference Kim JJ, Yang JS, Lee DJ, Wilson DM, Nottingham LK, Morrison L, et al. Macrophage colony-stimulating factor can modulate immune responses and attract dendritic cells in vivo. Hum Gene Ther. 2000;11(2):305–21.PubMedCrossRef Kim JJ, Yang JS, Lee DJ, Wilson DM, Nottingham LK, Morrison L, et al. Macrophage colony-stimulating factor can modulate immune responses and attract dendritic cells in vivo. Hum Gene Ther. 2000;11(2):305–21.PubMedCrossRef
84.
go back to reference Kim JJ, Tsai A, Nottingham LK, Morrison L, Cunning DM, Oh J, et al. Intracellular adhesion molecule-1 modulates beta-chemokines and directly costimulates T cells in vivo. J Clin Invest. 1999;103(6):869–77.PubMedCrossRef Kim JJ, Tsai A, Nottingham LK, Morrison L, Cunning DM, Oh J, et al. Intracellular adhesion molecule-1 modulates beta-chemokines and directly costimulates T cells in vivo. J Clin Invest. 1999;103(6):869–77.PubMedCrossRef
85.
go back to reference Sin JI, Kim JJ, Zhang D, Weiner DB. Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum Gene Ther. 2001;12(9):1091–102.PubMedCrossRef Sin JI, Kim JJ, Zhang D, Weiner DB. Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum Gene Ther. 2001;12(9):1091–102.PubMedCrossRef
86.
go back to reference Kim JJ, Nottingham LK, Wilson DM, Bagarazzi ML, Tsai A, Morrison LD, et al. Engineering DNA vaccines via co-delivery of co-stimulatory molecule genes. Vaccine. 1998;16(19):1828–35.PubMedCrossRef Kim JJ, Nottingham LK, Wilson DM, Bagarazzi ML, Tsai A, Morrison LD, et al. Engineering DNA vaccines via co-delivery of co-stimulatory molecule genes. Vaccine. 1998;16(19):1828–35.PubMedCrossRef
87.
go back to reference Agadjanyan MG, Chattergoon MA, Holterman MJ, Monzavi-Karbassi B, Kim JJ, Dentchev T, et al. Costimulatory molecule immune enhancement in a plasmid vaccine model is regulated in part through the Ig constant-like domain of CD80/86. J Immunol. 2003;171(8):4311–9.PubMed Agadjanyan MG, Chattergoon MA, Holterman MJ, Monzavi-Karbassi B, Kim JJ, Dentchev T, et al. Costimulatory molecule immune enhancement in a plasmid vaccine model is regulated in part through the Ig constant-like domain of CD80/86. J Immunol. 2003;171(8):4311–9.PubMed
Metadata
Title
DNA vaccines: developing new strategies to enhance immune responses
Authors
Shaheed A. Abdulhaqq
David B. Weiner
Publication date
01-10-2008
Publisher
Humana Press Inc
Published in
Immunologic Research / Issue 1-3/2008
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-008-8076-3

Other articles of this Issue 1-3/2008

Immunologic Research 1-3/2008 Go to the issue