Skip to main content
Top
Published in: Endocrine Pathology 4/2013

01-12-2013

The Role of Epithelial Mesenchymal Transition Markers in Thyroid Carcinoma Progression

Authors: Celina Montemayor-Garcia, Heather Hardin, Zhenying Guo, Carolina Larrain, Darya Buehler, Sofia Asioli, Herbert Chen, Ricardo V. Lloyd

Published in: Endocrine Pathology | Issue 4/2013

Login to get access

Abstract

Understanding the molecular mechanisms involved in thyroid cancer progression may provide targets for more effective treatment of aggressive thyroid cancers. Epithelial mesenchymal transition (EMT) is a major pathologic mechanism in tumor progression and is linked to the acquisition of stem-like properties of cancer cells. We examined expression of ZEB1 which activates EMT by binding to the E-box elements in the E-cadherin promoter, and expression of E-cadherin in normal and neoplastic thyroid tissues in a tissue microarray which included 127 neoplasms and 10 normal thyroid specimens. Thyroid follicular adenomas (n = 32), follicular thyroid carcinomas (n = 28), and papillary thyroid carcinomas (n = 57) all expressed E-cadherin and were mostly negative for ZEB1 while most anaplastic thyroid carcinomas (ATC, n = 10) were negative for E-cadherin, but positive for ZEB1. A validation set of 10 whole sections of ATCs showed 90 % of cases positive for ZEB1 and all cases were negative for E-cadherin. Analysis of three cell lines (normal thyroid, NTHY-OR13-1; PTC, TPC-1, and ATC, THJ-21T) showed that the ATC cell line expressed the highest levels of ZEB1 while the normal thyroid cell line expressed the highest levels of E-Cadherin. Quantitative RT-PCR analyses showed that Smad7 mRNA was significantly higher in ATC than in any other group (p < 0.05). These results indicate that ATCs show evidence of EMT including decreased expression of E-cadherin and increased expression of ZEB1 compared to well-differentiated thyroid carcinomas and that increased expression of Smad7 may be associated with thyroid tumor progression.
Literature
1.
go back to reference Kebebew E, Greenspan FS, Clark OH, Woeber KA, McMillan A. Anaplastic thyroid carcinoma, treatment outcome and prognostic factors. Cancer 103:1330–1335, 2005. Kebebew E, Greenspan FS, Clark OH, Woeber KA, McMillan A. Anaplastic thyroid carcinoma, treatment outcome and prognostic factors. Cancer 103:1330–1335, 2005.
2.
go back to reference Foote RL, Molina JR, Kasperbauer JL, Lloyd RV, McIver B, Morris JC, Grant CS, Thompson GB, Richards ML, Hay ID, Smallridge RC, Bible KC. Enhanced survival in locoregionally confined anaplastic thyroid carcinoma: a single-institution experience using aggressive multimodal therapy. Thyroid 21:25–30, 2011.PubMedCrossRef Foote RL, Molina JR, Kasperbauer JL, Lloyd RV, McIver B, Morris JC, Grant CS, Thompson GB, Richards ML, Hay ID, Smallridge RC, Bible KC. Enhanced survival in locoregionally confined anaplastic thyroid carcinoma: a single-institution experience using aggressive multimodal therapy. Thyroid 21:25–30, 2011.PubMedCrossRef
3.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890, 2009.PubMedCrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890, 2009.PubMedCrossRef
4.
go back to reference Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273, 2009.PubMedCrossRef Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273, 2009.PubMedCrossRef
5.
go back to reference Das, S, Becker BN, Hoffmann FM, Mertz JE. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol 10:94–112. 2009.PubMedCrossRef Das, S, Becker BN, Hoffmann FM, Mertz JE. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol 10:94–112. 2009.PubMedCrossRef
6.
go back to reference Kurahara H Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, Ding Q, Sakoda M, Lino S, Ishigami S, Ueno S, Shinchi H, Natsugoe S. Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J Surg Oncol 105:655–661, 2012.PubMedCrossRef Kurahara H Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, Ding Q, Sakoda M, Lino S, Ishigami S, Ueno S, Shinchi H, Natsugoe S. Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J Surg Oncol 105:655–661, 2012.PubMedCrossRef
7.
go back to reference Moustakas A, Helding CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520, 2007.PubMedCrossRef Moustakas A, Helding CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520, 2007.PubMedCrossRef
8.
go back to reference Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609, 2005.PubMedCrossRef Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609, 2005.PubMedCrossRef
10.
go back to reference Drabsch Y, ten Dijke P. TGF-B signaling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568, 2012.PubMedCrossRef Drabsch Y, ten Dijke P. TGF-B signaling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568, 2012.PubMedCrossRef
11.
go back to reference Katsuno Y, Lamouille S, Derynck R. (2013). TGFB signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25:78–84, 2013. Katsuno Y, Lamouille S, Derynck R. (2013). TGFB signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25:78–84, 2013.
12.
go back to reference Spaderna S, Schmaljofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, Kirchner T, Behrens J, Brabletz T. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544, 2008.PubMedCrossRef Spaderna S, Schmaljofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, Kirchner T, Behrens J, Brabletz T. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544, 2008.PubMedCrossRef
13.
go back to reference Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 318:89–99, 2008.PubMedCrossRef Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 318:89–99, 2008.PubMedCrossRef
14.
go back to reference Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26:6979–6988, 2007.PubMedCrossRef Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26:6979–6988, 2007.PubMedCrossRef
15.
go back to reference Aigner K,Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, van Roy F, Mikulits W, Schreiber M, Brabletz T, Sommergruber W, Schweifer N, Werntznig A, Berg H, Foisner R, Eager A. The transcription factor ZEB1(deltaEF) repressed Plakophilin 3 during human cancer progression. FEBS Lett 581:1617–1624, 2007.PubMedCrossRef Aigner K,Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, van Roy F, Mikulits W, Schreiber M, Brabletz T, Sommergruber W, Schweifer N, Werntznig A, Berg H, Foisner R, Eager A. The transcription factor ZEB1(deltaEF) repressed Plakophilin 3 during human cancer progression. FEBS Lett 581:1617–1624, 2007.PubMedCrossRef
16.
go back to reference Braun J, Hoang-Vu C, Dralle H, Huttelmaier S. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29:4237–4244, 2010.PubMedCrossRef Braun J, Hoang-Vu C, Dralle H, Huttelmaier S. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29:4237–4244, 2010.PubMedCrossRef
17.
go back to reference Hebrant A, Dom G, Deqaele M, Andry G, Tresallet C, Leteurte E, Dumont JE, Maenhaut C. mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807, 2012.PubMedCrossRef Hebrant A, Dom G, Deqaele M, Andry G, Tresallet C, Leteurte E, Dumont JE, Maenhaut C. mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807, 2012.PubMedCrossRef
18.
go back to reference Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, Chen H, Lloyd RV. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol 26:54–61, 2013.PubMedCrossRef Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, Chen H, Lloyd RV. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol 26:54–61, 2013.PubMedCrossRef
19.
go back to reference Saiselet M, Floor S, Tarabichi M, Dom G, Hebrant A, van Staveren WGG, Maenhauf C. Thyroid cancer cell lines: an overview. Frontiers in endocrinology 3:1–9, 2012. Saiselet M, Floor S, Tarabichi M, Dom G, Hebrant A, van Staveren WGG, Maenhauf C. Thyroid cancer cell lines: an overview. Frontiers in endocrinology 3:1–9, 2012.
20.
go back to reference Salerno P, Garcia-Rostan G, Piccinin S, Bencivenga TC, Di Maro G, Doglioni C, Basolo F, Maetro R, Fusco A, Santor M, Salvatore G. TWIST1 plays a pleotrophic role in determining the anaplastic thyroid carcinoma phenotype. J Clin Endocrinol Metab 96:E772-E781, 2011.PubMedCrossRef Salerno P, Garcia-Rostan G, Piccinin S, Bencivenga TC, Di Maro G, Doglioni C, Basolo F, Maetro R, Fusco A, Santor M, Salvatore G. TWIST1 plays a pleotrophic role in determining the anaplastic thyroid carcinoma phenotype. J Clin Endocrinol Metab 96:E772-E781, 2011.PubMedCrossRef
21.
go back to reference Hardy RG, Vincente-Duenas C, Gonzalez-Herrero I, Anderson C, Flores T, Hughes S, Tselepis C, Ross JA, Sanchez-Garcia I. Snail family transcription factors are implicated in thyroid carcinogenesis. Am J Patho 171:1037–1046, 2007.CrossRef Hardy RG, Vincente-Duenas C, Gonzalez-Herrero I, Anderson C, Flores T, Hughes S, Tselepis C, Ross JA, Sanchez-Garcia I. Snail family transcription factors are implicated in thyroid carcinogenesis. Am J Patho 171:1037–1046, 2007.CrossRef
22.
go back to reference Liu J Brown RE. Immunohistochemical detection of epithelial mesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Exp Pathol 3:755–762, 2010. Liu J Brown RE. Immunohistochemical detection of epithelial mesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Exp Pathol 3:755–762, 2010.
23.
go back to reference Knauf JA, Sartor MA, Medvedovic M, Lundsmith E, Ryder M, Salzano M, Nikiforov YE, Giordano TJ, Ghossein RA, Fagin JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFbeta signaling. Oncogene 30:3153–3162, 2011.PubMedCrossRef Knauf JA, Sartor MA, Medvedovic M, Lundsmith E, Ryder M, Salzano M, Nikiforov YE, Giordano TJ, Ghossein RA, Fagin JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFbeta signaling. Oncogene 30:3153–3162, 2011.PubMedCrossRef
24.
go back to reference Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, Saji M, Ringel MD. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 20:2803–2808, 2007.CrossRef Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, Saji M, Ringel MD. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 20:2803–2808, 2007.CrossRef
25.
go back to reference Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. A double negative feedback between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854, 2008.PubMedCrossRef Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. A double negative feedback between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854, 2008.PubMedCrossRef
26.
go back to reference Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589, 2008.PubMedCrossRef Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589, 2008.PubMedCrossRef
27.
go back to reference Curtis MW, Johnson KR, Wheelock MJ. E-cadherin/catenin complexes are formed co-translationally in the endoplasmic reticulum/Golgi compartments. Cell Commun Adhes 15: 365–378, 2008.PubMedCrossRef Curtis MW, Johnson KR, Wheelock MJ. E-cadherin/catenin complexes are formed co-translationally in the endoplasmic reticulum/Golgi compartments. Cell Commun Adhes 15: 365–378, 2008.PubMedCrossRef
28.
go back to reference Guarino M, Rubino B, Ballabio G. The role of epithelialmesencymal transition in cancer pathology. Pathology 39:305–318, 2007.PubMedCrossRef Guarino M, Rubino B, Ballabio G. The role of epithelialmesencymal transition in cancer pathology. Pathology 39:305–318, 2007.PubMedCrossRef
29.
go back to reference Matsuo SE, Fiore AP, Siguematu SM, Ebina KN, Frigulietti CU, Ferro MC, Kulcsar MA, Kimura ET. Expression of SMAD proteins, TGF-beta/activin signaling mediators, in human thyroid tissues. Arg Bras Endocrinol Metabol 54:406–412, 2010.CrossRef Matsuo SE, Fiore AP, Siguematu SM, Ebina KN, Frigulietti CU, Ferro MC, Kulcsar MA, Kimura ET. Expression of SMAD proteins, TGF-beta/activin signaling mediators, in human thyroid tissues. Arg Bras Endocrinol Metabol 54:406–412, 2010.CrossRef
30.
go back to reference Ishisaki A, Yamato K, Nakao A, Nonaka K, Ohguchi M, ten Dijke P, Nishihara T. Smad7 is an activin-inhibin inhibitor of activin-induced growth arrest and apopstosis in mouse B cells. J Biol Chem 273:24293–24296, 1998.PubMedCrossRef Ishisaki A, Yamato K, Nakao A, Nonaka K, Ohguchi M, ten Dijke P, Nishihara T. Smad7 is an activin-inhibin inhibitor of activin-induced growth arrest and apopstosis in mouse B cells. J Biol Chem 273:24293–24296, 1998.PubMedCrossRef
31.
go back to reference Halder SK, Beauchamp RD, Datta PK. Smad7 induces tumorigenesis by blocking TGF-beta-induced growth inhibition and apopstosis. Exp Cell Res 307:231–246, 2005.PubMedCrossRef Halder SK, Beauchamp RD, Datta PK. Smad7 induces tumorigenesis by blocking TGF-beta-induced growth inhibition and apopstosis. Exp Cell Res 307:231–246, 2005.PubMedCrossRef
32.
go back to reference Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Kijke P. Transforming growth factor beta1 induces nuclear export of inhibitory smad 7. J Biol Chem 273:29195–29201, 1998.PubMedCrossRef Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Kijke P. Transforming growth factor beta1 induces nuclear export of inhibitory smad 7. J Biol Chem 273:29195–29201, 1998.PubMedCrossRef
33.
go back to reference Boulay JL, Mild G, Lowy A, Reuter J, Langrange M, Terracciano L, Laffer U, Herrmann R, Rochlitz C. SMAD7 is a prognostic marker in patients with colorectal cancer. Int J cancer 104:446–449, 2003.PubMedCrossRef Boulay JL, Mild G, Lowy A, Reuter J, Langrange M, Terracciano L, Laffer U, Herrmann R, Rochlitz C. SMAD7 is a prognostic marker in patients with colorectal cancer. Int J cancer 104:446–449, 2003.PubMedCrossRef
34.
go back to reference Dowdy SC, Mariani A, Reinholz MM, Keeney GL, Spelsberg TC, Podratz KC, Janknecht R. Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol 96:368–373, 2005.PubMedCrossRef Dowdy SC, Mariani A, Reinholz MM, Keeney GL, Spelsberg TC, Podratz KC, Janknecht R. Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol 96:368–373, 2005.PubMedCrossRef
35.
go back to reference Eloy C, Santos J, Cameselle-Teijeiro J, Soares P, Sobrinho-Simoes M. TGF-beta/Smad pathway and RAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 460:587–600, 2012.PubMedCrossRef Eloy C, Santos J, Cameselle-Teijeiro J, Soares P, Sobrinho-Simoes M. TGF-beta/Smad pathway and RAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 460:587–600, 2012.PubMedCrossRef
Metadata
Title
The Role of Epithelial Mesenchymal Transition Markers in Thyroid Carcinoma Progression
Authors
Celina Montemayor-Garcia
Heather Hardin
Zhenying Guo
Carolina Larrain
Darya Buehler
Sofia Asioli
Herbert Chen
Ricardo V. Lloyd
Publication date
01-12-2013
Publisher
Springer US
Published in
Endocrine Pathology / Issue 4/2013
Print ISSN: 1046-3976
Electronic ISSN: 1559-0097
DOI
https://doi.org/10.1007/s12022-013-9272-9

Other articles of this Issue 4/2013

Endocrine Pathology 4/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine