Skip to main content
Top
Published in: Neuroinformatics 1/2009

01-03-2009

PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data

Authors: Michael Hanke, Yaroslav O. Halchenko, Per B. Sederberg, Stephen José Hanson, James V. Haxby, Stefan Pollmann

Published in: Neuroinformatics | Issue 1/2009

Login to get access

Abstract

Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python’s ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.
Footnotes
1
In the literature, authors have referred to the application of machine learning techniques to neural data as decoding (Kamitani and Tong 2005; Haynes et al. 2007), information-based analysis (e.g. Kriegeskorte et al. 2006) or multi-voxel pattern analysis (e.g. Norman et al. 2006). Throughout this article we will use the term classifier-based analysis to refer to all these methods.
 
2
Neural Information Processing Systems http://​nips.​cc/​
 
13
ANALYZE format is supported as well but it is inferior to NIfTI thus is not explicitly advertised here.
 
20
Given that the results reported are from a single participant, we are simply illustrating the capabilities of PyMVPA, not trying to promote any analysis method as more-effective than another.
 
21
Note that PyMVPA internally makes use of a number of other aforementioned Python modules, such as NumPy and SciPy.
 
22
To a certain degree PyMVPA also supports importing ANALYZE files.
 
23
LIBSVM C-SVC (Chang and Lin 2001) with trade-off parameter C being a reciprocal of the squared mean of Frobenius norms of the data samples.
 
24
Chance performance without feature selection was not the norm for all category pairs in the dataset. For example, the SVM classifier generalized well for other pairs of categories (e.g. FACE vs HOUSE) without prior feature selection. Consequently, SCISSORS vs CATS was chosen to provide a more difficult analysis case.
 
26
Nothing prevents a software developer from adding a GUI to the toolbox using one of the many GUI toolkits that interface with Python code, such as PyQT (http://​www.​riverbankcomputi​ng.​co.​uk/​software/​pyqt/​) or wxPython (http://​www.​wxpython.​org/​).
 
Literature
go back to reference Chen, X., Pereira, F., Lee, W., Strother, S., & Mitchell, T. (2006). Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Human Brain Mapping 27, 452–461.PubMedCrossRef Chen, X., Pereira, F., Lee, W., Strother, S., & Mitchell, T. (2006). Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Human Brain Mapping 27, 452–461.PubMedCrossRef
go back to reference Detre, G., Polyn, S. M., Moore, C., Natu, V., Singer, B., Cohen, J., et al. (2006). The multi-voxel pattern analysis (MVPA) toolbox. Poster presented at the Annual Meeting of the Organization for Human Brain Mapping (Florence, Italy). Detre, G., Polyn, S. M., Moore, C., Natu, V., Singer, B., Cohen, J., et al. (2006). The multi-voxel pattern analysis (MVPA) toolbox. Poster presented at the Annual Meeting of the Organization for Human Brain Mapping (Florence, Italy).
go back to reference Efron, B., & Tibshirani, R. (1993). An introduction to the Bootstrap. Boca Raton: Chapman & Hall/CRC. Efron, B., & Tibshirani, R. (1993). An introduction to the Bootstrap. Boca Raton: Chapman & Hall/CRC.
go back to reference Efron, B., Trevor, H., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407–499.CrossRef Efron, B., Trevor, H., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407–499.CrossRef
go back to reference Guimaraes, M. P., Wong, D. K., Uy, E. T., Grosenick, L., & Suppes, P. (2007). Single-trial classification of MEG recordings. IEEE Transactions on Biomedical Engineering, 54, 436–443.PubMedCrossRef Guimaraes, M. P., Wong, D. K., Uy, E. T., Grosenick, L., & Suppes, P. (2007). Single-trial classification of MEG recordings. IEEE Transactions on Biomedical Engineering, 54, 436–443.PubMedCrossRef
go back to reference Guyon, I., & Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of Machine Learning 3, 1157–1182.CrossRef Guyon, I., & Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of Machine Learning 3, 1157–1182.CrossRef
go back to reference Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.CrossRef Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.CrossRef
go back to reference Hanson, S., Matsuka, T., & Haxby, J. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a “face” area? Neuroimage, 23, 156–166.PubMedCrossRef Hanson, S., Matsuka, T., & Haxby, J. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a “face” area? Neuroimage, 23, 156–166.PubMedCrossRef
go back to reference Hanson, S. J., & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: There is no “face” identification area. Neural Computation, 20, 486–503.PubMedCrossRef Hanson, S. J., & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: There is no “face” identification area. Neural Computation, 20, 486–503.PubMedCrossRef
go back to reference Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.PubMedCrossRef Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.PubMedCrossRef
go back to reference Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary cortex. Nature Neuroscience, 8, 686–691.PubMedCrossRef Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary cortex. Nature Neuroscience, 8, 686–691.PubMedCrossRef
go back to reference Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534.PubMedCrossRef Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534.PubMedCrossRef
go back to reference Haynes, J.-D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, R. E. (2007). Reading hidden intentions in the human brain. Current Biology, 17, 323–328.PubMedCrossRef Haynes, J.-D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, R. E. (2007). Reading hidden intentions in the human brain. Current Biology, 17, 323–328.PubMedCrossRef
go back to reference Jenkinson, M., Bannister, P., Brady, J., & Smith, S. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841.PubMedCrossRef Jenkinson, M., Bannister, P., Brady, J., & Smith, S. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841.PubMedCrossRef
go back to reference Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8, 679–685.PubMedCrossRef Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8, 679–685.PubMedCrossRef
go back to reference Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 20600–20605.PubMedCrossRef Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 20600–20605.PubMedCrossRef
go back to reference Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.PubMedCrossRef Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.PubMedCrossRef
go back to reference Krishnapuram, B., Carin, L., Figueiredo, M. A., & Hartemink, A. J. (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 957–968.PubMedCrossRef Krishnapuram, B., Carin, L., Figueiredo, M. A., & Hartemink, A. J. (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 957–968.PubMedCrossRef
go back to reference LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. Neuroimage, 26, 317–329.PubMedCrossRef LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. Neuroimage, 26, 317–329.PubMedCrossRef
go back to reference Millman, K., & Brett, M. (2007). Analysis of functional magnetic resonance imaging in python. Computing in Science & Engineering, 9, 52–55.CrossRef Millman, K., & Brett, M. (2007). Analysis of functional magnetic resonance imaging in python. Computing in Science & Engineering, 9, 52–55.CrossRef
go back to reference Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.CrossRef Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.CrossRef
go back to reference Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fmri data. Trends in Cognitive Science, 10, 424–430.CrossRef Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fmri data. Trends in Cognitive Science, 10, 424–430.CrossRef
go back to reference O’Toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17, 580–590.PubMedCrossRef O’Toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17, 580–590.PubMedCrossRef
go back to reference O’Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19, 1735–1752.PubMedCrossRef O’Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19, 1735–1752.PubMedCrossRef
go back to reference Perez, F., & Granger, B. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9, 21–29.CrossRef Perez, F., & Granger, B. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9, 21–29.CrossRef
go back to reference Pessoa, L., & Padmala, S. (2007). Decoding near-threshold perception of fear from distributed single-trial brain activation. Cerebral Cortex, 17, 691–701.PubMedCrossRef Pessoa, L., & Padmala, S. (2007). Decoding near-threshold perception of fear from distributed single-trial brain activation. Cerebral Cortex, 17, 691–701.PubMedCrossRef
go back to reference Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of Machine Learning Research, 3, 1357–1370.CrossRef Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of Machine Learning Research, 3, 1357–1370.CrossRef
go back to reference Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In Denison, D. D., Hansen, M. H., Holmes, C., Mallick, B., & Yu, B. (Eds.), Nonlinear estimation and classification. New York: Springer. Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In Denison, D. D., Hansen, M. H., Holmes, C., Mallick, B., & Yu, B. (Eds.), Nonlinear estimation and classification. New York: Springer.
go back to reference Sonnenburg, S., Braun, M., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., et al. (2007). The need for open source software in machine learning. Journal of Machine Learning Research, 8, 2443–2466. Sonnenburg, S., Braun, M., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., et al. (2007). The need for open source software in machine learning. Journal of Machine Learning Research, 8, 2443–2466.
go back to reference Sonnenburg, S., Raetsch, G., Schaefer, C., & Schoelkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research, 7, 1531–1565. Sonnenburg, S., Raetsch, G., Schaefer, C., & Schoelkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research, 7, 1531–1565.
go back to reference Thulasidas, M., Guan, C., & Wu, J. (2006). Robust classification of EEG signal for brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 24–29.PubMedCrossRef Thulasidas, M., Guan, C., & Wu, J. (2006). Robust classification of EEG signal for brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 24–29.PubMedCrossRef
go back to reference Vanduffel, W., Tootell, R. B. H., Schoups, A. A., & Orban, G. A. (2002). The organization of orientation selectivity throughout macaque visual cortex. Cerebral Cortex, 12, 647–662.PubMedCrossRef Vanduffel, W., Tootell, R. B. H., Schoups, A. A., & Orban, G. A. (2002). The organization of orientation selectivity throughout macaque visual cortex. Cerebral Cortex, 12, 647–662.PubMedCrossRef
go back to reference Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer. Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Metadata
Title
PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data
Authors
Michael Hanke
Yaroslav O. Halchenko
Per B. Sederberg
Stephen José Hanson
James V. Haxby
Stefan Pollmann
Publication date
01-03-2009
Publisher
Humana Press Inc
Published in
Neuroinformatics / Issue 1/2009
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-008-9041-y

Other articles of this Issue 1/2009

Neuroinformatics 1/2009 Go to the issue