Skip to main content
Top
Published in: Neuroinformatics 3-4/2018

01-10-2018 | Original Article

SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation

Authors: Yuan Xue, Tao Xu, Han Zhang, L. Rodney Long, Xiaolei Huang

Published in: Neuroinformatics | Issue 3-4/2018

Login to get access

Abstract

Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN’s discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.
Footnotes
1
Although the pixel value ranges of medical images can vary, one can always normalize them to a certain value range such as [0,1], so it is compact.
 
Literature
go back to reference Adams, R, & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.CrossRef Adams, R, & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.CrossRef
go back to reference Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 679–698. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 679–698.
go back to reference Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. (2015). Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR. arXiv:1412.7062. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. (2015). Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR. arXiv:1412.​7062.
go back to reference Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M. (2007). Murtha A (2007) 3d variational brain tumor segmentation using a high dimensional feature set. In IEEE 11th international conference on computer vision. ICCV 2007 (pp. 1–8). IEEE. Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M. (2007). Murtha A (2007) 3d variational brain tumor segmentation using a high dimensional feature set. In IEEE 11th international conference on computer vision. ICCV 2007 (pp. 1–8). IEEE.
go back to reference Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRef Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRef
go back to reference Geremia, E., Clatz, O, Menze, B. H., Konukoglu, E., Criminisi, A., Ayache, N. (2011). Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage, 57(2), 378–390.CrossRefPubMed Geremia, E., Clatz, O, Menze, B. H., Konukoglu, E., Criminisi, A., Ayache, N. (2011). Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage, 57(2), 378–390.CrossRefPubMed
go back to reference Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680). Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
go back to reference Gooya, A., Biros, G., Davatzikos, C. (2011). Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Transactions on Medical Imaging, 30(2), 375–390.CrossRefPubMed Gooya, A., Biros, G., Davatzikos, C. (2011). Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Transactions on Medical Imaging, 30(2), 375–390.CrossRefPubMed
go back to reference Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P. M., Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, 18–31.CrossRefPubMed Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P. M., Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, 18–31.CrossRefPubMed
go back to reference Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv:161107004. Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2016). Image-to-image translation with conditional adversarial networks. arXiv:161107004.
go back to reference Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., Glocker, B. (2017). Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78.CrossRefPubMed Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., Glocker, B. (2017). Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78.CrossRefPubMed
go back to reference Kass, M., Witkin, A., Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRef Kass, M., Witkin, A., Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRef
go back to reference Lee, C. H., Wang, S., Murtha, A., Brown, M., Greiner, R. (2008). Segmenting brain tumors using pseudo–conditional random fields. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 359–366). Lee, C. H., Wang, S., Murtha, A., Brown, M., Greiner, R. (2008). Segmenting brain tumors using pseudo–conditional random fields. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 359–366).
go back to reference Lefohn, A., Cates, J., Whitaker, R. (2003). Interactive, gpu-based level sets for 3d segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2003 (pp. 564–572). Lefohn, A., Cates, J., Whitaker, R. (2003). Interactive, gpu-based level sets for 3d segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2003 (pp. 564–572).
go back to reference Lin, G., Shen, C., van den Hengel, A., Reid, I. (2016). Efficient piecewise training of deep structured models for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3194–3203). Lin, G., Shen, C., van den Hengel, A., Reid, I. (2016). Efficient piecewise training of deep structured models for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3194–3203).
go back to reference Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440). Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).
go back to reference Luc, P., Couprie, C., Chintala, S., Verbeek, J. (2016). Semantic segmentation using adversarial networks. arXiv:161108408. Luc, P., Couprie, C., Chintala, S., Verbeek, J. (2016). Semantic segmentation using adversarial networks. arXiv:161108408.
go back to reference Malladi, R., Sethian, J. A., Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175.CrossRef Malladi, R., Sethian, J. A., Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175.CrossRef
go back to reference Manjunath, B., & Chellappa, R. (1991). Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 478–482.CrossRef Manjunath, B., & Chellappa, R. (1991). Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 478–482.CrossRef
go back to reference Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. (2015). The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 34(10), 1993–2024.CrossRefPubMed Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. (2015). The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 34(10), 1993–2024.CrossRefPubMed
go back to reference Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5), 577–685.CrossRef Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5), 577–685.CrossRef
go back to reference Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1520–1528). Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1520–1528).
go back to reference Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66.CrossRef Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66.CrossRef
go back to reference Pereira, S., Pinto, A., Alves, V., Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in mri images. IEEE Transactions on Medical Imaging, 35(5), 1240–1251.CrossRefPubMed Pereira, S., Pinto, A., Alves, V., Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in mri images. IEEE Transactions on Medical Imaging, 35(5), 1240–1251.CrossRefPubMed
go back to reference Radford, A., Metz, L., Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434. Radford, A., Metz, L., Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.​06434.
go back to reference Ronneberger, O, Fischer, P, Brox, T. (2015). U-net: convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention. Springer (pp. 234–241). Ronneberger, O, Fischer, P, Brox, T. (2015). U-net: convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention. Springer (pp. 234–241).
go back to reference Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. (2016). Improved techniques for training gans. In Advances in neural information processing systems (pp. 2226–2234). Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. (2016). Improved techniques for training gans. In Advances in neural information processing systems (pp. 2226–2234).
go back to reference Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef
go back to reference Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D. (2008). A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-d mri. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 67–75). Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D. (2008). A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-d mri. In Medical image computing and computer-assisted intervention–MICCAI 2008 (pp. 67–75).
go back to reference Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D. (2017). Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. IEEE Int. Conf. Comput. Vision (ICCV) 5907–5915. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D. (2017). Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. IEEE Int. Conf. Comput. Vision (ICCV) 5907–5915.
Metadata
Title
SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation
Authors
Yuan Xue
Tao Xu
Han Zhang
L. Rodney Long
Xiaolei Huang
Publication date
01-10-2018
Publisher
Springer US
Published in
Neuroinformatics / Issue 3-4/2018
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9377-x

Other articles of this Issue 3-4/2018

Neuroinformatics 3-4/2018 Go to the issue