Skip to main content
Top
Published in: Neuroinformatics 1/2008

01-03-2008 | Original Article

Cortical Network Dynamics during Foot Movements

Authors: Fabrizio De Vico Fallani, Laura Astolfi, Febo Cincotti, Donatella Mattia, Maria Grazia Marciani, Andrea Tocci, Serenella Salinari, Herbert Witte, Wolfram Hesse, Shangkai Gao, Alfredo Colosimo, Fabio Babiloni

Published in: Neuroinformatics | Issue 1/2008

Login to get access

Abstract

The present work intends to evaluate the dynamics of the cerebral networks during the preparation and the execution of the foot movement. In order to achieve this objective, we have used mathematical tools capable of estimating the cortical activity via high-resolution EEG techniques. Afterwards we estimated, the instantaneous relationships occurring among the time-series of sixteen regions of interest (ROIs) in the Alpha (7–12 Hz) and Beta (13–29 Hz) band through the adaptive multivariate autoregressive models. Eventually, we evaluated the weighted-topology of the cerebral networks by calculating some theoretical graph indexes. The results show that the main structural changes are encoded in the highest spectral contents (Beta band). In particular, during the execution of the foot movement the cingulate motor areas (CM) work as network “hubs” presenting a large amount of outgoing links to the other ROIs. Moreover, the connectivity pattern changes its structure according to the different temporal stages of the task. In particular, the communication between the ROIs reaches its highest level of efficiency during the preparation of the foot movement, as revealed by the “small-world” property of the network, which is characterized by the presence of abundant clustering connections combined with short average distances between the cortical areas.
Literature
go back to reference Astolfi, L., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P. M., et al. (2005). Estimation of the cortical connectivity by high resolution EEG and structural equation modeling: Simulations and application to finger tapping data. IEEE Transactions on Biomedical Engineering, 52(5), 757–768.PubMedCrossRef Astolfi, L., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P. M., et al. (2005). Estimation of the cortical connectivity by high resolution EEG and structural equation modeling: Simulations and application to finger tapping data. IEEE Transactions on Biomedical Engineering, 52(5), 757–768.PubMedCrossRef
go back to reference Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccalà, L., De Vico Fallani, F., et al. (2006). A comparison of different cortical connectivity estimators for high resolution EEG recordings. Human Brain Mapping, 28(2), 143–157.CrossRef Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccalà, L., De Vico Fallani, F., et al. (2006). A comparison of different cortical connectivity estimators for high resolution EEG recordings. Human Brain Mapping, 28(2), 143–157.CrossRef
go back to reference Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Marciani, M. G., Bufalari, S., et al. (2007). Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory. Psychophysiology, 44(6), 880–893.PubMedCrossRef Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Marciani, M. G., Bufalari, S., et al. (2007). Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory. Psychophysiology, 44(6), 880–893.PubMedCrossRef
go back to reference Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onorati, P., et al. (1997). High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model. Electroencephalography and Clinical Neurophysiology, 102, 69–80.PubMedCrossRef Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onorati, P., et al. (1997). High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model. Electroencephalography and Clinical Neurophysiology, 102, 69–80.PubMedCrossRef
go back to reference Babiloni, F., Babiloni, C., Locche, L., Cincotti, F., Rossini, P. M., & Carducci, F. (2000). High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Medical & Biological Engineering & Computing, 38, 512–519.CrossRef Babiloni, F., Babiloni, C., Locche, L., Cincotti, F., Rossini, P. M., & Carducci, F. (2000). High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Medical & Biological Engineering & Computing, 38, 512–519.CrossRef
go back to reference Babiloni, F., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P. M., et al. (2005). Estimation of the cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by Directed Transfer Function. Neuroimage, 24(1), 118–113.PubMedCrossRef Babiloni, F., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P. M., et al. (2005). Estimation of the cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by Directed Transfer Function. Neuroimage, 24(1), 118–113.PubMedCrossRef
go back to reference Baccalà, L. A., & Sameshima, K. (2001). Partial Directed Coherence: a new concept in neural structure determination. Biological Cybernetics, 84, 463–474.PubMedCrossRef Baccalà, L. A., & Sameshima, K. (2001). Partial Directed Coherence: a new concept in neural structure determination. Biological Cybernetics, 84, 463–474.PubMedCrossRef
go back to reference Basar, E. (2004). Memory and brain dynamics: oscillations integrating attention, perception, learning and memory p. 261. Boca Raton, FL: CRC. Basar, E. (2004). Memory and brain dynamics: oscillations integrating attention, perception, learning and memory p. 261. Boca Raton, FL: CRC.
go back to reference Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: structure and dynamics. Physics Reports, 424, 175–308.CrossRef Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: structure and dynamics. Physics Reports, 424, 175–308.CrossRef
go back to reference Chapman, J. P., Chapman, L. J., & Allen, J. J. (1987). The measurement of foot preference. Neuropsychologia, 25(3), 579–584.PubMedCrossRef Chapman, J. P., Chapman, L. J., & Allen, J. J. (1987). The measurement of foot preference. Neuropsychologia, 25(3), 579–584.PubMedCrossRef
go back to reference David, O., Cosmelli, D., & Friston, K. J. (2004). Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage, 21(2), 659–673.PubMedCrossRef David, O., Cosmelli, D., & Friston, K. J. (2004). Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage, 21(2), 659–673.PubMedCrossRef
go back to reference De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Salinari, S., et al. (2007b). Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis. Hum Brain Mapping, 28, 1334–1336.CrossRef De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Salinari, S., et al. (2007b). Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis. Hum Brain Mapping, 28, 1334–1336.CrossRef
go back to reference De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Tocci, A., Marciani, M. G., et al. (2007a). Extracting information from cortical connectivity patterns estimated from high resolution EEG recordings: A theoretical graph approach. Brain Topography, 19(3), 125–136.PubMedCrossRef De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Tocci, A., Marciani, M. G., et al. (2007a). Extracting information from cortical connectivity patterns estimated from high resolution EEG recordings: A theoretical graph approach. Brain Topography, 19(3), 125–136.PubMedCrossRef
go back to reference Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35–45.PubMedCrossRef Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35–45.PubMedCrossRef
go back to reference Gerloff, C., Richard, J., Hadley, J., Schulman, A. E., Honda, M., & Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.PubMedCrossRef Gerloff, C., Richard, J., Hadley, J., Schulman, A. E., Honda, M., & Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.PubMedCrossRef
go back to reference Gevins, A., Le, J., Martin, N., Brickett, P., Desmond, J., & Reutter, B. (1994). High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalography and Clinical Neurophysiology, 39, 337–358.CrossRef Gevins, A., Le, J., Martin, N., Brickett, P., Desmond, J., & Reutter, B. (1994). High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalography and Clinical Neurophysiology, 39, 337–358.CrossRef
go back to reference Grigorov, M. G. (2005). Global properties of biological networks. DDT, 10, 365–372.PubMed Grigorov, M. G. (2005). Global properties of biological networks. DDT, 10, 365–372.PubMed
go back to reference Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438.CrossRef Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438.CrossRef
go back to reference Grave de Peralta Menendez, R., & Gonzalez Andino, S. L. (1999). Distributed source models: standard solutions and new developments. In C. Uhl (Ed.) Analysis of neurophysiological brain functioning (pp. 176–201). Berlin: Springer. Grave de Peralta Menendez, R., & Gonzalez Andino, S. L. (1999). Distributed source models: standard solutions and new developments. In C. Uhl (Ed.) Analysis of neurophysiological brain functioning (pp. 176–201). Berlin: Springer.
go back to reference Hesse, W., Möller, E., Arnold, M., & Schack, B. (2003). The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods, 124, 27–44.PubMedCrossRef Hesse, W., Möller, E., Arnold, M., & Schack, B. (2003). The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods, 124, 27–44.PubMedCrossRef
go back to reference Hilgetag, C. C., Burns, G. A. P. C., O'Neill, M. A., Scannell, J. W., & Young, M. P. (2000). Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355, 91–110.PubMedCrossRef Hilgetag, C. C., Burns, G. A. P. C., O'Neill, M. A., Scannell, J. W., & Young, M. P. (2000). Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355, 91–110.PubMedCrossRef
go back to reference Kaminski, M., & Blinowska, K. (1991). A new method of the description of the information flow in the brain structures. Biological Cybernetics, 65, 203–210.PubMedCrossRef Kaminski, M., & Blinowska, K. (1991). A new method of the description of the information flow in the brain structures. Biological Cybernetics, 65, 203–210.PubMedCrossRef
go back to reference Kus, R., Kaminski, M., & Blinowska, K. J. (2004). Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE transactions on Biomedical Engineering, 51(9), 1501–1510.PubMedCrossRef Kus, R., Kaminski, M., & Blinowska, K. J. (2004). Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE transactions on Biomedical Engineering, 51(9), 1501–1510.PubMedCrossRef
go back to reference Lago-Fernandez, L. F., Huerta, R., Corbacho, F., & Siguenza, J. A. (2000). Fast response and temporal coherent oscillations in small-world networks. Physical Review Letters, 84, 2758–2761.PubMedCrossRef Lago-Fernandez, L. F., Huerta, R., Corbacho, F., & Siguenza, J. A. (2000). Fast response and temporal coherent oscillations in small-world networks. Physical Review Letters, 84, 2758–2761.PubMedCrossRef
go back to reference Latora, V., & Marchiori, M. (2001). Efficient behaviour of small-world networks. Physical Review Letters, 87, 198701.PubMedCrossRef Latora, V., & Marchiori, M. (2001). Efficient behaviour of small-world networks. Physical Review Letters, 87, 198701.PubMedCrossRef
go back to reference Latora, V., & Marchiori, M. (2003). Economic small-world behaviour in weighted networks. European Physical Journal B, 32, 249–263.CrossRef Latora, V., & Marchiori, M. (2003). Economic small-world behaviour in weighted networks. European Physical Journal B, 32, 249–263.CrossRef
go back to reference Le, J., & Gevins, A. (1993). A method to reduce blur distortion from EEG’s using a realistic head model. IEEE Transactions on Biomedical Engineering, 40, 517–528.PubMedCrossRef Le, J., & Gevins, A. (1993). A method to reduce blur distortion from EEG’s using a realistic head model. IEEE Transactions on Biomedical Engineering, 40, 517–528.PubMedCrossRef
go back to reference Lee, L., Harrison, L. M., & Mechelli, A. (2003). The functional brain connectivity workshop: Report and commentary. Neuroimage, 19, 457–465.PubMedCrossRef Lee, L., Harrison, L. M., & Mechelli, A. (2003). The functional brain connectivity workshop: Report and commentary. Neuroimage, 19, 457–465.PubMedCrossRef
go back to reference Micheloyannis, S., Pachou, E., Stam, C. J., Vourkas, M., Erimaki, S., & Tsirka, V. (2006). Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neuroscience Letters, 402, 273–277.PubMedCrossRef Micheloyannis, S., Pachou, E., Stam, C. J., Vourkas, M., Erimaki, S., & Tsirka, V. (2006). Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neuroscience Letters, 402, 273–277.PubMedCrossRef
go back to reference Milgram, S. (1967). The small world problem. Psychology Today, pp 60–67. Milgram, S. (1967). The small world problem. Psychology Today, pp 60–67.
go back to reference Moeller, E., Schack, B., Arnold, M., & Witte, H. (2001). Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. Journal of Neuroscience Methods, 105, 143–158.CrossRef Moeller, E., Schack, B., Arnold, M., & Witte, H. (2001). Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. Journal of Neuroscience Methods, 105, 143–158.CrossRef
go back to reference Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.CrossRef Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.CrossRef
go back to reference Nunez, P. L. (1995). Neocortical dynamics and human EEG rhythms p. 708. New York: Oxford University Press. Nunez, P. L. (1995). Neocortical dynamics and human EEG rhythms p. 708. New York: Oxford University Press.
go back to reference Ohara, S., Mima, T., Baba, K., Ikeda, A., Kunieda, T., Matsumoto, R., et al. (2001). Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. Journal of Neuroscience, 21(23), 9377–9386.PubMed Ohara, S., Mima, T., Baba, K., Ikeda, A., Kunieda, T., Matsumoto, R., et al. (2001). Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. Journal of Neuroscience, 21(23), 9377–9386.PubMed
go back to reference Pfurtsheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/EMG synchronizations and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.CrossRef Pfurtsheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/EMG synchronizations and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.CrossRef
go back to reference Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332–1342.PubMedCrossRef Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332–1342.PubMedCrossRef
go back to reference Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.PubMedCrossRef Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.PubMedCrossRef
go back to reference Sporns, O., Tononi, G., & Edelman, G. E. (2000). Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks, 13, 909–922.PubMedCrossRef Sporns, O., Tononi, G., & Edelman, G. E. (2000). Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks, 13, 909–922.PubMedCrossRef
go back to reference Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.PubMedCrossRef Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.PubMedCrossRef
go back to reference Stam, C. J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neuroscience Letters, 355, 25–28.PubMedCrossRef Stam, C. J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neuroscience Letters, 355, 25–28.PubMedCrossRef
go back to reference Stam, C. J., Jones, B. F., Manshanden, I., van Cappellen van Walsum, A. M., Montez, T., Verbunt, J. P., et al. (2006a). Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage, 32, 1335–44.PubMedCrossRef Stam, C. J., Jones, B. F., Manshanden, I., van Cappellen van Walsum, A. M., Montez, T., Verbunt, J. P., et al. (2006a). Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage, 32, 1335–44.PubMedCrossRef
go back to reference Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2006b). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17, 92–99.PubMedCrossRef Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2006b). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17, 92–99.PubMedCrossRef
go back to reference Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1, 3.PubMedCrossRef Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1, 3.PubMedCrossRef
go back to reference Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 91, 5033–5037.PubMedCrossRef Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 91, 5033–5037.PubMedCrossRef
go back to reference Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.PubMedCrossRef Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.PubMedCrossRef
go back to reference Yook, S. H., Jeong, H., Barabási, A., & Tu, Y. (2001). Weighted evolving networks. Physical Review Letters, 86(25), 5835–5838.PubMedCrossRef Yook, S. H., Jeong, H., Barabási, A., & Tu, Y. (2001). Weighted evolving networks. Physical Review Letters, 86(25), 5835–5838.PubMedCrossRef
Metadata
Title
Cortical Network Dynamics during Foot Movements
Authors
Fabrizio De Vico Fallani
Laura Astolfi
Febo Cincotti
Donatella Mattia
Maria Grazia Marciani
Andrea Tocci
Serenella Salinari
Herbert Witte
Wolfram Hesse
Shangkai Gao
Alfredo Colosimo
Fabio Babiloni
Publication date
01-03-2008
Publisher
Humana Press Inc
Published in
Neuroinformatics / Issue 1/2008
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-007-9006-6

Other articles of this Issue 1/2008

Neuroinformatics 1/2008 Go to the issue