Skip to main content
Top
Published in: Endocrine Pathology 3/2011

01-09-2011

MicroRNAs in the Human Pituitary

Authors: Milani Sivapragasam, Fabio Rotondo, Ricardo V. Lloyd, Bernd W. Scheithauer, Michael Cusimano, Luis V. Syro, Kalman Kovacs

Published in: Endocrine Pathology | Issue 3/2011

Login to get access

Abstract

MicroRNAs (miRNAs) represent a novel class of small RNA molecules that play a crucial role as post-transcriptional regulators of gene expression. As evidence for the involvement of miRNAs in various cellular processes increases, it is important to examine how miRNAs regulate gene expression. In the pituitary, aberrant miRNA expression is strongly linked with neoplasia, thus suggesting they play a role in the control of cell proliferation in adenomas. Research has built fundamental connections between aberrant miRNA expression and clinicopathological features of pituitary adenomas. Moreover, deregulated expression of miRNA target genes is often implicated in important biological pathways and thus provides significant insight into the role of miRNAs in tumorigenesis. This review will assess the significance of miRNAs in pituitary pathology.
Literature
1.
2.
go back to reference Paranjape T, Slack FJ, Weidhaas JB. MicroRNAs: tools for cancer diagnostics. Gut 58: 1546–1554, 2009.PubMedCrossRef Paranjape T, Slack FJ, Weidhaas JB. MicroRNAs: tools for cancer diagnostics. Gut 58: 1546–1554, 2009.PubMedCrossRef
4.
go back to reference Bentwich I, Avniel A, Karov Y, Aharonov R, Gilao S, Barad O, et al. Identification of hundreds of conserved and nonconserved human miRNAs. Nat Genet 37: 766–770, 2005.PubMedCrossRef Bentwich I, Avniel A, Karov Y, Aharonov R, Gilao S, Barad O, et al. Identification of hundreds of conserved and nonconserved human miRNAs. Nat Genet 37: 766–770, 2005.PubMedCrossRef
5.
go back to reference Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 842–854, 1993.CrossRef Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 842–854, 1993.CrossRef
6.
go back to reference Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 17: 855–862,1993.CrossRef Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 17: 855–862,1993.CrossRef
7.
go back to reference Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906, 2000.PubMedCrossRef Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906, 2000.PubMedCrossRef
8.
go back to reference Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 294: 853–858, 2001.PubMedCrossRef Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 294: 853–858, 2001.PubMedCrossRef
9.
go back to reference Lee Y, Jeon K, Lee T, Kim S, Kim VN. MicroRNA maturation: step-wise processing and subcellular localization. EMBO J 21: 4663–4670, 2002.PubMedCrossRef Lee Y, Jeon K, Lee T, Kim S, Kim VN. MicroRNA maturation: step-wise processing and subcellular localization. EMBO J 21: 4663–4670, 2002.PubMedCrossRef
10.
go back to reference Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell 16: 861–865, 2004.PubMedCrossRef Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell 16: 861–865, 2004.PubMedCrossRef
12.
go back to reference Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901, 2006.PubMedCrossRef Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901, 2006.PubMedCrossRef
13.
go back to reference Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay, U. Nuclear export of microRNA precursors. Science 303: 95–98, 2003.PubMedCrossRef Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay, U. Nuclear export of microRNA precursors. Science 303: 95–98, 2003.PubMedCrossRef
14.
go back to reference Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123: 631–640, 2005.PubMedCrossRef Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123: 631–640, 2005.PubMedCrossRef
15.
go back to reference Filipowicz W, Bhattacharyya SN, Sonenburg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–104, 2008.PubMedCrossRef Filipowicz W, Bhattacharyya SN, Sonenburg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–104, 2008.PubMedCrossRef
16.
go back to reference Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 16: 1616–1626, 2002.PubMedCrossRef Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 16: 1616–1626, 2002.PubMedCrossRef
17.
go back to reference Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594–596, 2004.PubMedCrossRef Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594–596, 2004.PubMedCrossRef
18.
19.
go back to reference Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3: 190–196, 2008.PubMedCrossRef Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3: 190–196, 2008.PubMedCrossRef
20.
go back to reference Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quanitification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179, 2005.PubMedCrossRef Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quanitification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179, 2005.PubMedCrossRef
21.
go back to reference Thomson JM, Parker J, Perou CM, Hammond SM et al. Microarray analysis of miRNA gene expression. Methods Enzymol 427: 107–122, 2007.PubMedCrossRef Thomson JM, Parker J, Perou CM, Hammond SM et al. Microarray analysis of miRNA gene expression. Methods Enzymol 427: 107–122, 2007.PubMedCrossRef
22.
go back to reference Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3: 27–29, 2006.PubMedCrossRef Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3: 27–29, 2006.PubMedCrossRef
23.
go back to reference Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154-D158, 2008.PubMedCrossRef Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154-D158, 2008.PubMedCrossRef
24.
go back to reference Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet 37: 495–500, 2005.PubMedCrossRef Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet 37: 495–500, 2005.PubMedCrossRef
26.
27.
go back to reference Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302: 1–12, 2007.PubMedCrossRef Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302: 1–12, 2007.PubMedCrossRef
28.
go back to reference Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101: 2999–3004, 2004.PubMedCrossRef Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101: 2999–3004, 2004.PubMedCrossRef
29.
go back to reference Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7: 3655–3660, 2008.PubMedCrossRef Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7: 3655–3660, 2008.PubMedCrossRef
30.
go back to reference Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26: 462–469, 2008.PubMedCrossRef Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26: 462–469, 2008.PubMedCrossRef
31.
go back to reference Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27: 5848–5856, 2009.PubMedCrossRef Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27: 5848–5856, 2009.PubMedCrossRef
32.
go back to reference Daly AF, Burlacu MC, Livadariu E, Beckers A. The epidemiology and management of pituitary incidentalomas. Horm Res, 68: 195–198, 2007.PubMedCrossRef Daly AF, Burlacu MC, Livadariu E, Beckers A. The epidemiology and management of pituitary incidentalomas. Horm Res, 68: 195–198, 2007.PubMedCrossRef
33.
go back to reference Kovacs K, Horvath E. Tumors of the pituitary gland. Atlas of Tumor Pathology fascicle 21, II series. Washington, DC: AFPI, 1986. Kovacs K, Horvath E. Tumors of the pituitary gland. Atlas of Tumor Pathology fascicle 21, II series. Washington, DC: AFPI, 1986.
34.
go back to reference Sanno N, Teramoto A, Osamura RY, Horvath E, Kovacs K, Lloyd RV, Scheithauer BW. Pathology of pituitary tumors. Neurosurg Clin N Amer 14:25–39, 2003.CrossRef Sanno N, Teramoto A, Osamura RY, Horvath E, Kovacs K, Lloyd RV, Scheithauer BW. Pathology of pituitary tumors. Neurosurg Clin N Amer 14:25–39, 2003.CrossRef
35.
go back to reference Ezzat S, Asa SL. Mechanisms of disease: the pathogenesis of pituitary tumors. Nat Clin Pract Endocrinol Metab 2: 220–230, 2006.PubMedCrossRef Ezzat S, Asa SL. Mechanisms of disease: the pathogenesis of pituitary tumors. Nat Clin Pract Endocrinol Metab 2: 220–230, 2006.PubMedCrossRef
36.
go back to reference Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71: 1427–1433, 1990.PubMedCrossRef Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71: 1427–1433, 1990.PubMedCrossRef
37.
go back to reference Armitage P, Doll R. The two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer 11: 161–169, 1957.PubMedCrossRef Armitage P, Doll R. The two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer 11: 161–169, 1957.PubMedCrossRef
38.
39.
go back to reference Thapar K, Kovacs K, Scheithauer BW, Stefaneanu L, Horvath E, Pernicone PJ, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neursurgery 38: 99–106, 1996.CrossRef Thapar K, Kovacs K, Scheithauer BW, Stefaneanu L, Horvath E, Pernicone PJ, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neursurgery 38: 99–106, 1996.CrossRef
40.
go back to reference Bak M. Silahtaroglu A. Møller M. Christensen M, Rath MF, Skryabin B, et al. MicroRNA expression in the adult mouse central nervous system. RNA 14: 432–444, 2008.PubMedCrossRef Bak M. Silahtaroglu A. Møller M. Christensen M, Rath MF, Skryabin B, et al. MicroRNA expression in the adult mouse central nervous system. RNA 14: 432–444, 2008.PubMedCrossRef
41.
go back to reference Zhang Z, Florez S, Gutierrez-Hartmenn A, Martin JF, Amendt BA. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. J Biol Chem 285: 34718–34728, 2010.PubMedCrossRef Zhang Z, Florez S, Gutierrez-Hartmenn A, Martin JF, Amendt BA. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. J Biol Chem 285: 34718–34728, 2010.PubMedCrossRef
42.
go back to reference Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, et al. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125: 593–605, 2006.PubMedCrossRef Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, et al. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125: 593–605, 2006.PubMedCrossRef
43.
go back to reference Yuen T, Ruf F, Chu T, Sealfon SC. Microtranscriptome regulation by gonadotropin-releasing hormone. Mol Cell Endocrinol 302: 12–17, 2009.PubMedCrossRef Yuen T, Ruf F, Chu T, Sealfon SC. Microtranscriptome regulation by gonadotropin-releasing hormone. Mol Cell Endocrinol 302: 12–17, 2009.PubMedCrossRef
44.
go back to reference Bottoni A, Zatelli-Ferracin M, Tagliati F, Piccin D, Vignali C, et al. Identification of differentially expressed microRNAs by Mmcroarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377, 2007.PubMedCrossRef Bottoni A, Zatelli-Ferracin M, Tagliati F, Piccin D, Vignali C, et al. Identification of differentially expressed microRNAs by Mmcroarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377, 2007.PubMedCrossRef
45.
go back to reference Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529, 2002.PubMedCrossRef Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529, 2002.PubMedCrossRef
46.
go back to reference Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204: 280–285, 2004.CrossRef Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204: 280–285, 2004.CrossRef
47.
go back to reference Stilling G. Sun Z. Zhang S, Jin L, Righi A, Kovacs G, et al. MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 38: 67–75, 2010.PubMedCrossRef Stilling G. Sun Z. Zhang S, Jin L, Righi A, Kovacs G, et al. MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 38: 67–75, 2010.PubMedCrossRef
48.
go back to reference Zhang HY, Jin L, Stilling GA, Ruebel KH et al. RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine 35:101–111, 2009.PubMedCrossRef Zhang HY, Jin L, Stilling GA, Ruebel KH et al. RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine 35:101–111, 2009.PubMedCrossRef
49.
go back to reference Jin L, Riss D, Ruebel K, Kajita S, Scheithauer BW et al. Galectin-3 expression in functioning and silent ACTH-producing adenomas. Endocr Pathol 16(2):107–114, 2005.PubMedCrossRef Jin L, Riss D, Ruebel K, Kajita S, Scheithauer BW et al. Galectin-3 expression in functioning and silent ACTH-producing adenomas. Endocr Pathol 16(2):107–114, 2005.PubMedCrossRef
50.
go back to reference Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res. 34: D140-144, 2006.PubMedCrossRef Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res. 34: D140-144, 2006.PubMedCrossRef
51.
go back to reference Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323, 2009.PubMedCrossRef Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323, 2009.PubMedCrossRef
52.
go back to reference Asa SL, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev,19:798–827, 1998.PubMedCrossRef Asa SL, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev,19:798–827, 1998.PubMedCrossRef
53.
go back to reference Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297, 2005.PubMedCrossRef Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297, 2005.PubMedCrossRef
54.
go back to reference Trivellin G, Igreja S, Garcia E, Chahal H et al. MiR-107 inhibits the expression of aryl hydrocarbon receptor interacting protein (AIP) and is potentially involved in pituitary tumorigenesis. Endocr Abstr 25:OC3.3, 2011. Trivellin G, Igreja S, Garcia E, Chahal H et al. MiR-107 inhibits the expression of aryl hydrocarbon receptor interacting protein (AIP) and is potentially involved in pituitary tumorigenesis. Endocr Abstr 25:OC3.3, 2011.
55.
go back to reference Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124, 2011.PubMedCrossRef Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124, 2011.PubMedCrossRef
56.
go back to reference Fan X, Paetau A, Aalto Y, Välimäki m, Sane T, Poranen A, et al. Gain of chromosome 3 and loss of 13q are frequent alterations in pituitary adenomas. Cancer Genet Cytogenet 128:97–103, 2001.PubMedCrossRef Fan X, Paetau A, Aalto Y, Välimäki m, Sane T, Poranen A, et al. Gain of chromosome 3 and loss of 13q are frequent alterations in pituitary adenomas. Cancer Genet Cytogenet 128:97–103, 2001.PubMedCrossRef
57.
go back to reference Pei L. Melmed S. Scheithauer B. Kovacs K, benedict WF, Prager D, et al. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 55:1613–1616, 1995.PubMed Pei L. Melmed S. Scheithauer B. Kovacs K, benedict WF, Prager D, et al. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 55:1613–1616, 1995.PubMed
58.
go back to reference Zatelli MC, degli Uberti EC. MicroRNAs and possible role in pituitary adenomas. Semin Reprod Med 26:453–460, 2008.PubMedCrossRef Zatelli MC, degli Uberti EC. MicroRNAs and possible role in pituitary adenomas. Semin Reprod Med 26:453–460, 2008.PubMedCrossRef
59.
go back to reference Mao ZG, He DS, Zhou J, Yao B, Xiao WW, Chen CH, Zhu Yh, Wang HJ. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 5:79–86, 2010.PubMedCrossRef Mao ZG, He DS, Zhou J, Yao B, Xiao WW, Chen CH, Zhu Yh, Wang HJ. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 5:79–86, 2010.PubMedCrossRef
60.
go back to reference Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441, 2009.PubMedCrossRef Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441, 2009.PubMedCrossRef
62.
go back to reference Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein–protein interactions and characterization of a core protein. J Mol Biol, 285:183–195, 1999.PubMedCrossRef Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein–protein interactions and characterization of a core protein. J Mol Biol, 285:183–195, 1999.PubMedCrossRef
63.
go back to reference Shalak V, Kaminska M, Mitnacht-Kraus R, et al. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 276:23769–23776, 2001.PubMedCrossRef Shalak V, Kaminska M, Mitnacht-Kraus R, et al. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 276:23769–23776, 2001.PubMedCrossRef
64.
go back to reference Schwarz MA, Kandel J, Brett J, Li J, Hayward J, Schwarz RE, et al. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med 190:341–343, 1999.PubMedCrossRef Schwarz MA, Kandel J, Brett J, Li J, Hayward J, Schwarz RE, et al. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med 190:341–343, 1999.PubMedCrossRef
65.
go back to reference Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949, 2005.PubMedCrossRef Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949, 2005.PubMedCrossRef
66.
go back to reference Wang DG, Johnston CF, Atkinson AB, Heatney AP, Mirakhur M, Buchanan KD. Expression of bcl-2 oncoprotein in pituitary tumours: comparison with c-myc. J Clin Pathol 49:795–797, 1996.PubMedCrossRef Wang DG, Johnston CF, Atkinson AB, Heatney AP, Mirakhur M, Buchanan KD. Expression of bcl-2 oncoprotein in pituitary tumours: comparison with c-myc. J Clin Pathol 49:795–797, 1996.PubMedCrossRef
67.
go back to reference Butz H, Likó I, Czirják S, Igaz P, Khan MM, Zivkovic V, et al. Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95: E181-191, 2010.PubMedCrossRef Butz H, Likó I, Czirják S, Igaz P, Khan MM, Zivkovic V, et al. Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95: E181-191, 2010.PubMedCrossRef
68.
go back to reference McGowan CH, Russell P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12:75–85, 1993.PubMed McGowan CH, Russell P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12:75–85, 1993.PubMed
69.
go back to reference Butz, H, Likó I, Czirjak S, Igaz P, Korbonits M, Rácz K, Patócs A. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14: 112–124, 2011.PubMedCrossRef Butz, H, Likó I, Czirjak S, Igaz P, Korbonits M, Rácz K, Patócs A. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14: 112–124, 2011.PubMedCrossRef
70.
go back to reference Neto AG. McCutcheon IE. Vang R. et al. Elevated expression of p21 (WAF1/Cip1) in hormonally active pituitary adenomas. Ann Diagn Pathol 9:6–10, 2005.PubMedCrossRef Neto AG. McCutcheon IE. Vang R. et al. Elevated expression of p21 (WAF1/Cip1) in hormonally active pituitary adenomas. Ann Diagn Pathol 9:6–10, 2005.PubMedCrossRef
71.
go back to reference Petrocca F. Vecchione A. Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res 68:8191–8194, 2008.PubMedCrossRef Petrocca F. Vecchione A. Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res 68:8191–8194, 2008.PubMedCrossRef
72.
go back to reference Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K, Stefaneanu L. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol 10: 229–235, 1999.PubMedCrossRef Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K, Stefaneanu L. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol 10: 229–235, 1999.PubMedCrossRef
73.
go back to reference Volinia S. Calin GA. Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261, 2006.PubMedCrossRef Volinia S. Calin GA. Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261, 2006.PubMedCrossRef
74.
go back to reference Pagotto U. Arzberger T. Theodoropoulou M, Grüber Y, Pantaloni C, Saeger W, et al. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 60:6794–6799, 2000.PubMed Pagotto U. Arzberger T. Theodoropoulou M, Grüber Y, Pantaloni C, Saeger W, et al. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 60:6794–6799, 2000.PubMed
75.
go back to reference Spengler D. Villalba M. Hoffmann A, Pantaloni C, Houssami S, bockaert J, et al. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 16:2814–2825, 1997.PubMedCrossRef Spengler D. Villalba M. Hoffmann A, Pantaloni C, Houssami S, bockaert J, et al. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 16:2814–2825, 1997.PubMedCrossRef
76.
go back to reference Pagotto U, Arzberger T, Ciani E, Lezoualc’h F, Pilon C, Journot L, et al. Inhibition of Zac1, a new gene differentially expressed in anterior pituitary, increases cell proliferation. Endocrinology 140:987–996, 1999.PubMedCrossRef Pagotto U, Arzberger T, Ciani E, Lezoualc’h F, Pilon C, Journot L, et al. Inhibition of Zac1, a new gene differentially expressed in anterior pituitary, increases cell proliferation. Endocrinology 140:987–996, 1999.PubMedCrossRef
77.
go back to reference Salehi F. Kovacs K. Scheithauer BW, Lloyd RV, Cusimano M. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr Relat Cancer 15:721–743, 2008.PubMedCrossRef Salehi F. Kovacs K. Scheithauer BW, Lloyd RV, Cusimano M. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr Relat Cancer 15:721–743, 2008.PubMedCrossRef
78.
go back to reference Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282:32582–32590, 2007.PubMedCrossRef Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282:32582–32590, 2007.PubMedCrossRef
79.
go back to reference Baserga R. The contradictions of the insulin-like growth factor 1 receptor. Oncogene 19:5574–5581, 2000.PubMedCrossRef Baserga R. The contradictions of the insulin-like growth factor 1 receptor. Oncogene 19:5574–5581, 2000.PubMedCrossRef
81.
go back to reference Fedele M. Battista S. Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 21:3190–3198, 2002.PubMedCrossRef Fedele M. Battista S. Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 21:3190–3198, 2002.PubMedCrossRef
82.
go back to reference Finelli P. Pierantoni GM. Giardino D, Losa M, Rodeschini O, fedele M, et al. The high mobility group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 62:2398–2405, 2002.PubMed Finelli P. Pierantoni GM. Giardino D, Losa M, Rodeschini O, fedele M, et al. The high mobility group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 62:2398–2405, 2002.PubMed
83.
go back to reference Fedele M, Pierantoni GM, Visone R, Fusco A. Critical role of the HMGA2 gene in pituitary adenomas. Cell Cycle 5: 2045–2048, 2006.PubMedCrossRef Fedele M, Pierantoni GM, Visone R, Fusco A. Critical role of the HMGA2 gene in pituitary adenomas. Cell Cycle 5: 2045–2048, 2006.PubMedCrossRef
84.
go back to reference Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579, 2007.PubMedCrossRef Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579, 2007.PubMedCrossRef
85.
go back to reference Lee YS. Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030, 2007.PubMedCrossRef Lee YS. Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030, 2007.PubMedCrossRef
86.
go back to reference Hebert C. Norris K. Scheper MA, Nikitakis N, Sauk JJ. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5–16, 2007.PubMedCrossRef Hebert C. Norris K. Scheper MA, Nikitakis N, Sauk JJ. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5–16, 2007.PubMedCrossRef
Metadata
Title
MicroRNAs in the Human Pituitary
Authors
Milani Sivapragasam
Fabio Rotondo
Ricardo V. Lloyd
Bernd W. Scheithauer
Michael Cusimano
Luis V. Syro
Kalman Kovacs
Publication date
01-09-2011
Publisher
Springer US
Published in
Endocrine Pathology / Issue 3/2011
Print ISSN: 1046-3976
Electronic ISSN: 1559-0097
DOI
https://doi.org/10.1007/s12022-011-9167-6

Other articles of this Issue 3/2011

Endocrine Pathology 3/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine