Skip to main content
Top
Published in: Neuroinformatics 1/2017

01-01-2017 | Original Article

Metric Learning for Multi-atlas based Segmentation of Hippocampus

Authors: Hancan Zhu, Hewei Cheng, Xuesong Yang, Yong Fan, Alzheimer’s Disease Neuroimaging Initiative

Published in: Neuroinformatics | Issue 1/2017

Login to get access

Abstract

Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer’s disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods.
Literature
go back to reference Akhondi-Asl, A., Jafari-Khouzani, K., Elisevich, K., & Soltanian-Zadeh, H. (2011). Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods. NeuroImage, 54, S218–S226.CrossRefPubMed Akhondi-Asl, A., Jafari-Khouzani, K., Elisevich, K., & Soltanian-Zadeh, H. (2011). Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods. NeuroImage, 54, S218–S226.CrossRefPubMed
go back to reference Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., & Rueckert, D. (2009). Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage, 46, 726–738.CrossRefPubMed Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., & Rueckert, D. (2009). Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage, 46, 726–738.CrossRefPubMed
go back to reference Artaechevarria, X., Munoz-Barrutia, A., & Ortiz-de-Solorzano, C. (2009). Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging, 28, 1266–1277.CrossRefPubMed Artaechevarria, X., Munoz-Barrutia, A., & Ortiz-de-Solorzano, C. (2009). Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging, 28, 1266–1277.CrossRefPubMed
go back to reference Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12, 26–41.CrossRefPubMed Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12, 26–41.CrossRefPubMed
go back to reference Bai, W., Shi, W., Ledig, C., & Rueckert, D. (2015). Multi-atlas segmentation with augmented features for cardiac MR images. Medical Image Analysis, 19, 98–109.CrossRefPubMed Bai, W., Shi, W., Ledig, C., & Rueckert, D. (2015). Multi-atlas segmentation with augmented features for cardiac MR images. Medical Image Analysis, 19, 98–109.CrossRefPubMed
go back to reference Boccardi, M., Bocchetta, M., Morency, F. C., Collins, D. L., Nishikawa, M., Ganzola, R., Grothe, M. J., Wolf, D., Redolfi, A., & Pievani, M. (2015). Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimer's & Dementia, 11, 175–183.CrossRef Boccardi, M., Bocchetta, M., Morency, F. C., Collins, D. L., Nishikawa, M., Ganzola, R., Grothe, M. J., Wolf, D., Redolfi, A., & Pievani, M. (2015). Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimer's & Dementia, 11, 175–183.CrossRef
go back to reference Carmichael, O. T., Aizenstein, H. A., Davis, S. W., Becker, J. T., Thompson, P. M., Meltzer, C. C., & Liu, Y. (2005). Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. NeuroImage, 27, 979–990.CrossRefPubMedPubMedCentral Carmichael, O. T., Aizenstein, H. A., Davis, S. W., Becker, J. T., Thompson, P. M., Meltzer, C. C., & Liu, Y. (2005). Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. NeuroImage, 27, 979–990.CrossRefPubMedPubMedCentral
go back to reference Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27. Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
go back to reference Cheng, H., & Fan, Y. (2014). Functional parcellation of the hippocampus by clustering resting state fMRI signals. In: 2014 I.E. 11th International Symposium on Biomedical Imaging (ISBI), pp 5–8. Cheng, H., & Fan, Y. (2014). Functional parcellation of the hippocampus by clustering resting state fMRI signals. In: 2014 I.E. 11th International Symposium on Biomedical Imaging (ISBI), pp 5–8.
go back to reference Chupin, M., Mukuna-Bantumbakulu, A. R., Hasboun, D., Bardinet, E., Baillet, S., Kinkingnéhun, S., Lemieux, L., Dubois, B., & Garnero, L. (2007). Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease. NeuroImage, 34, 996–1019.CrossRefPubMed Chupin, M., Mukuna-Bantumbakulu, A. R., Hasboun, D., Bardinet, E., Baillet, S., Kinkingnéhun, S., Lemieux, L., Dubois, B., & Garnero, L. (2007). Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease. NeuroImage, 34, 996–1019.CrossRefPubMed
go back to reference Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage, 54, 940–954.CrossRefPubMed Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage, 54, 940–954.CrossRefPubMed
go back to reference den Heijer, T., van der Lijn, F., Vernooij, M. W., de Groot, M., Koudstaal, P., van der Lugt, A., Krestin, G. P., Hofman, A., Niessen, W. J., & Breteler, M. M. (2012). Structural and diffusion MRI measures of the hippocampus and memory performance. NeuroImage, 63, 1782–1789.CrossRef den Heijer, T., van der Lijn, F., Vernooij, M. W., de Groot, M., Koudstaal, P., van der Lugt, A., Krestin, G. P., Hofman, A., Niessen, W. J., & Breteler, M. M. (2012). Structural and diffusion MRI measures of the hippocampus and memory performance. NeuroImage, 63, 1782–1789.CrossRef
go back to reference Dill, V., Franco, A. R., & Pinho, M. S. (2015). Automated methods for hippocampus segmentation: the evolution and a review of the state of the art. Neuroinformatics, 13, 133–150. Dill, V., Franco, A. R., & Pinho, M. S. (2015). Automated methods for hippocampus segmentation: the evolution and a review of the state of the art. Neuroinformatics, 13, 133–150.
go back to reference Doshi, J., Erus, G., Ou, Y., Resnick, S. M., Gur, R. C., Gur, R. E., Satterthwaite, T. D., Furth, S., & Davatzikos, C. (2016). MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. NeuroImage, 127, 186–195. Doshi, J., Erus, G., Ou, Y., Resnick, S. M., Gur, R. C., Gur, R. E., Satterthwaite, T. D., Furth, S., & Davatzikos, C. (2016). MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. NeuroImage, 127, 186–195.
go back to reference Giraud, R., Ta, V.-T., Papadakis, N., Manjón, J. V., Collins, D. L., Coupé, P., & Initiative, A. D. N. (2016). An Optimized PatchMatch for multi-scale and multi-feature label fusion. NeuroImage, 124, 770–782.CrossRefPubMed Giraud, R., Ta, V.-T., Papadakis, N., Manjón, J. V., Collins, D. L., Coupé, P., & Initiative, A. D. N. (2016). An Optimized PatchMatch for multi-scale and multi-feature label fusion. NeuroImage, 124, 770–782.CrossRefPubMed
go back to reference Guillaumin M, Verbeek J, Schmid C (2009) Is that you? Metric learning approaches for face identification. In: Computer Vision, 2009 I.E. 12th International Conference on, pp 498–505: IEEE. Guillaumin M, Verbeek J, Schmid C (2009) Is that you? Metric learning approaches for face identification. In: Computer Vision, 2009 I.E. 12th International Conference on, pp 498–505: IEEE.
go back to reference Hao, Y., Jiang, T., & Fan, Y. (2012a). Shape-constrained multi-atlas based segmentation with multichannel registration. SPIE Medical Imaging. International Society for Optics and Photonics, pp. 83143N-83143N-83148. Hao, Y., Jiang, T., & Fan, Y. (2012a). Shape-constrained multi-atlas based segmentation with multichannel registration. SPIE Medical Imaging. International Society for Optics and Photonics, pp. 83143N-83143N-83148.
go back to reference Hao, Y., Liu, J., Duan, Y., Zhang, X., Yu, C., Jiang, T., & Fan, Y. (2012b). Local label learning (L3) for multi-atlas based segmentation. SPIE Medical Imaging. International Society for Optics and Photonics, pp. 83142E-83142E-83148. Hao, Y., Liu, J., Duan, Y., Zhang, X., Yu, C., Jiang, T., & Fan, Y. (2012b). Local label learning (L3) for multi-atlas based segmentation. SPIE Medical Imaging. International Society for Optics and Photonics, pp. 83142E-83142E-83148.
go back to reference Hao, Y., Wang, T., Zhang, X., Duan, Y., Yu, C., Jiang, T., & Fan, Y. (2014). Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation. Human Brain Mapping, 35, 2674–2697.CrossRefPubMed Hao, Y., Wang, T., Zhang, X., Duan, Y., Yu, C., Jiang, T., & Fan, Y. (2014). Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation. Human Brain Mapping, 35, 2674–2697.CrossRefPubMed
go back to reference Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., & Hammers, A. (2006). Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage, 33, 115–126.CrossRefPubMed Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., & Hammers, A. (2006). Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage, 33, 115–126.CrossRefPubMed
go back to reference Jafari-Khouzani, K., Elisevich, K. V., Patel, S., & Soltanian-Zadeh, H. (2011). Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques. Neuroinformatics, 9, 335–346.CrossRefPubMedPubMedCentral Jafari-Khouzani, K., Elisevich, K. V., Patel, S., & Soltanian-Zadeh, H. (2011). Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques. Neuroinformatics, 9, 335–346.CrossRefPubMedPubMedCentral
go back to reference Liao, S., Gao, Y., Lian, J., & Shen, D. (2013). Sparse patch-based label propagation for accurate prostate localization in CT images. IEEE Transactions on Medical Imaging, 32, 419–434.CrossRefPubMed Liao, S., Gao, Y., Lian, J., & Shen, D. (2013). Sparse patch-based label propagation for accurate prostate localization in CT images. IEEE Transactions on Medical Imaging, 32, 419–434.CrossRefPubMed
go back to reference Lötjönen, J. M. P., Wolz, R., Koikkalainen, J. R., Thurfjell, L., Waldemar, G., Soininen, H., & Rueckert, D. (2010). Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage, 49, 2352–2365.CrossRefPubMed Lötjönen, J. M. P., Wolz, R., Koikkalainen, J. R., Thurfjell, L., Waldemar, G., Soininen, H., & Rueckert, D. (2010). Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage, 49, 2352–2365.CrossRefPubMed
go back to reference Rohlfing, T., Brandt, R., Menzel, R., & Maurer Jr., C. R. (2004). Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage, 21, 1428–1442.CrossRefPubMed Rohlfing, T., Brandt, R., Menzel, R., & Maurer Jr., C. R. (2004). Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage, 21, 1428–1442.CrossRefPubMed
go back to reference Rousseau, F., Habas, P. A., & Studholme, C. (2011). A supervised patch-based approach for human brain labeling. IEEE Transactions on Medical Imaging, 30, 1852–1862.CrossRefPubMedPubMedCentral Rousseau, F., Habas, P. A., & Studholme, C. (2011). A supervised patch-based approach for human brain labeling. IEEE Transactions on Medical Imaging, 30, 1852–1862.CrossRefPubMedPubMedCentral
go back to reference Sabuncu, M. R., Yeo, B. T. T., Van Leemput, K., Fischl, B., & Golland, P. (2010). A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging, 29, 1714–1729.CrossRefPubMedPubMedCentral Sabuncu, M. R., Yeo, B. T. T., Van Leemput, K., Fischl, B., & Golland, P. (2010). A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging, 29, 1714–1729.CrossRefPubMedPubMedCentral
go back to reference Sanroma, G., Wu, G., Gao, Y., Thung, K.-H., Guo, Y., & Shen, D. (2015). A transversal approach for patch-based label fusion via matrix completion. Medical Image Analysis, 24, 135–148.CrossRefPubMedPubMedCentral Sanroma, G., Wu, G., Gao, Y., Thung, K.-H., Guo, Y., & Shen, D. (2015). A transversal approach for patch-based label fusion via matrix completion. Medical Image Analysis, 24, 135–148.CrossRefPubMedPubMedCentral
go back to reference Tong, T., Wolz, R., Wang, Z., Gao, Q., Misawa, K., Fujiwara, M., Mori, K., Hajnal, J. V., & Rueckert, D. (2015). Discriminative dictionary learning for abdominal multi-organ segmentation. Medical Image Analysis, 23, 92–104.CrossRefPubMed Tong, T., Wolz, R., Wang, Z., Gao, Q., Misawa, K., Fujiwara, M., Mori, K., Hajnal, J. V., & Rueckert, D. (2015). Discriminative dictionary learning for abdominal multi-organ segmentation. Medical Image Analysis, 23, 92–104.CrossRefPubMed
go back to reference Wang, H., Suh, J. W., Das, S. R., Pluta, J. B., Craige, C., & Yushkevich, P. A. (2013). Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 611–623.CrossRefPubMed Wang, H., Suh, J. W., Das, S. R., Pluta, J. B., Craige, C., & Yushkevich, P. A. (2013). Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 611–623.CrossRefPubMed
go back to reference Wang, H., Cao, Y., & Syeda-Mahmood, T. (2014). Multi-atlas segmentation with learning-based label fusion. Machine learning in Medical Imaging, 256–263. Wang, H., Cao, Y., & Syeda-Mahmood, T. (2014). Multi-atlas segmentation with learning-based label fusion. Machine learning in Medical Imaging, 256–263.
go back to reference Wang, F., Zuo, W., Zhang, L., Meng, D., & Zhang, D. (2015). A kernel classification framework for metric learning. IEEE Transactions on Neural Networks and Learning Systems, 26, 1950–1962.CrossRefPubMed Wang, F., Zuo, W., Zhang, L., Meng, D., & Zhang, D. (2015). A kernel classification framework for metric learning. IEEE Transactions on Neural Networks and Learning Systems, 26, 1950–1962.CrossRefPubMed
go back to reference Warfield, S. K., Zou, K. H., & Wells, W. M. (2004). Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging, 23, 903–921.CrossRefPubMedPubMedCentral Warfield, S. K., Zou, K. H., & Wells, W. M. (2004). Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging, 23, 903–921.CrossRefPubMedPubMedCentral
go back to reference Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10, 207–244. Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10, 207–244.
go back to reference Wolz, R., Schwarz, A. J., Yu, P., Cole, P. E., Rueckert, D., Jack, C. R., Raunig, D., Hill, D., & Initiative AsDN (2014). Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images. Alzheimer's & Dementia, 10, 430–438 e432.CrossRef Wolz, R., Schwarz, A. J., Yu, P., Cole, P. E., Rueckert, D., Jack, C. R., Raunig, D., Hill, D., & Initiative AsDN (2014). Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images. Alzheimer's & Dementia, 10, 430–438 e432.CrossRef
go back to reference Wu, Y., Liu, G., Huang, M., Guo, J., Jiang, J., Yang, W., Chen, W., & Feng, Q. (2014). Prostate segmentation based on variant scale patch and local independent projection. IEEE Transactions on Medical Imaging, 33, 1290–1303.CrossRefPubMed Wu, Y., Liu, G., Huang, M., Guo, J., Jiang, J., Yang, W., Chen, W., & Feng, Q. (2014). Prostate segmentation based on variant scale patch and local independent projection. IEEE Transactions on Medical Imaging, 33, 1290–1303.CrossRefPubMed
go back to reference Wu, G., Kim, M., Sanroma, G., Wang, Q., Munsell, B. C., Shen, D., & Initiative, A. D. N. (2015). Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. NeuroImage, 106, 34–46.CrossRefPubMed Wu, G., Kim, M., Sanroma, G., Wang, Q., Munsell, B. C., Shen, D., & Initiative, A. D. N. (2015). Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. NeuroImage, 106, 34–46.CrossRefPubMed
go back to reference Xie, Q., & Ruan, D. (2014). Low-complexity atlas-based prostate segmentation by combining global, regional, and local metrics. Medical Physics, 41, 041909.CrossRefPubMed Xie, Q., & Ruan, D. (2014). Low-complexity atlas-based prostate segmentation by combining global, regional, and local metrics. Medical Physics, 41, 041909.CrossRefPubMed
go back to reference Xing, E. P., Jordan, M. I., Russell, S., & Ng, A. Y. (2002). Distance metric learning with application to clustering with side-information. In: Advances in Neural Information Processing Systems, pp 505–512. Xing, E. P., Jordan, M. I., Russell, S., & Ng, A. Y. (2002). Distance metric learning with application to clustering with side-information. In: Advances in Neural Information Processing Systems, pp 505–512.
go back to reference Yan, P.-g., Cao, Y., Yuan, Y., Turkbey, B., & Choyke, P. L. (2015). Label Image Constrained Multiatlas Selection. IEEE transactions on Cybernetics, 45, 1158–1168.CrossRefPubMed Yan, P.-g., Cao, Y., Yuan, Y., Turkbey, B., & Choyke, P. L. (2015). Label Image Constrained Multiatlas Selection. IEEE transactions on Cybernetics, 45, 1158–1168.CrossRefPubMed
go back to reference Zhu, H., Cheng, H., & Fan, Y. (2015). Random local binary pattern based label learning for multi-atlas segmentation. SPIE Medical Imaging. International Society for Optics and Photonics, pp. 94131B-94131B-94138. Zhu, H., Cheng, H., & Fan, Y. (2015). Random local binary pattern based label learning for multi-atlas segmentation. SPIE Medical Imaging. International Society for Optics and Photonics, pp. 94131B-94131B-94138.
Metadata
Title
Metric Learning for Multi-atlas based Segmentation of Hippocampus
Authors
Hancan Zhu
Hewei Cheng
Xuesong Yang
Yong Fan
Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-01-2017
Publisher
Springer US
Published in
Neuroinformatics / Issue 1/2017
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-016-9312-y

Other articles of this Issue 1/2017

Neuroinformatics 1/2017 Go to the issue