Skip to main content
Top
Published in: Endocrine 2/2015

01-11-2015 | Review

Hypothalamic-autonomic control of energy homeostasis

Authors: Patricia Seoane-Collazo, Johan Fernø, Francisco Gonzalez, Carlos Diéguez, Rosaura Leis, Rubén Nogueiras, Miguel López

Published in: Endocrine | Issue 2/2015

Login to get access

Abstract

Regulation of energy homeostasis is tightly controlled by the central nervous system (CNS). Several key areas such as the hypothalamus and brainstem receive and integrate signals conveying energy status from the periphery, such as leptin, thyroid hormones, and insulin, ultimately leading to modulation of food intake, energy expenditure (EE), and peripheral metabolism. The autonomic nervous system (ANS) plays a key role in the response to such signals, innervating peripheral metabolic tissues, including brown and white adipose tissue (BAT and WAT), liver, pancreas, and skeletal muscle. The ANS consists of two parts, the sympathetic and parasympathetic nervous systems (SNS and PSNS). The SNS regulates BAT thermogenesis and EE, controlled by central areas such as the preoptic area (POA) and the ventromedial, dorsomedial, and arcuate hypothalamic nuclei (VMH, DMH, and ARC). The SNS also regulates lipid metabolism in WAT, controlled by the lateral hypothalamic area (LHA), VMH, and ARC. Control of hepatic glucose production and pancreatic insulin secretion also involves the LHA, VMH, and ARC as well as the dorsal vagal complex (DVC), via splanchnic sympathetic and the vagal parasympathetic nerves. Muscle glucose uptake is also controlled by the SNS via hypothalamic nuclei such as the VMH. There is recent evidence of novel pathways connecting the CNS and ANS. These include the hypothalamic AMP-activated protein kinase–SNS–BAT axis which has been demonstrated to be a key modulator of thermogenesis. In this review, we summarize current knowledge of the role of the ANS in the modulation of energy balance.
Literature
1.
go back to reference M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404, 661–671 (2000)PubMed M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404, 661–671 (2000)PubMed
2.
go back to reference G.J. Morton, D.E. Cummings, D.G. Baskin, G.S. Barsh, M.W. Schwartz, Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006)PubMedCrossRef G.J. Morton, D.E. Cummings, D.G. Baskin, G.S. Barsh, M.W. Schwartz, Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006)PubMedCrossRef
3.
go back to reference M. Lopez, C.J. Lelliott, A. Vidal-Puig, Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. BioEssays 29, 248–261 (2007)PubMedCrossRef M. Lopez, C.J. Lelliott, A. Vidal-Puig, Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. BioEssays 29, 248–261 (2007)PubMedCrossRef
6.
go back to reference M.P.B. de Martinez, M. Lopez, “Mens sana in corpore sano”: exercise and hypothalamic ER stress. PLoS Biol. 8(8), e1000464 (2010)CrossRef M.P.B. de Martinez, M. Lopez, “Mens sana in corpore sano”: exercise and hypothalamic ER stress. PLoS Biol. 8(8), e1000464 (2010)CrossRef
7.
8.
go back to reference J. Park, T.S. Morley, M. Kim, D.J. Clegg, P.E. Scherer, Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014)PubMedCentralPubMedCrossRef J. Park, T.S. Morley, M. Kim, D.J. Clegg, P.E. Scherer, Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014)PubMedCentralPubMedCrossRef
9.
go back to reference R. Roubenoff, R.A. Roubenoff, J.G. Cannon, J.J. Kehayias, H. Zhuang, B. Dawson-Hughes, C.A. Dinarello, I.H. Rosenberg, Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest. 93, 2379–2386 (1994)PubMedCentralPubMedCrossRef R. Roubenoff, R.A. Roubenoff, J.G. Cannon, J.J. Kehayias, H. Zhuang, B. Dawson-Hughes, C.A. Dinarello, I.H. Rosenberg, Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest. 93, 2379–2386 (1994)PubMedCentralPubMedCrossRef
10.
go back to reference J.E. Morley, D.R. Thomas, M.M. Wilson, Cachexia: pathophysiology and clinical relevance. Am. J. Clin. Nutr. 83, 735–743 (2006)PubMed J.E. Morley, D.R. Thomas, M.M. Wilson, Cachexia: pathophysiology and clinical relevance. Am. J. Clin. Nutr. 83, 735–743 (2006)PubMed
11.
go back to reference S. Kir, J.P. White, S. Kleiner, L. Kazak, P. Cohen, V.E. Baracos, B.M. Spiegelman, Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014)PubMedCentralPubMedCrossRef S. Kir, J.P. White, S. Kleiner, L. Kazak, P. Cohen, V.E. Baracos, B.M. Spiegelman, Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014)PubMedCentralPubMedCrossRef
12.
go back to reference M. Petruzzelli, M. Schweiger, R. Schreiber, R. Campos-Olivas, M. Tsoli, J. Allen, M. Swarbrick, S. Rose-John, M. Rincon, G. Robertson, R. Zechner, E.F. Wagner, A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014)PubMedCrossRef M. Petruzzelli, M. Schweiger, R. Schreiber, R. Campos-Olivas, M. Tsoli, J. Allen, M. Swarbrick, S. Rose-John, M. Rincon, G. Robertson, R. Zechner, E.F. Wagner, A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014)PubMedCrossRef
13.
go back to reference T.J. Bartness, Y.B. Shrestha, C.H. Vaughan, G.J. Schwartz, C.K. Song, Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43 (2010)PubMedCentralPubMedCrossRef T.J. Bartness, Y.B. Shrestha, C.H. Vaughan, G.J. Schwartz, C.K. Song, Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43 (2010)PubMedCentralPubMedCrossRef
14.
go back to reference E. Fliers, L.P. Klieverik, A. Kalsbeek, Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol. Metab. 21, 230–236 (2010)PubMedCrossRef E. Fliers, L.P. Klieverik, A. Kalsbeek, Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol. Metab. 21, 230–236 (2010)PubMedCrossRef
15.
go back to reference S.M. Harlan, K. Rahmouni, PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol Metab. 2, 69–73 (2013)PubMedCentralPubMedCrossRef S.M. Harlan, K. Rahmouni, PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol Metab. 2, 69–73 (2013)PubMedCentralPubMedCrossRef
16.
17.
go back to reference T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)PubMedCentralCrossRef T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)PubMedCentralCrossRef
18.
go back to reference K. Nonogaki, New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533–549 (2000)PubMedCrossRef K. Nonogaki, New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533–549 (2000)PubMedCrossRef
19.
go back to reference A. Giordano, C.K. Song, R.R. Bowers, J.C. Ehlen, A. Frontini, S. Cinti, T.J. Bartness, White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255 (2006)PubMedCrossRef A. Giordano, C.K. Song, R.R. Bowers, J.C. Ehlen, A. Frontini, S. Cinti, T.J. Bartness, White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255 (2006)PubMedCrossRef
20.
go back to reference F. Kreier, R.M. Buijs, Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R548–R549 (2007)PubMedCrossRef F. Kreier, R.M. Buijs, Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R548–R549 (2007)PubMedCrossRef
21.
go back to reference L.P. Klieverik, S.F. Janssen, A. van Rial, E. Foppen, P.H. Bisschop, M.J. Serlie, A. Boelen, M.T. Ackermans, H.P. Sauerwein, E. Fliers, A. Kalsbeek, Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc. Natl. Acad. Sci. U.S.A. 106, 5966–5971 (2009)PubMedCentralPubMedCrossRef L.P. Klieverik, S.F. Janssen, A. van Rial, E. Foppen, P.H. Bisschop, M.J. Serlie, A. Boelen, M.T. Ackermans, H.P. Sauerwein, E. Fliers, A. Kalsbeek, Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc. Natl. Acad. Sci. U.S.A. 106, 5966–5971 (2009)PubMedCentralPubMedCrossRef
22.
go back to reference C.X. Yi, S.E. la Fleur, E. Fliers, A. Kalsbeek, The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431 (2010)PubMedCrossRef C.X. Yi, S.E. la Fleur, E. Fliers, A. Kalsbeek, The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431 (2010)PubMedCrossRef
23.
go back to reference R. Rodriguez-Diaz, A. Caicedo, Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 28, 745–756 (2014)PubMedCrossRef R. Rodriguez-Diaz, A. Caicedo, Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 28, 745–756 (2014)PubMedCrossRef
24.
go back to reference Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman, Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994)PubMedCrossRef Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman, Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994)PubMedCrossRef
25.
go back to reference R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)PubMedCrossRef R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)PubMedCrossRef
26.
go back to reference B. Cannon, J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)PubMedCrossRef B. Cannon, J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)PubMedCrossRef
27.
go back to reference A.J. Whittle, M. Lopez, A. Vidal-Puig, Using brown adipose tissue to treat obesity—the central issue. Trends Mol Med. 17, 405–411 (2011)PubMedCrossRef A.J. Whittle, M. Lopez, A. Vidal-Puig, Using brown adipose tissue to treat obesity—the central issue. Trends Mol Med. 17, 405–411 (2011)PubMedCrossRef
28.
go back to reference C. Contreras, F. Gonzalez, J. Ferno, C. Dieguez, K. Rahmouni, R. Nogueiras, M. Lopez, The brain and brown fat. Ann. Med. 0, 1–19 (2014) C. Contreras, F. Gonzalez, J. Ferno, C. Dieguez, K. Rahmouni, R. Nogueiras, M. Lopez, The brain and brown fat. Ann. Med. 0, 1–19 (2014)
29.
go back to reference S.F. Morrison, C.J. Madden, D. Tupone, Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014)PubMedCentralPubMedCrossRef S.F. Morrison, C.J. Madden, D. Tupone, Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014)PubMedCentralPubMedCrossRef
30.
go back to reference J. Nedergaard, T. Bengtsson, B. Cannon, Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 293, E444–E452 (2007)PubMedCrossRef J. Nedergaard, T. Bengtsson, B. Cannon, Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 293, E444–E452 (2007)PubMedCrossRef
31.
go back to reference A.M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman, A.B. Goldfine, F.C. Kuo, E.L. Palmer, Y.H. Tseng, A. Doria, G.M. Kolodny, C.R. Kahn, Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009)PubMedCentralPubMedCrossRef A.M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman, A.B. Goldfine, F.C. Kuo, E.L. Palmer, Y.H. Tseng, A. Doria, G.M. Kolodny, C.R. Kahn, Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009)PubMedCentralPubMedCrossRef
32.
go back to reference K.A. Virtanen, M.E. Lidell, J. Orava, M. Heglind, R. Westergren, T. Niemi, M. Taittonen, J. Laine, N.J. Savisto, S. Enerback, P. Nuutila, Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009)PubMedCrossRef K.A. Virtanen, M.E. Lidell, J. Orava, M. Heglind, R. Westergren, T. Niemi, M. Taittonen, J. Laine, N.J. Savisto, S. Enerback, P. Nuutila, Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009)PubMedCrossRef
33.
go back to reference W.D. van Marken Lichtenbelt, J.W. Vanhommerig, N.M. Smulders, J.M. Drossaerts, G.J. Kemerink, N.D. Bouvy, P. Schrauwen, G.J. Teule, Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009)PubMedCrossRef W.D. van Marken Lichtenbelt, J.W. Vanhommerig, N.M. Smulders, J.M. Drossaerts, G.J. Kemerink, N.D. Bouvy, P. Schrauwen, G.J. Teule, Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009)PubMedCrossRef
34.
go back to reference F. Villarroya, A. Vidal-Puig, Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17, 638–643 (2013)PubMedCrossRef F. Villarroya, A. Vidal-Puig, Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17, 638–643 (2013)PubMedCrossRef
35.
go back to reference A. Frontini, S. Cinti, Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010)PubMedCrossRef A. Frontini, S. Cinti, Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010)PubMedCrossRef
36.
go back to reference A. Giordano, A. Frontini, M. Castellucci, S. Cinti, Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. J. Histochem. Cytochem. 52, 923–930 (2004)PubMedCrossRef A. Giordano, A. Frontini, M. Castellucci, S. Cinti, Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. J. Histochem. Cytochem. 52, 923–930 (2004)PubMedCrossRef
37.
go back to reference F.M. Fisher, S. Kleiner, N. Douris, E.C. Fox, R.J. Mepani, F. Verdeguer, J. Wu, A. Kharitonenkov, J.S. Flier, E. Maratos-Flier, B.M. Spiegelman, FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012)PubMedCentralPubMedCrossRef F.M. Fisher, S. Kleiner, N. Douris, E.C. Fox, R.J. Mepani, F. Verdeguer, J. Wu, A. Kharitonenkov, J.S. Flier, E. Maratos-Flier, B.M. Spiegelman, FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012)PubMedCentralPubMedCrossRef
38.
go back to reference J. Nedergaard, B. Cannon, The browning of white adipose tissue: some burning issues. Cell Metab. 20, 396–407 (2014)PubMedCrossRef J. Nedergaard, B. Cannon, The browning of white adipose tissue: some burning issues. Cell Metab. 20, 396–407 (2014)PubMedCrossRef
39.
go back to reference T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)PubMedCentralCrossRef T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)PubMedCentralCrossRef
40.
go back to reference L.W. Enquist, Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J. Infect. Dis. 186(Suppl 2), S209–S214 (2002)PubMedCrossRef L.W. Enquist, Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J. Infect. Dis. 186(Suppl 2), S209–S214 (2002)PubMedCrossRef
41.
go back to reference M. Bamshad, C.K. Song, T.J. Bartness, CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276, R1569–R1578 (1999)PubMed M. Bamshad, C.K. Song, T.J. Bartness, CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276, R1569–R1578 (1999)PubMed
42.
go back to reference B.J. Oldfield, M.E. Giles, A. Watson, C. Anderson, L.M. Colvill, M.J. McKinley, The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110, 515–526 (2002)PubMedCrossRef B.J. Oldfield, M.E. Giles, A. Watson, C. Anderson, L.M. Colvill, M.J. McKinley, The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110, 515–526 (2002)PubMedCrossRef
43.
go back to reference M.N. Perkins, N.J. Rothwell, M.J. Stock, T.W. Stone, Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289, 401–402 (1981)PubMedCrossRef M.N. Perkins, N.J. Rothwell, M.J. Stock, T.W. Stone, Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289, 401–402 (1981)PubMedCrossRef
44.
go back to reference T. Yoshida, G.A. Bray, Catecholamine turnover in rats with ventromedial hypothalamic lesions. Am. J. Physiol. 246, R558–R565 (1984)PubMed T. Yoshida, G.A. Bray, Catecholamine turnover in rats with ventromedial hypothalamic lesions. Am. J. Physiol. 246, R558–R565 (1984)PubMed
45.
go back to reference S.J. Holt, H.V. Wheal, D.A. York, Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effect of electrical stimulation of the ventromedial nucleus and other hypothalamic centres. Brain Res. 405, 227–233 (1987)PubMedCrossRef S.J. Holt, H.V. Wheal, D.A. York, Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effect of electrical stimulation of the ventromedial nucleus and other hypothalamic centres. Brain Res. 405, 227–233 (1987)PubMedCrossRef
46.
go back to reference D. Lindberg, P. Chen, C. Li, Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol. 521, 3167–3190 (2013)PubMedCrossRef D. Lindberg, P. Chen, C. Li, Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol. 521, 3167–3190 (2013)PubMedCrossRef
47.
go back to reference K.W. Kim, L. Zhao, J. Donato Jr, D. Kohno, Y. Xu, C.F. Elias, C. Lee, K.L. Parker, J.K. Elmquist, Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc. Natl. Acad. Sci. USA 108, 10673–10678 (2011)PubMedCentralPubMedCrossRef K.W. Kim, L. Zhao, J. Donato Jr, D. Kohno, Y. Xu, C.F. Elias, C. Lee, K.L. Parker, J.K. Elmquist, Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc. Natl. Acad. Sci. USA 108, 10673–10678 (2011)PubMedCentralPubMedCrossRef
48.
go back to reference S.F. Morrison, RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276, R962–R973 (1999)PubMed S.F. Morrison, RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276, R962–R973 (1999)PubMed
49.
go back to reference T. Uno, M. Shibata, Role of inferior olive and thoracic IML neurons in nonshivering thermogenesis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R536–R546 (2001)PubMed T. Uno, M. Shibata, Role of inferior olive and thoracic IML neurons in nonshivering thermogenesis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R536–R546 (2001)PubMed
50.
go back to reference T. Sakaguchi, K. Arase, G.A. Bray, Effect of intrahypothalamic hydroxybutyrate on sympathetic firing rate. Metabolism. 37, 732–735 (1988)PubMedCrossRef T. Sakaguchi, K. Arase, G.A. Bray, Effect of intrahypothalamic hydroxybutyrate on sympathetic firing rate. Metabolism. 37, 732–735 (1988)PubMedCrossRef
51.
go back to reference T. Sakaguchi, G.A. Bray, Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res. 492, 271–280 (1989)PubMedCrossRef T. Sakaguchi, G.A. Bray, Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res. 492, 271–280 (1989)PubMedCrossRef
52.
go back to reference S. Amir, Intra-ventromedial hypothalamic injection of glutamate stimulates brown adipose tissue thermogenesis in the rat. Brain Res. 511, 341–344 (1990)PubMedCrossRef S. Amir, Intra-ventromedial hypothalamic injection of glutamate stimulates brown adipose tissue thermogenesis in the rat. Brain Res. 511, 341–344 (1990)PubMedCrossRef
53.
go back to reference M. Lopez, L. Varela, M.J. Vazquez, S. Rodriguez-Cuenca, C.R. Gonzalez, V.R. Velagapudi, D.A. Morgan, E. Schoenmakers, K. Agassandian, R. Lage, M.P.B. Martinez de, S. Tovar, R. Nogueiras, D. Carling, C. Lelliott, R. Gallego, M. Oresic, K. Chatterjee, A.K. Saha, K. Rahmouni, C. Dieguez, A. Vidal-Puig, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010)PubMedCentralPubMedCrossRef M. Lopez, L. Varela, M.J. Vazquez, S. Rodriguez-Cuenca, C.R. Gonzalez, V.R. Velagapudi, D.A. Morgan, E. Schoenmakers, K. Agassandian, R. Lage, M.P.B. Martinez de, S. Tovar, R. Nogueiras, D. Carling, C. Lelliott, R. Gallego, M. Oresic, K. Chatterjee, A.K. Saha, K. Rahmouni, C. Dieguez, A. Vidal-Puig, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010)PubMedCentralPubMedCrossRef
54.
go back to reference A.J. Whittle, S. Carobbio, L. Martins, M. Slawik, E. Hondares, M.J. Vazquez, D. Morgan, R.I. Csikasz, R. Gallego, S. Rodriguez-Cuenca, M. Dale, S. Virtue, F. Villarroya, B. Cannon, K. Rahmouni, M. Lopez, A. Vidal-Puig, BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012)PubMedCentralPubMedCrossRef A.J. Whittle, S. Carobbio, L. Martins, M. Slawik, E. Hondares, M.J. Vazquez, D. Morgan, R.I. Csikasz, R. Gallego, S. Rodriguez-Cuenca, M. Dale, S. Virtue, F. Villarroya, B. Cannon, K. Rahmouni, M. Lopez, A. Vidal-Puig, BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012)PubMedCentralPubMedCrossRef
55.
go back to reference M. Tanida, N. Yamamoto, T. Shibamoto, K. Rahmouni, Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8, e56660 (2013)PubMedCentralPubMedCrossRef M. Tanida, N. Yamamoto, T. Shibamoto, K. Rahmouni, Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8, e56660 (2013)PubMedCentralPubMedCrossRef
56.
go back to reference P. Seoane-Collazo, M.P.B. Martinez de, J. Ferno, C. Dieguez, R. Nogueiras, M. Lopez, Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats. Endocrinology 155, 1679–1689 (2014)PubMedCrossRef P. Seoane-Collazo, M.P.B. Martinez de, J. Ferno, C. Dieguez, R. Nogueiras, M. Lopez, Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats. Endocrinology 155, 1679–1689 (2014)PubMedCrossRef
57.
go back to reference M.P.B. Martinez de, I. Gonzalez-Garcia, L. Martins, R. Lage, D. Fernandez-Mallo, N. Martinez-Sanchez, F. Ruiz-Pino, J. Liu, D.A. Morgan, L. Pinilla, R. Gallego, A.K. Saha, A. Kalsbeek, E. Fliers, P.H. Bisschop, C. Dieguez, R. Nogueiras, K. Rahmouni, M. Tena-Sempere, M. Lopez, Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014)CrossRef M.P.B. Martinez de, I. Gonzalez-Garcia, L. Martins, R. Lage, D. Fernandez-Mallo, N. Martinez-Sanchez, F. Ruiz-Pino, J. Liu, D.A. Morgan, L. Pinilla, R. Gallego, A.K. Saha, A. Kalsbeek, E. Fliers, P.H. Bisschop, C. Dieguez, R. Nogueiras, K. Rahmouni, M. Tena-Sempere, M. Lopez, Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014)CrossRef
58.
go back to reference D. Beiroa, M. Imbernon, R. Gallego, A. Senra, D. Herranz, F. Villaroya, M. Serrano, J. Ferno, J. Salvador, J. Escalada, C. Dieguez, M. Lopez, G. Fruhbeck, R. Nogueiras, GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014)PubMedCrossRef D. Beiroa, M. Imbernon, R. Gallego, A. Senra, D. Herranz, F. Villaroya, M. Serrano, J. Ferno, J. Salvador, J. Escalada, C. Dieguez, M. Lopez, G. Fruhbeck, R. Nogueiras, GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014)PubMedCrossRef
59.
go back to reference B.M. Owen, X. Ding, D.A. Morgan, K.C. Coate, A.L. Bookout, K. Rahmouni, S.A. Kliewer, D.J. Mangelsdorf, FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014)PubMedCentralPubMedCrossRef B.M. Owen, X. Ding, D.A. Morgan, K.C. Coate, A.L. Bookout, K. Rahmouni, S.A. Kliewer, D.J. Mangelsdorf, FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014)PubMedCentralPubMedCrossRef
60.
go back to reference C. Fernandes-Santos, Z. Zhang, D.A. Morgan, D.F. Guo, A.F. Russo, K. Rahmouni, Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 154, 2481–2488 (2013)PubMedCentralPubMedCrossRef C. Fernandes-Santos, Z. Zhang, D.A. Morgan, D.F. Guo, A.F. Russo, K. Rahmouni, Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 154, 2481–2488 (2013)PubMedCentralPubMedCrossRef
61.
go back to reference M. Lopez, R. Nogueiras, Firing up brown fat with brain amylin. Endocrinology 154, 2263–2265 (2013)PubMedCrossRef M. Lopez, R. Nogueiras, Firing up brown fat with brain amylin. Endocrinology 154, 2263–2265 (2013)PubMedCrossRef
62.
go back to reference C. Contreras, I. Gonzalez-Garcia, N. Martinez-Sanchez, P. Seoane-Collazo, J. Jacas, D.A. Morgan, D. Serra, R. Gallego, F. Gonzalez, N. Casals, R. Nogueiras, K. Rahmouni, C. Dieguez, M. Lopez, Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014)PubMedCrossRef C. Contreras, I. Gonzalez-Garcia, N. Martinez-Sanchez, P. Seoane-Collazo, J. Jacas, D.A. Morgan, D. Serra, R. Gallego, F. Gonzalez, N. Casals, R. Nogueiras, K. Rahmouni, C. Dieguez, M. Lopez, Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014)PubMedCrossRef
63.
go back to reference L.L. Bernardis, L.L. Bellinger, The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc. Soc. Exp. Biol. Med. 218, 284–306 (1998)PubMedCrossRef L.L. Bernardis, L.L. Bellinger, The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc. Soc. Exp. Biol. Med. 218, 284–306 (1998)PubMedCrossRef
64.
go back to reference J.A. Dimicco, D.V. Zaretsky, The dorsomedial hypothalamus: a new player in thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R47–R63 (2007)PubMedCrossRef J.A. Dimicco, D.V. Zaretsky, The dorsomedial hypothalamus: a new player in thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R47–R63 (2007)PubMedCrossRef
65.
go back to reference W.H. Cao, S.F. Morrison, Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51, 426–437 (2006)PubMedCrossRef W.H. Cao, S.F. Morrison, Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51, 426–437 (2006)PubMedCrossRef
66.
go back to reference P.J. Enriori, P. Sinnayah, S.E. Simonds, R.C. Garcia, M.A. Cowley, Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011)PubMedCentralPubMedCrossRef P.J. Enriori, P. Sinnayah, S.E. Simonds, R.C. Garcia, M.A. Cowley, Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011)PubMedCentralPubMedCrossRef
67.
go back to reference Y. Zhang, I.A. Kerman, A. Laque, P. Nguyen, M. Faouzi, G.W. Louis, J.C. Jones, C. Rhodes, H. Munzberg, Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011)PubMedCentralPubMedCrossRef Y. Zhang, I.A. Kerman, A. Laque, P. Nguyen, M. Faouzi, G.W. Louis, J.C. Jones, C. Rhodes, H. Munzberg, Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011)PubMedCentralPubMedCrossRef
68.
go back to reference P.T. Chao, L. Yang, S. Aja, T.H. Moran, S. Bi, Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab. 13, 573–583 (2011)PubMedCentralPubMedCrossRef P.T. Chao, L. Yang, S. Aja, T.H. Moran, S. Bi, Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab. 13, 573–583 (2011)PubMedCentralPubMedCrossRef
69.
go back to reference K. Rezai-Zadeh, S. Yu, Y. Jiang, A. Laque, C. Schwartzenburg, C.D. Morrison, A.V. Derbenev, A. Zsombok, H. Munzberg, Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab. 3, 681–693 (2014)PubMedCentralPubMedCrossRef K. Rezai-Zadeh, S. Yu, Y. Jiang, A. Laque, C. Schwartzenburg, C.D. Morrison, A.V. Derbenev, A. Zsombok, H. Munzberg, Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab. 3, 681–693 (2014)PubMedCentralPubMedCrossRef
70.
go back to reference S.J. Lee, S. Verma, S.E. Simonds, M.A. Kirigiti, P. Kievit, S.R. Lindsley, A. Loche, M.S. Smith, M.A. Cowley, K.L. Grove, Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice. J. Neurosci. 33, 15306–15317 (2013)PubMedCentralPubMedCrossRef S.J. Lee, S. Verma, S.E. Simonds, M.A. Kirigiti, P. Kievit, S.R. Lindsley, A. Loche, M.S. Smith, M.A. Cowley, K.L. Grove, Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice. J. Neurosci. 33, 15306–15317 (2013)PubMedCentralPubMedCrossRef
71.
go back to reference S.M. Harlan, D.A. Morgan, K. Agassandian, D.F. Guo, M.D. Cassell, C.D. Sigmund, A.L. Mark, K. Rahmouni, Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808–812 (2011)PubMedCentralPubMedCrossRef S.M. Harlan, D.A. Morgan, K. Agassandian, D.F. Guo, M.D. Cassell, C.D. Sigmund, A.L. Mark, K. Rahmouni, Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808–812 (2011)PubMedCentralPubMedCrossRef
72.
go back to reference G.A. Bewick, J.V. Gardiner, W.S. Dhillo, A.S. Kent, N.E. White, Z. Webster, M.A. Ghatei, S.R. Bloom, Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J. 19, 1680–1682 (2005)PubMed G.A. Bewick, J.V. Gardiner, W.S. Dhillo, A.S. Kent, N.E. White, Z. Webster, M.A. Ghatei, S.R. Bloom, Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J. 19, 1680–1682 (2005)PubMed
73.
go back to reference Y.C. Shi, J. Lau, Z. Lin, H. Zhang, L. Zhai, G. Sperk, R. Heilbronn, M. Mietzsch, S. Weger, X.F. Huang, R.F. Enriquez, P.A. Baldock, L. Zhang, A. Sainsbury, H. Herzog, S. Lin, Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 17, 236–248 (2013)PubMedCrossRef Y.C. Shi, J. Lau, Z. Lin, H. Zhang, L. Zhai, G. Sperk, R. Heilbronn, M. Mietzsch, S. Weger, X.F. Huang, R.F. Enriquez, P.A. Baldock, L. Zhang, A. Sainsbury, H. Herzog, S. Lin, Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 17, 236–248 (2013)PubMedCrossRef
74.
go back to reference R.D. Cone, Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005)PubMedCrossRef R.D. Cone, Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005)PubMedCrossRef
75.
go back to reference R.D. Cone, Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006)PubMedCrossRef R.D. Cone, Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006)PubMedCrossRef
76.
go back to reference H. Krude, H. Biebermann, W. Luck, R. Horn, G. Brabant, A. Gruters, Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998)PubMedCrossRef H. Krude, H. Biebermann, W. Luck, R. Horn, G. Brabant, A. Gruters, Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998)PubMedCrossRef
77.
go back to reference C. Vaisse, K. Clement, E. Durand, S. Hercberg, B. Guy-Grand, P. Froguel, Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 106, 253–262 (2000)PubMedCentralPubMedCrossRef C. Vaisse, K. Clement, E. Durand, S. Hercberg, B. Guy-Grand, P. Froguel, Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 106, 253–262 (2000)PubMedCentralPubMedCrossRef
78.
go back to reference A.A. Butler, R.D. Cone, The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77–84 (2002)PubMedCrossRef A.A. Butler, R.D. Cone, The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77–84 (2002)PubMedCrossRef
79.
go back to reference I.S. Farooqi, S. Drop, A. Clements, J.M. Keogh, J. Biernacka, S. Lowenbein, B.G. Challis, S. O’Rahilly, Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 55, 2549–2553 (2006)PubMedCrossRef I.S. Farooqi, S. Drop, A. Clements, J.M. Keogh, J. Biernacka, S. Lowenbein, B.G. Challis, S. O’Rahilly, Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 55, 2549–2553 (2006)PubMedCrossRef
80.
go back to reference E.D. Berglund, T. Liu, X. Kong, J.W. Sohn, L. Vong, Z. Deng, C.E. Lee, S. Lee, K.W. Williams, D.P. Olson, P.E. Scherer, B.B. Lowell, J.K. Elmquist, Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 17, 911–913 (2014)PubMedCentralPubMedCrossRef E.D. Berglund, T. Liu, X. Kong, J.W. Sohn, L. Vong, Z. Deng, C.E. Lee, S. Lee, K.W. Williams, D.P. Olson, P.E. Scherer, B.B. Lowell, J.K. Elmquist, Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 17, 911–913 (2014)PubMedCentralPubMedCrossRef
81.
go back to reference Y. Zhang, G.E. Kilroy, T.M. Henagan, V. Prpic-Uhing, W.G. Richards, A.W. Bannon, R.L. Mynatt, T.W. Gettys, Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J. 19, 1482–1491 (2005)PubMedCrossRef Y. Zhang, G.E. Kilroy, T.M. Henagan, V. Prpic-Uhing, W.G. Richards, A.W. Bannon, R.L. Mynatt, T.W. Gettys, Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J. 19, 1482–1491 (2005)PubMedCrossRef
82.
go back to reference M. Schneeberger, M.O. Dietrich, D. Sebastian, M. Imbernon, C. Castano, A. Garcia, Y. Esteban, A. Gonzalez-Franquesa, I.C. Rodriguez, A. Bortolozzi, P.M. Garcia-Roves, R. Gomis, R. Nogueiras, T.L. Horvath, A. Zorzano, M. Claret, Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013)PubMedCrossRef M. Schneeberger, M.O. Dietrich, D. Sebastian, M. Imbernon, C. Castano, A. Garcia, Y. Esteban, A. Gonzalez-Franquesa, I.C. Rodriguez, A. Bortolozzi, P.M. Garcia-Roves, R. Gomis, R. Nogueiras, T.L. Horvath, A. Zorzano, M. Claret, Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013)PubMedCrossRef
83.
go back to reference G. Ramadori, T. Fujikawa, M. Fukuda, J. Anderson, D.A. Morgan, R. Mostoslavsky, R.C. Stuart, M. Perello, C.R. Vianna, E.A. Nillni, K. Rahmouni, R. Coppari, SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78–87 (2010)PubMedCentralPubMedCrossRef G. Ramadori, T. Fujikawa, M. Fukuda, J. Anderson, D.A. Morgan, R. Mostoslavsky, R.C. Stuart, M. Perello, C.R. Vianna, E.A. Nillni, K. Rahmouni, R. Coppari, SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78–87 (2010)PubMedCentralPubMedCrossRef
84.
go back to reference H.B. Ruan, M.O. Dietrich, Z.W. Liu, M.R. Zimmer, M.D. Li, J.P. Singh, K. Zhang, R. Yin, J. Wu, T.L. Horvath, X. Yang, O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306–317 (2014)PubMedCentralPubMedCrossRef H.B. Ruan, M.O. Dietrich, Z.W. Liu, M.R. Zimmer, M.D. Li, J.P. Singh, K. Zhang, R. Yin, J. Wu, T.L. Horvath, X. Yang, O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306–317 (2014)PubMedCentralPubMedCrossRef
85.
go back to reference J.K. Elmquist, R. Coppari, N. Balthasar, M. Ichinose, B.B. Lowell, Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. 493, 63–71 (2005)PubMedCrossRef J.K. Elmquist, R. Coppari, N. Balthasar, M. Ichinose, B.B. Lowell, Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. 493, 63–71 (2005)PubMedCrossRef
86.
go back to reference G.S. Yeo, L.K. Heisler, Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012)PubMedCrossRef G.S. Yeo, L.K. Heisler, Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012)PubMedCrossRef
87.
go back to reference C.J. Madden, S.F. Morrison, Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R831–R843 (2009)PubMedCentralPubMedCrossRef C.J. Madden, S.F. Morrison, Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R831–R843 (2009)PubMedCentralPubMedCrossRef
88.
go back to reference D. Kong, Q. Tong, C. Ye, S. Koda, P.M. Fuller, M.J. Krashes, L. Vong, R.S. Ray, D.P. Olson, B.B. Lowell, GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151, 645–657 (2012)PubMedCentralPubMedCrossRef D. Kong, Q. Tong, C. Ye, S. Koda, P.M. Fuller, M.J. Krashes, L. Vong, R.S. Ray, D.P. Olson, B.B. Lowell, GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151, 645–657 (2012)PubMedCentralPubMedCrossRef
89.
go back to reference M. Lopez, C.V. Alvarez, R. Nogueiras, C. Dieguez, Energy balance regulation by thyroid hormones at central level. Trends Mol Med. 19, 418–427 (2013)PubMedCrossRef M. Lopez, C.V. Alvarez, R. Nogueiras, C. Dieguez, Energy balance regulation by thyroid hormones at central level. Trends Mol Med. 19, 418–427 (2013)PubMedCrossRef
90.
go back to reference E. Satinoff, D. Valentino, P. Teitelbaum, Thermoregulatory cold-defense deficits in rats with preoptic/anterior hypothalamic lesions. Brain Res. Bull. 1, 553–565 (1976)PubMedCrossRef E. Satinoff, D. Valentino, P. Teitelbaum, Thermoregulatory cold-defense deficits in rats with preoptic/anterior hypothalamic lesions. Brain Res. Bull. 1, 553–565 (1976)PubMedCrossRef
91.
go back to reference J.D. Guieu, J.D. Hardy, Effects of heating and cooling of the spinal cord on preoptic unit activity. J. Appl. Physiol. 29, 675–683 (1970)PubMed J.D. Guieu, J.D. Hardy, Effects of heating and cooling of the spinal cord on preoptic unit activity. J. Appl. Physiol. 29, 675–683 (1970)PubMed
92.
go back to reference J.A. Boulant, J.D. Hardy, The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. 240, 639–660 (1974)PubMedCentralPubMedCrossRef J.A. Boulant, J.D. Hardy, The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. 240, 639–660 (1974)PubMedCentralPubMedCrossRef
93.
go back to reference H.T. Hammel, J.D. Hardy, M.M. Fusco, Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am. J. Physiol. 198, 481–486 (1960)PubMed H.T. Hammel, J.D. Hardy, M.M. Fusco, Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am. J. Physiol. 198, 481–486 (1960)PubMed
94.
go back to reference K. Imai-Matsumura, K. Matsumura, T. Nakayama, Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn. J. Physiol. 34, 939–943 (1984)PubMedCrossRef K. Imai-Matsumura, K. Matsumura, T. Nakayama, Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn. J. Physiol. 34, 939–943 (1984)PubMedCrossRef
95.
go back to reference S. Amir, A. Schiavetto, Injection of prostaglandin E2 into the anterior hypothalamic preoptic area activates brown adipose tissue thermogenesis in the rat. Brain Res. 528, 138–142 (1990)PubMedCrossRef S. Amir, A. Schiavetto, Injection of prostaglandin E2 into the anterior hypothalamic preoptic area activates brown adipose tissue thermogenesis in the rat. Brain Res. 528, 138–142 (1990)PubMedCrossRef
96.
go back to reference C.H. Vaughan, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012)PubMedCentralPubMedCrossRef C.H. Vaughan, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012)PubMedCentralPubMedCrossRef
97.
go back to reference V. Ryu, J.T. Garretson, Y. Liu, C.H. Vaughan, T.J. Bartness, Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015)PubMedCentralPubMedCrossRef V. Ryu, J.T. Garretson, Y. Liu, C.H. Vaughan, T.J. Bartness, Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015)PubMedCentralPubMedCrossRef
98.
go back to reference P.E. Scherer, Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537–1545 (2006)PubMedCrossRef P.E. Scherer, Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537–1545 (2006)PubMedCrossRef
99.
go back to reference A.S. Greenberg, M.S. Obin, Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83, 461S–465S (2006)PubMed A.S. Greenberg, M.S. Obin, Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83, 461S–465S (2006)PubMed
101.
go back to reference F.F. Casanueva, C. Dieguez, Neuroendocrine regulation and actions of leptin. Front. Neuroendocrinol. 20, 317–363 (1999)PubMedCrossRef F.F. Casanueva, C. Dieguez, Neuroendocrine regulation and actions of leptin. Front. Neuroendocrinol. 20, 317–363 (1999)PubMedCrossRef
102.
go back to reference T.J. Bartness, S.C. Kay, H. Shi, R.R. Bowers, M.T. Foster, Brain-adipose tissue cross talk. Proc Nutr Soc. 64, 53–64 (2005)PubMedCrossRef T.J. Bartness, S.C. Kay, H. Shi, R.R. Bowers, M.T. Foster, Brain-adipose tissue cross talk. Proc Nutr Soc. 64, 53–64 (2005)PubMedCrossRef
103.
go back to reference R. Nogueiras, M. Lopez, C. Dieguez, Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes. Rev. 11, 185–201 (2010)PubMedCrossRef R. Nogueiras, M. Lopez, C. Dieguez, Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes. Rev. 11, 185–201 (2010)PubMedCrossRef
104.
go back to reference M. Bamshad, V.T. Aoki, M.G. Adkison, W.S. Warren, T.J. Bartness, Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299 (1998)PubMed M. Bamshad, V.T. Aoki, M.G. Adkison, W.S. Warren, T.J. Bartness, Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299 (1998)PubMed
105.
go back to reference H. Shi, T.J. Bartness, Neurochemical phenotype of sympathetic nervous system outflow from brain to white fat. Brain Res. Bull. 54, 375–385 (2001)PubMedCrossRef H. Shi, T.J. Bartness, Neurochemical phenotype of sympathetic nervous system outflow from brain to white fat. Brain Res. Bull. 54, 375–385 (2001)PubMedCrossRef
106.
go back to reference M.A. van Baak, The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14 (2001)PubMedCrossRef M.A. van Baak, The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14 (2001)PubMedCrossRef
107.
go back to reference G. Fruhbeck, L. Mendez-Gimenez, J.A. Fernandez-Formoso, S. Fernandez, A. Rodriguez, Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27, 63–93 (2014)PubMedCrossRef G. Fruhbeck, L. Mendez-Gimenez, J.A. Fernandez-Formoso, S. Fernandez, A. Rodriguez, Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27, 63–93 (2014)PubMedCrossRef
108.
go back to reference J. Shen, M. Tanida, J.F. Yao, A. Niijima, K. Nagai, Biphasic effects of orexin-A on autonomic nerve activity and lipolysis. Neurosci. Lett. 444, 166–171 (2008)PubMedCrossRef J. Shen, M. Tanida, J.F. Yao, A. Niijima, K. Nagai, Biphasic effects of orexin-A on autonomic nerve activity and lipolysis. Neurosci. Lett. 444, 166–171 (2008)PubMedCrossRef
109.
go back to reference M. Imbernon, D. Beiroa, M.J. Vazquez, D.A. Morgan, C. Veyrat-Durebex, B. Porteiro, A. Diaz-Arteaga, A. Senra, S. Busquets, D.A. Velasquez, O. Al-Massadi, L. Varela, M. Gandara, F.J. Lopez-Soriano, R. Gallego, L.M. Seoane, J.M. Argiles, M. Lopez, R.J. Davis, G. Sabio, F. Rohner-Jeanrenaud, K. Rahmouni, C. Dieguez, R. Nogueiras, Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 144, 636–649 (2013)PubMedCentralPubMedCrossRef M. Imbernon, D. Beiroa, M.J. Vazquez, D.A. Morgan, C. Veyrat-Durebex, B. Porteiro, A. Diaz-Arteaga, A. Senra, S. Busquets, D.A. Velasquez, O. Al-Massadi, L. Varela, M. Gandara, F.J. Lopez-Soriano, R. Gallego, L.M. Seoane, J.M. Argiles, M. Lopez, R.J. Davis, G. Sabio, F. Rohner-Jeanrenaud, K. Rahmouni, C. Dieguez, R. Nogueiras, Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 144, 636–649 (2013)PubMedCentralPubMedCrossRef
110.
go back to reference J.J. Hwa, L. Ghibaudi, J. Gao, E.M. Parker, Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R444–R451 (2001)PubMed J.J. Hwa, L. Ghibaudi, J. Gao, E.M. Parker, Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R444–R451 (2001)PubMed
111.
go back to reference P.D. Raposinho, R.B. White, M.L. Aubert, The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male rat. J. Neuroendocrinol. 15, 173–181 (2003)PubMedCrossRef P.D. Raposinho, R.B. White, M.L. Aubert, The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male rat. J. Neuroendocrinol. 15, 173–181 (2003)PubMedCrossRef
112.
go back to reference C.K. Song, R.M. Jackson, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1467–R1476 (2005)PubMedCrossRef C.K. Song, R.M. Jackson, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1467–R1476 (2005)PubMedCrossRef
113.
go back to reference C.K. Song, C.H. Vaughan, E. Keen-Rhinehart, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R417–R428 (2008)PubMedCentralPubMedCrossRef C.K. Song, C.H. Vaughan, E. Keen-Rhinehart, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R417–R428 (2008)PubMedCentralPubMedCrossRef
114.
go back to reference M.N. Brito, N.A. Brito, D.J. Baro, C.K. Song, T.J. Bartness, Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 148, 5339–5347 (2007)PubMedCrossRef M.N. Brito, N.A. Brito, D.J. Baro, C.K. Song, T.J. Bartness, Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 148, 5339–5347 (2007)PubMedCrossRef
115.
go back to reference R. Nogueiras, P. Wiedmer, D. Perez-Tilve, C. Veyrat-Durebex, J.M. Keogh, G.M. Sutton, P.T. Pfluger, T.R. Castaneda, S. Neschen, S.M. Hofmann, P.N. Howles, D.A. Morgan, S.C. Benoit, I. Szanto, B. Schrott, A. Schurmann, H.G. Joost, C. Hammond, D.Y. Hui, S.C. Woods, K. Rahmouni, A.A. Butler, I.S. Farooqi, S. O’Rahilly, F. Rohner-Jeanrenaud, M.H. Tschop, The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest. 117, 3475–3488 (2007)PubMedCentralPubMedCrossRef R. Nogueiras, P. Wiedmer, D. Perez-Tilve, C. Veyrat-Durebex, J.M. Keogh, G.M. Sutton, P.T. Pfluger, T.R. Castaneda, S. Neschen, S.M. Hofmann, P.N. Howles, D.A. Morgan, S.C. Benoit, I. Szanto, B. Schrott, A. Schurmann, H.G. Joost, C. Hammond, D.Y. Hui, S.C. Woods, K. Rahmouni, A.A. Butler, I.S. Farooqi, S. O’Rahilly, F. Rohner-Jeanrenaud, M.H. Tschop, The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest. 117, 3475–3488 (2007)PubMedCentralPubMedCrossRef
116.
go back to reference S. Kaushik, E. Arias, H. Kwon, N.M. Lopez, D. Athonvarangkul, S. Sahu, G.J. Schwartz, J.E. Pessin, R. Singh, Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258–265 (2012)PubMedCentralPubMedCrossRef S. Kaushik, E. Arias, H. Kwon, N.M. Lopez, D. Athonvarangkul, S. Sahu, G.J. Schwartz, J.E. Pessin, R. Singh, Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258–265 (2012)PubMedCentralPubMedCrossRef
117.
go back to reference M. Ruffin, S. Nicolaidis, Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res. 846, 23–29 (1999)PubMedCrossRef M. Ruffin, S. Nicolaidis, Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res. 846, 23–29 (1999)PubMedCrossRef
118.
go back to reference A. Takahashi, T. Shimazu, Hypothalamic regulation of lipid metabolism in the rat: effect of hypothalamic stimulation on lipolysis. J. Auton. Nerv. Syst. 4, 195–205 (1981)PubMedCrossRef A. Takahashi, T. Shimazu, Hypothalamic regulation of lipid metabolism in the rat: effect of hypothalamic stimulation on lipolysis. J. Auton. Nerv. Syst. 4, 195–205 (1981)PubMedCrossRef
119.
go back to reference P. Cardinal, C. Andre, C. Quarta, L. Bellocchio, S. Clark, M. Elie, T. Leste-Lasserre, M. Maitre, D. Gonzales, A. Cannich, U. Pagotto, G. Marsicano, D. Cota, CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin. Mol Metab. 3, 705–716 (2014)PubMedCentralPubMedCrossRef P. Cardinal, C. Andre, C. Quarta, L. Bellocchio, S. Clark, M. Elie, T. Leste-Lasserre, M. Maitre, D. Gonzales, A. Cannich, U. Pagotto, G. Marsicano, D. Cota, CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin. Mol Metab. 3, 705–716 (2014)PubMedCentralPubMedCrossRef
120.
go back to reference V. Ryu, T.J. Bartness, Short and long sympathetic-sensory feedback loops in white fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R886–R900 (2014)PubMedCentralPubMedCrossRef V. Ryu, T.J. Bartness, Short and long sympathetic-sensory feedback loops in white fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R886–R900 (2014)PubMedCentralPubMedCrossRef
121.
go back to reference C.K. Song, G.J. Schwartz, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R501–R511 (2009)PubMedCentralPubMedCrossRef C.K. Song, G.J. Schwartz, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R501–R511 (2009)PubMedCentralPubMedCrossRef
122.
go back to reference B. Ahren, Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43, 393–410 (2000)PubMedCrossRef B. Ahren, Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43, 393–410 (2000)PubMedCrossRef
123.
go back to reference B. Thorens, Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13(Suppl 1), 82–88 (2011)PubMedCrossRef B. Thorens, Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13(Suppl 1), 82–88 (2011)PubMedCrossRef
125.
go back to reference R.J. Perry, V.T. Samuel, K.F. Petersen, G.I. Shulman, The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014)PubMedCentralPubMedCrossRef R.J. Perry, V.T. Samuel, K.F. Petersen, G.I. Shulman, The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014)PubMedCentralPubMedCrossRef
126.
go back to reference C.J. Ramnanan, D.S. Edgerton, G. Kraft, A.D. Cherrington, Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes. Metab. 13(Suppl 1), 118–125 (2011)PubMedCrossRef C.J. Ramnanan, D.S. Edgerton, G. Kraft, A.D. Cherrington, Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes. Metab. 13(Suppl 1), 118–125 (2011)PubMedCrossRef
127.
go back to reference S.E. la Fleur, A. Kalsbeek, J. Wortel, R.M. Buijs, Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 871, 50–56 (2000)PubMedCrossRef S.E. la Fleur, A. Kalsbeek, J. Wortel, R.M. Buijs, Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 871, 50–56 (2000)PubMedCrossRef
128.
go back to reference V. Ulken, G.P. Puschel, K. Jungermann, Increase in glucose and lactate output and perfusion resistance by stimulation of hepatic nerves in isolated perfused rat liver: role of alpha 1-, alpha 2-, beta 1- and beta 2-receptors. Biol Chem Hoppe Seyler. 372, 401–409 (1991)PubMedCrossRef V. Ulken, G.P. Puschel, K. Jungermann, Increase in glucose and lactate output and perfusion resistance by stimulation of hepatic nerves in isolated perfused rat liver: role of alpha 1-, alpha 2-, beta 1- and beta 2-receptors. Biol Chem Hoppe Seyler. 372, 401–409 (1991)PubMedCrossRef
129.
go back to reference R. Burcelin, M. Uldry, M. Foretz, C. Perrin, A. Dacosta, M. Nenniger-Tosato, J. Seydoux, S. Cotecchia, B. Thorens, Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J. Biol. Chem. 279, 1108–1115 (2004)PubMedCrossRef R. Burcelin, M. Uldry, M. Foretz, C. Perrin, A. Dacosta, M. Nenniger-Tosato, J. Seydoux, S. Cotecchia, B. Thorens, Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J. Biol. Chem. 279, 1108–1115 (2004)PubMedCrossRef
130.
go back to reference T.O. Mundinger, G.J. Taborsky Jr, Differential action of hepatic sympathetic neuropeptides: metabolic action of galanin, vascular action of NPY. Am J Physiol Endocrinol Metab. 278, E390–E397 (2000)PubMed T.O. Mundinger, G.J. Taborsky Jr, Differential action of hepatic sympathetic neuropeptides: metabolic action of galanin, vascular action of NPY. Am J Physiol Endocrinol Metab. 278, E390–E397 (2000)PubMed
131.
go back to reference S.T. Ruohonen, U. Pesonen, N. Moritz, K. Kaipio, M. Roytta, M. Koulu, E. Savontaus, Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons: a novel model of increased adiposity and impaired glucose tolerance. Diabetes 57, 1517–1525 (2008)PubMedCrossRef S.T. Ruohonen, U. Pesonen, N. Moritz, K. Kaipio, M. Roytta, M. Koulu, E. Savontaus, Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons: a novel model of increased adiposity and impaired glucose tolerance. Diabetes 57, 1517–1525 (2008)PubMedCrossRef
132.
go back to reference N. Uyama, A. Geerts, H. Reynaert, Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol. 280, 808–820 (2004)PubMedCrossRef N. Uyama, A. Geerts, H. Reynaert, Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol. 280, 808–820 (2004)PubMedCrossRef
133.
go back to reference T. Shimazu, Nervous control of peripheral metabolism. Acta Physiol Pol. 30, 1–18 (1979)PubMed T. Shimazu, Nervous control of peripheral metabolism. Acta Physiol Pol. 30, 1–18 (1979)PubMed
134.
go back to reference T. Shimazu, S. Ogasawara, Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. Am. J. Physiol. 228, 1787–1793 (1975)PubMed T. Shimazu, S. Ogasawara, Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. Am. J. Physiol. 228, 1787–1793 (1975)PubMed
135.
go back to reference C.X. Yi, M.J. Serlie, M.T. Ackermans, E. Foppen, R.M. Buijs, H.P. Sauerwein, E. Fliers, A. Kalsbeek, A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58, 1998–2005 (2009)PubMedCentralPubMedCrossRef C.X. Yi, M.J. Serlie, M.T. Ackermans, E. Foppen, R.M. Buijs, H.P. Sauerwein, E. Fliers, A. Kalsbeek, A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58, 1998–2005 (2009)PubMedCentralPubMedCrossRef
136.
go back to reference H. Tsuneki, E. Tokai, Y. Nakamura, K. Takahashi, M. Fujita, T. Asaoka, K. Kon, Y. Anzawa, T. Wada, I. Takasaki, K. Kimura, H. Inoue, M. Yanagisawa, T. Sakurai, T. Sasaoka, Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64, 459–470 (2015)PubMedCrossRef H. Tsuneki, E. Tokai, Y. Nakamura, K. Takahashi, M. Fujita, T. Asaoka, K. Kon, Y. Anzawa, T. Wada, I. Takasaki, K. Kimura, H. Inoue, M. Yanagisawa, T. Sakurai, T. Sasaoka, Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64, 459–470 (2015)PubMedCrossRef
137.
go back to reference A. Takahashi, H. Ishimaru, Y. Ikarashi, E. Kishi, Y. Maruyama, Effects of ventromedial hypothalamus stimulation on glycogenolysis in rat liver using in vivo microdialysis. Metabolism. 46, 897–901 (1997)PubMedCrossRef A. Takahashi, H. Ishimaru, Y. Ikarashi, E. Kishi, Y. Maruyama, Effects of ventromedial hypothalamus stimulation on glycogenolysis in rat liver using in vivo microdialysis. Metabolism. 46, 897–901 (1997)PubMedCrossRef
138.
go back to reference R.J. McCrimmon, X. Fan, Y. Ding, W. Zhu, R.J. Jacob, R.S. Sherwin, Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–1958 (2004)PubMedCrossRef R.J. McCrimmon, X. Fan, Y. Ding, W. Zhu, R.J. Jacob, R.S. Sherwin, Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–1958 (2004)PubMedCrossRef
139.
go back to reference R.J. McCrimmon, X. Fan, H. Cheng, E. McNay, O. Chan, M. Shaw, Y. Ding, W. Zhu, R.S. Sherwin, Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55, 1755–1760 (2006)PubMedCrossRef R.J. McCrimmon, X. Fan, H. Cheng, E. McNay, O. Chan, M. Shaw, Y. Ding, W. Zhu, R.S. Sherwin, Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55, 1755–1760 (2006)PubMedCrossRef
140.
go back to reference R.J. McCrimmon, M. Shaw, X. Fan, H. Cheng, Y. Ding, M.C. Vella, L. Zhou, E.C. McNay, R.S. Sherwin, Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008)PubMedCrossRef R.J. McCrimmon, M. Shaw, X. Fan, H. Cheng, Y. Ding, M.C. Vella, L. Zhou, E.C. McNay, R.S. Sherwin, Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008)PubMedCrossRef
141.
go back to reference Q. Tong, C. Ye, R.J. McCrimmon, H. Dhillon, B. Choi, M.D. Kramer, J. Yu, Z. Yang, L.M. Christiansen, C.E. Lee, C.S. Choi, J.M. Zigman, G.I. Shulman, R.S. Sherwin, J.K. Elmquist, B.B. Lowell, Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5, 383–393 (2007)PubMedCentralPubMedCrossRef Q. Tong, C. Ye, R.J. McCrimmon, H. Dhillon, B. Choi, M.D. Kramer, J. Yu, Z. Yang, L.M. Christiansen, C.E. Lee, C.S. Choi, J.M. Zigman, G.I. Shulman, R.S. Sherwin, J.K. Elmquist, B.B. Lowell, Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5, 383–393 (2007)PubMedCentralPubMedCrossRef
142.
go back to reference R. Zhang, H. Dhillon, H. Yin, A. Yoshimura, B.B. Lowell, E. Maratos-Flier, J.S. Flier, Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology 149, 5654–5661 (2008)PubMedCentralPubMedCrossRef R. Zhang, H. Dhillon, H. Yin, A. Yoshimura, B.B. Lowell, E. Maratos-Flier, J.S. Flier, Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology 149, 5654–5661 (2008)PubMedCentralPubMedCrossRef
143.
go back to reference O. Chan, W. Zhu, Y. Ding, R.J. McCrimmon, R.S. Sherwin, Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 55, 1080–1087 (2006)PubMedCrossRef O. Chan, W. Zhu, Y. Ding, R.J. McCrimmon, R.S. Sherwin, Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 55, 1080–1087 (2006)PubMedCrossRef
144.
go back to reference O. Chan, S. Paranjape, D. Czyzyk, A. Horblitt, W. Zhu, Y. Ding, X. Fan, M. Seashore, R. Sherwin, Increased GABAergic output in the ventromedial hypothalamus contributes to impaired hypoglycemic counterregulation in diabetic rats. Diabetes 60, 1582–1589 (2011)PubMedCentralPubMedCrossRef O. Chan, S. Paranjape, D. Czyzyk, A. Horblitt, W. Zhu, Y. Ding, X. Fan, M. Seashore, R. Sherwin, Increased GABAergic output in the ventromedial hypothalamus contributes to impaired hypoglycemic counterregulation in diabetic rats. Diabetes 60, 1582–1589 (2011)PubMedCentralPubMedCrossRef
145.
go back to reference R. Coppari, M. Ichinose, C.E. Lee, A.E. Pullen, C.D. Kenny, R.A. McGovern, V. Tang, S.M. Liu, T. Ludwig, S.C. Chua Jr, B.B. Lowell, J.K. Elmquist, The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005)PubMedCrossRef R. Coppari, M. Ichinose, C.E. Lee, A.E. Pullen, C.D. Kenny, R.A. McGovern, V. Tang, S.M. Liu, T. Ludwig, S.C. Chua Jr, B.B. Lowell, J.K. Elmquist, The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005)PubMedCrossRef
146.
go back to reference L. Huo, K. Gamber, S. Greeley, J. Silva, N. Huntoon, X.H. Leng, C. Bjorbaek, Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537–547 (2009)PubMedCentralPubMedCrossRef L. Huo, K. Gamber, S. Greeley, J. Silva, N. Huntoon, X.H. Leng, C. Bjorbaek, Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537–547 (2009)PubMedCentralPubMedCrossRef
147.
go back to reference G.H. Goncalves, W. Li, A.V. Garcia, M.S. Figueiredo, C. Bjorbaek, Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin’s antidiabetic actions. Cell Rep. 7, 1093–1103 (2014)PubMedCentralPubMedCrossRef G.H. Goncalves, W. Li, A.V. Garcia, M.S. Figueiredo, C. Bjorbaek, Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin’s antidiabetic actions. Cell Rep. 7, 1093–1103 (2014)PubMedCentralPubMedCrossRef
148.
go back to reference A.M. van den Hoek, C. van Heijningen, J.P. Schröder-van der Elst, D.M. Ouwens, L.M. Havekes, J.A. Romijn, A. Kalsbeek, H. Pijl, Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes 57, 2304–2310 (2008)PubMedCentralPubMedCrossRef A.M. van den Hoek, C. van Heijningen, J.P. Schröder-van der Elst, D.M. Ouwens, L.M. Havekes, J.A. Romijn, A. Kalsbeek, H. Pijl, Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes 57, 2304–2310 (2008)PubMedCentralPubMedCrossRef
149.
go back to reference C.X. Yi, E. Foppen, W. Abplanalp, Y. Gao, A. Alkemade, S.E. la Fleur, M.J. Serlie, E. Fliers, R.M. Buijs, M.H. Tschop, A. Kalsbeek, Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 61, 339–345 (2012)PubMedCentralPubMedCrossRef C.X. Yi, E. Foppen, W. Abplanalp, Y. Gao, A. Alkemade, S.E. la Fleur, M.J. Serlie, E. Fliers, R.M. Buijs, M.H. Tschop, A. Kalsbeek, Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 61, 339–345 (2012)PubMedCentralPubMedCrossRef
150.
go back to reference A. Kalsbeek, E. Foppen, I. Schalij, C. van Heijningen, J. van der Vliet, E. Fliers, R.M. Buijs, Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 3, e3194 (2008)PubMedCentralPubMedCrossRef A. Kalsbeek, E. Foppen, I. Schalij, C. van Heijningen, J. van der Vliet, E. Fliers, R.M. Buijs, Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 3, e3194 (2008)PubMedCentralPubMedCrossRef
151.
go back to reference A. Pick, J. Clark, C. Kubstrup, M. Levisetti, W. Pugh, S. Bonner-Weir, K.S. Polonsky, Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47, 358–364 (1998)PubMedCrossRef A. Pick, J. Clark, C. Kubstrup, M. Levisetti, W. Pugh, S. Bonner-Weir, K.S. Polonsky, Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47, 358–364 (1998)PubMedCrossRef
152.
go back to reference C. Bernard, M.F. Berthault, C. Saulnier, A. Ktorza, Neogenesis vs. apoptosis As main components of pancreatic beta cell ass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J. 13, 1195–1205 (1999)PubMed C. Bernard, M.F. Berthault, C. Saulnier, A. Ktorza, Neogenesis vs. apoptosis As main components of pancreatic beta cell ass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J. 13, 1195–1205 (1999)PubMed
153.
go back to reference M. Paris, C. Bernard-Kargar, M.F. Berthault, L. Bouwens, A. Ktorza, Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144, 2717–2727 (2003)PubMedCrossRef M. Paris, C. Bernard-Kargar, M.F. Berthault, L. Bouwens, A. Ktorza, Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144, 2717–2727 (2003)PubMedCrossRef
154.
go back to reference B. Thorens, Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 16(Suppl 1), 87–95 (2014)PubMedCrossRef B. Thorens, Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 16(Suppl 1), 87–95 (2014)PubMedCrossRef
155.
go back to reference A.S. Jansen, J.L. Hoffman, A.D. Loewy, CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 766, 29–38 (1997)PubMedCrossRef A.S. Jansen, J.L. Hoffman, A.D. Loewy, CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 766, 29–38 (1997)PubMedCrossRef
156.
go back to reference L. Rinaman, R.R. Miselis, The organization of vagal innervation of rat pancreas using cholera toxin-horseradish peroxidase conjugate. J. Auton. Nerv. Syst. 21, 109–125 (1987)PubMedCrossRef L. Rinaman, R.R. Miselis, The organization of vagal innervation of rat pancreas using cholera toxin-horseradish peroxidase conjugate. J. Auton. Nerv. Syst. 21, 109–125 (1987)PubMedCrossRef
157.
go back to reference R.M. Buijs, S.J. Chun, A. Niijima, H.J. Romijn, K. Nagai, Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 431, 405–423 (2001)PubMedCrossRef R.M. Buijs, S.J. Chun, A. Niijima, H.J. Romijn, K. Nagai, Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 431, 405–423 (2001)PubMedCrossRef
158.
go back to reference R. Rodriguez-Diaz, S. Speier, R.D. Molano, A. Formoso, I. Gans, M.H. Abdulreda, O. Cabrera, J. Molina, A. Fachado, C. Ricordi, I. Leibiger, A. Pileggi, P.O. Berggren, A. Caicedo, Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc Natl Acad Sci USA 109, 21456–21461 (2012)PubMedCentralPubMedCrossRef R. Rodriguez-Diaz, S. Speier, R.D. Molano, A. Formoso, I. Gans, M.H. Abdulreda, O. Cabrera, J. Molina, A. Fachado, C. Ricordi, I. Leibiger, A. Pileggi, P.O. Berggren, A. Caicedo, Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc Natl Acad Sci USA 109, 21456–21461 (2012)PubMedCentralPubMedCrossRef
159.
go back to reference W.P. Borg, R.S. Sherwin, M.J. During, M.A. Borg, G.I. Shulman, Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995)PubMedCrossRef W.P. Borg, R.S. Sherwin, M.J. During, M.A. Borg, G.I. Shulman, Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995)PubMedCrossRef
160.
go back to reference M.A. Borg, R.S. Sherwin, W.P. Borg, W.V. Tamborlane, G.I. Shulman, Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest. 99, 361–365 (1997)PubMedCentralPubMedCrossRef M.A. Borg, R.S. Sherwin, W.P. Borg, W.V. Tamborlane, G.I. Shulman, Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest. 99, 361–365 (1997)PubMedCentralPubMedCrossRef
161.
go back to reference H.R. Berthoud, B. Jeanrenaud, Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105, 146–151 (1979)PubMedCrossRef H.R. Berthoud, B. Jeanrenaud, Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105, 146–151 (1979)PubMedCrossRef
162.
go back to reference S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, E.C. McNay, J.A. Cresswell, J.S. Bogan, R.J. McCrimmon, R.S. Sherwin, Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon secretion in vivo. Diabetes 59, 1521–1527 (2010)PubMedCentralPubMedCrossRef S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, E.C. McNay, J.A. Cresswell, J.S. Bogan, R.J. McCrimmon, R.S. Sherwin, Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon secretion in vivo. Diabetes 59, 1521–1527 (2010)PubMedCentralPubMedCrossRef
163.
go back to reference S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, C.A. Grillo, S. Wilson, L. Reagan, R.S. Sherwin, Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. Am J Physiol Endocrinol Metab. 301, E978–E983 (2011)PubMedCentralPubMedCrossRef S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, C.A. Grillo, S. Wilson, L. Reagan, R.S. Sherwin, Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. Am J Physiol Endocrinol Metab. 301, E978–E983 (2011)PubMedCentralPubMedCrossRef
164.
go back to reference J.D. Kim, C. Toda, G. D’Agostino, C.J. Zeiss, R.J. DiLeone, J.D. Elsworth, R.G. Kibbey, O. Chan, B.K. Harvey, C.T. Richie, M. Savolainen, T. Myohanen, J.K. Jeong, S. Diano, Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proc Natl Acad Sci USA 111, 11876–11881 (2014)PubMedCentralPubMedCrossRef J.D. Kim, C. Toda, G. D’Agostino, C.J. Zeiss, R.J. DiLeone, J.D. Elsworth, R.G. Kibbey, O. Chan, B.K. Harvey, C.T. Richie, M. Savolainen, T. Myohanen, J.K. Jeong, S. Diano, Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proc Natl Acad Sci USA 111, 11876–11881 (2014)PubMedCentralPubMedCrossRef
165.
go back to reference A. Joly-Amado, R.G. Denis, J. Castel, A. Lacombe, C. Cansell, C. Rouch, N. Kassis, J. Dairou, P.D. Cani, R. Ventura-Clapier, A. Prola, M. Flamment, F. Foufelle, C. Magnan, S. Luquet, Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 31, 4276–4288 (2012)PubMedCentralPubMedCrossRef A. Joly-Amado, R.G. Denis, J. Castel, A. Lacombe, C. Cansell, C. Rouch, N. Kassis, J. Dairou, P.D. Cani, R. Ventura-Clapier, A. Prola, M. Flamment, F. Foufelle, C. Magnan, S. Luquet, Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 31, 4276–4288 (2012)PubMedCentralPubMedCrossRef
166.
go back to reference H.R. Berthoud, E.A. Fox, T.L. Powley, Localization of vagal preganglionics that stimulate insulin and glucagon secretion. Am. J. Physiol. 258, R160–R168 (1990)PubMed H.R. Berthoud, E.A. Fox, T.L. Powley, Localization of vagal preganglionics that stimulate insulin and glucagon secretion. Am. J. Physiol. 258, R160–R168 (1990)PubMed
167.
go back to reference E. Ionescu, F. Rohner-Jeanrenaud, H.R. Berthoud, B. Jeanrenaud, Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 112, 904–910 (1983)PubMedCrossRef E. Ionescu, F. Rohner-Jeanrenaud, H.R. Berthoud, B. Jeanrenaud, Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 112, 904–910 (1983)PubMedCrossRef
168.
go back to reference B.M. Mussa, D.M. Sartor, C. Rantzau, A.J. Verberne, Effects of nitric oxide synthase blockade on dorsal vagal stimulation-induced pancreatic insulin secretion. Brain Res. 1394, 62–70 (2011)PubMedCrossRef B.M. Mussa, D.M. Sartor, C. Rantzau, A.J. Verberne, Effects of nitric oxide synthase blockade on dorsal vagal stimulation-induced pancreatic insulin secretion. Brain Res. 1394, 62–70 (2011)PubMedCrossRef
169.
go back to reference B.M. Mussa, A.J. Verberne, The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function. Exp. Physiol. 98, 25–37 (2013)PubMedCrossRef B.M. Mussa, A.J. Verberne, The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function. Exp. Physiol. 98, 25–37 (2013)PubMedCrossRef
170.
go back to reference S. Wan, F.H. Coleman, R.A. Travagli, Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1474–G1482 (2007)PubMedCrossRef S. Wan, F.H. Coleman, R.A. Travagli, Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1474–G1482 (2007)PubMedCrossRef
171.
go back to reference S. Wan, K.N. Browning, R.A. Travagli, Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 28, 2184–2191 (2007)PubMedCrossRef S. Wan, K.N. Browning, R.A. Travagli, Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 28, 2184–2191 (2007)PubMedCrossRef
173.
go back to reference J.S. Marino, Y. Xu, J.W. Hill, Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab. 22, 275–285 (2011)PubMed J.S. Marino, Y. Xu, J.W. Hill, Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab. 22, 275–285 (2011)PubMed
174.
go back to reference I.A. Kerman, L.W. Enquist, S.J. Watson, B.J. Yates, Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 23, 4657–4666 (2003)PubMed I.A. Kerman, L.W. Enquist, S.J. Watson, B.J. Yates, Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 23, 4657–4666 (2003)PubMed
175.
go back to reference I.A. Kerman, H. Akil, S.J. Watson, Rostral elements of sympatho-motor circuitry: a virally mediated transsynaptic tracing study. J. Neurosci. 26, 3423–3433 (2006)PubMedCrossRef I.A. Kerman, H. Akil, S.J. Watson, Rostral elements of sympatho-motor circuitry: a virally mediated transsynaptic tracing study. J. Neurosci. 26, 3423–3433 (2006)PubMedCrossRef
176.
go back to reference T. Babic, M.N. Purpera, B.W. Banfield, H.R. Berthoud, C.D. Morrison, Innervation of skeletal muscle by leptin receptor-containing neurons. Brain Res. 1345, 146–155 (2010)PubMedCentralPubMedCrossRef T. Babic, M.N. Purpera, B.W. Banfield, H.R. Berthoud, C.D. Morrison, Innervation of skeletal muscle by leptin receptor-containing neurons. Brain Res. 1345, 146–155 (2010)PubMedCentralPubMedCrossRef
177.
go back to reference M.S. Haque, Y. Minokoshi, M. Hamai, M. Iwai, M. Horiuchi, T. Shimazu, Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48, 1706–1712 (1999)PubMedCrossRef M.S. Haque, Y. Minokoshi, M. Hamai, M. Iwai, M. Horiuchi, T. Shimazu, Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48, 1706–1712 (1999)PubMedCrossRef
178.
go back to reference T. Shimazu, M. Sudo, Y. Minokoshi, A. Takahashi, Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res. Bull. 27, 501–504 (1991)PubMedCrossRef T. Shimazu, M. Sudo, Y. Minokoshi, A. Takahashi, Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res. Bull. 27, 501–504 (1991)PubMedCrossRef
179.
go back to reference M. Sudo, Y. Minokoshi, T. Shimazu, Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am. J. Physiol. 261, E298–E303 (1991)PubMed M. Sudo, Y. Minokoshi, T. Shimazu, Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am. J. Physiol. 261, E298–E303 (1991)PubMed
180.
go back to reference Y. Minokoshi, Y. Okano, T. Shimazu, Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 649, 343–347 (1994)PubMedCrossRef Y. Minokoshi, Y. Okano, T. Shimazu, Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 649, 343–347 (1994)PubMedCrossRef
181.
go back to reference Y. Minokoshi, M.S. Haque, T. Shimazu, Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999)PubMedCrossRef Y. Minokoshi, M.S. Haque, T. Shimazu, Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999)PubMedCrossRef
182.
go back to reference T. Shiuchi, M.S. Haque, S. Okamoto, T. Inoue, H. Kageyama, S. Lee, C. Toda, A. Suzuki, E.S. Bachman, Y.B. Kim, T. Sakurai, M. Yanagisawa, S. Shioda, K. Imoto, Y. Minokoshi, Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10, 466–480 (2009)PubMedCrossRef T. Shiuchi, M.S. Haque, S. Okamoto, T. Inoue, H. Kageyama, S. Lee, C. Toda, A. Suzuki, E.S. Bachman, Y.B. Kim, T. Sakurai, M. Yanagisawa, S. Shioda, K. Imoto, Y. Minokoshi, Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10, 466–480 (2009)PubMedCrossRef
184.
go back to reference M.A. Cowley, J.L. Smart, M. Rubinstein, M.G. Cerdan, S. Diano, T.L. Horvath, R.D. Cone, M.J. Low, Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001)PubMedCrossRef M.A. Cowley, J.L. Smart, M. Rubinstein, M.G. Cerdan, S. Diano, T.L. Horvath, R.D. Cone, M.J. Low, Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001)PubMedCrossRef
185.
go back to reference G. Fruhbeck, M. Aguado, J. Gomez-Ambrosi, J.A. Martinez, Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem Biophys Res Commun. 250, 99–102 (1998)PubMedCrossRef G. Fruhbeck, M. Aguado, J. Gomez-Ambrosi, J.A. Martinez, Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem Biophys Res Commun. 250, 99–102 (1998)PubMedCrossRef
186.
go back to reference S. Kamohara, R. Burcelin, J.L. Halaas, J.M. Friedman, M.J. Charron, Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377 (1997)PubMedCrossRef S. Kamohara, R. Burcelin, J.L. Halaas, J.M. Friedman, M.J. Charron, Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377 (1997)PubMedCrossRef
187.
go back to reference C. Buettner, E.D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, J. Harvey-White, G.J. Schwartz, G. Kunos, L. Rossetti, C. Buettner, Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14, 667–675 (2008)PubMedCentralPubMedCrossRef C. Buettner, E.D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, J. Harvey-White, G.J. Schwartz, G. Kunos, L. Rossetti, C. Buettner, Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14, 667–675 (2008)PubMedCentralPubMedCrossRef
188.
go back to reference W.G. Haynes, D.A. Morgan, S.A. Walsh, A.L. Mark, W.I. Sivitz, Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 100, 270–278 (1997)PubMedCentralPubMedCrossRef W.G. Haynes, D.A. Morgan, S.A. Walsh, A.L. Mark, W.I. Sivitz, Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 100, 270–278 (1997)PubMedCentralPubMedCrossRef
189.
go back to reference S. Park, I.S. Ahn, D.S. Kim, Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model. Life Sci. 86, 854–862 (2010)PubMedCrossRef S. Park, I.S. Ahn, D.S. Kim, Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model. Life Sci. 86, 854–862 (2010)PubMedCrossRef
190.
go back to reference J. German, F. Kim, G.J. Schwartz, P.J. Havel, C.J. Rhodes, M.W. Schwartz, G.J. Morton, Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 150, 4502–4511 (2009)PubMedCentralPubMedCrossRef J. German, F. Kim, G.J. Schwartz, P.J. Havel, C.J. Rhodes, M.W. Schwartz, G.J. Morton, Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 150, 4502–4511 (2009)PubMedCentralPubMedCrossRef
191.
go back to reference A. Warner, J. Mittag, Thyroid hormone and the central control of homeostasis. J. Mol. Endocrinol. 49, R29–R35 (2012)PubMedCrossRef A. Warner, J. Mittag, Thyroid hormone and the central control of homeostasis. J. Mol. Endocrinol. 49, R29–R35 (2012)PubMedCrossRef
192.
go back to reference N. Martinez-Sanchez, C.V. Alvarez, J. Ferno, R. Nogueiras, C. Dieguez, M. Lopez, Hypothalamic effects of thyroid hormones on metabolism. Best Pract Res Clin Endocrinol Metab. 28, 703–712 (2014)PubMedCrossRef N. Martinez-Sanchez, C.V. Alvarez, J. Ferno, R. Nogueiras, C. Dieguez, M. Lopez, Hypothalamic effects of thyroid hormones on metabolism. Best Pract Res Clin Endocrinol Metab. 28, 703–712 (2014)PubMedCrossRef
193.
go back to reference M. Sjogren, A. Alkemade, J. Mittag, K. Nordstrom, A. Katz, B. Rozell, H. Westerblad, A. Arner, B. Vennstrom, Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J. 26, 4535–4545 (2007)PubMedCentralPubMedCrossRef M. Sjogren, A. Alkemade, J. Mittag, K. Nordstrom, A. Katz, B. Rozell, H. Westerblad, A. Arner, B. Vennstrom, Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J. 26, 4535–4545 (2007)PubMedCentralPubMedCrossRef
194.
go back to reference L.P. Klieverik, H.P. Sauerwein, M.T. Ackermans, A. Boelen, A. Kalsbeek, E. Fliers, Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am J Physiol Endocrinol Metab. 294, E513–E520 (2008)PubMedCrossRef L.P. Klieverik, H.P. Sauerwein, M.T. Ackermans, A. Boelen, A. Kalsbeek, E. Fliers, Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am J Physiol Endocrinol Metab. 294, E513–E520 (2008)PubMedCrossRef
195.
go back to reference C.B. Cook, I. Kakucska, R.M. Lechan, R.J. Koenig, Expression of thyroid hormone receptor beta 2 in rat hypothalamus. Endocrinology 130, 1077–1079 (1992)PubMed C.B. Cook, I. Kakucska, R.M. Lechan, R.J. Koenig, Expression of thyroid hormone receptor beta 2 in rat hypothalamus. Endocrinology 130, 1077–1079 (1992)PubMed
196.
go back to reference L. Varela, N. Martinez-Sanchez, R. Gallego, M.J. Vazquez, J. Roa, M. Gandara, E. Schoenmakers, R. Nogueiras, K. Chatterjee, M. Tena-Sempere, C. Dieguez, M. Lopez, Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol. 227, 209–222 (2012)PubMedCrossRef L. Varela, N. Martinez-Sanchez, R. Gallego, M.J. Vazquez, J. Roa, M. Gandara, E. Schoenmakers, R. Nogueiras, K. Chatterjee, M. Tena-Sempere, C. Dieguez, M. Lopez, Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol. 227, 209–222 (2012)PubMedCrossRef
197.
go back to reference A.C. Konner, R. Janoschek, L. Plum, S.D. Jordan, E. Rother, X. Ma, C. Xu, P. Enriori, B. Hampel, G.S. Barsh, C.R. Kahn, M.A. Cowley, F.M. Ashcroft, J.C. Bruning, Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007)PubMedCrossRef A.C. Konner, R. Janoschek, L. Plum, S.D. Jordan, E. Rother, X. Ma, C. Xu, P. Enriori, B. Hampel, G.S. Barsh, C.R. Kahn, M.A. Cowley, F.M. Ashcroft, J.C. Bruning, Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007)PubMedCrossRef
198.
go back to reference A.C. Konner, T. Klockener, J.C. Bruning, Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol. Behav. 97, 632–638 (2009)PubMedCrossRef A.C. Konner, T. Klockener, J.C. Bruning, Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol. Behav. 97, 632–638 (2009)PubMedCrossRef
199.
go back to reference D.M. Smith, S.R. Bloom, M.C. Sugden, M.J. Holness, Glucose transporter expression and glucose utilization in skeletal muscle and brown adipose tissue during starvation and re-feeding. Biochem. J. 282(Pt 1), 231–235 (1992)PubMedCentralPubMedCrossRef D.M. Smith, S.R. Bloom, M.C. Sugden, M.J. Holness, Glucose transporter expression and glucose utilization in skeletal muscle and brown adipose tissue during starvation and re-feeding. Biochem. J. 282(Pt 1), 231–235 (1992)PubMedCentralPubMedCrossRef
200.
201.
go back to reference K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)PubMedCentralPubMedCrossRef K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)PubMedCentralPubMedCrossRef
202.
go back to reference E. Fliers, F. Kreier, P.J. Voshol, L.M. Havekes, H.P. Sauerwein, A. Kalsbeek, R.M. Buijs, J.A. Romijn, White adipose tissue: getting nervous. J. Neuroendocrinol. 15, 1005–1010 (2003)PubMedCrossRef E. Fliers, F. Kreier, P.J. Voshol, L.M. Havekes, H.P. Sauerwein, A. Kalsbeek, R.M. Buijs, J.A. Romijn, White adipose tissue: getting nervous. J. Neuroendocrinol. 15, 1005–1010 (2003)PubMedCrossRef
203.
go back to reference L. Koch, F.T. Wunderlich, J. Seibler, A.C. Konner, B. Hampel, S. Irlenbusch, G. Brabant, C.R. Kahn, F. Schwenk, J.C. Bruning, Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 118, 2132–2147 (2008)PubMedCentralPubMed L. Koch, F.T. Wunderlich, J. Seibler, A.C. Konner, B. Hampel, S. Irlenbusch, G. Brabant, C.R. Kahn, F. Schwenk, J.C. Bruning, Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 118, 2132–2147 (2008)PubMedCentralPubMed
204.
go back to reference T. Scherer, J. O’Hare, K. Diggs-Andrews, M. Schweiger, B. Cheng, C. Lindtner, E. Zielinski, P. Vempati, K. Su, S. Dighe, T. Milsom, M. Puchowicz, L. Scheja, R. Zechner, S.J. Fisher, S.F. Previs, C. Buettner, Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011)PubMedCentralPubMedCrossRef T. Scherer, J. O’Hare, K. Diggs-Andrews, M. Schweiger, B. Cheng, C. Lindtner, E. Zielinski, P. Vempati, K. Su, S. Dighe, T. Milsom, M. Puchowicz, L. Scheja, R. Zechner, S.J. Fisher, S.F. Previs, C. Buettner, Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011)PubMedCentralPubMedCrossRef
205.
go back to reference C. Buettner, R.C. Camacho, Hypothalamic control of hepatic glucose production and its potential role in insulin resistance. Endocrinol. Metab. Clin. North Am. 37, 825–840 (2008)PubMedCrossRef C. Buettner, R.C. Camacho, Hypothalamic control of hepatic glucose production and its potential role in insulin resistance. Endocrinol. Metab. Clin. North Am. 37, 825–840 (2008)PubMedCrossRef
206.
go back to reference S. Obici, B.B. Zhang, G. Karkanias, L. Rossetti, Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382 (2002)PubMedCrossRef S. Obici, B.B. Zhang, G. Karkanias, L. Rossetti, Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382 (2002)PubMedCrossRef
207.
go back to reference S.J. Fisher, C.R. Kahn, Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest. 111, 463–468 (2003)PubMedCentralPubMedCrossRef S.J. Fisher, C.R. Kahn, Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest. 111, 463–468 (2003)PubMedCentralPubMedCrossRef
208.
go back to reference A. Kleinridders, H.A. Ferris, W. Cai, C.R. Kahn, Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014)PubMedCentralPubMedCrossRef A. Kleinridders, H.A. Ferris, W. Cai, C.R. Kahn, Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014)PubMedCentralPubMedCrossRef
209.
go back to reference J. Havrankova, J. Roth, M. Brownstein, Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272, 827–829 (1978)PubMedCrossRef J. Havrankova, J. Roth, M. Brownstein, Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272, 827–829 (1978)PubMedCrossRef
210.
go back to reference K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)PubMedCentralPubMedCrossRef K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)PubMedCentralPubMedCrossRef
211.
go back to reference N.L. Nguyen, J. Randall, B.W. Banfield, T.J. Bartness, Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R375–R386 (2014)PubMedCentralPubMedCrossRef N.L. Nguyen, J. Randall, B.W. Banfield, T.J. Bartness, Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R375–R386 (2014)PubMedCentralPubMedCrossRef
212.
go back to reference M. Ahmadian, R.E. Duncan, H.S. Sul, The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20, 424–428 (2009)PubMedCentralPubMedCrossRef M. Ahmadian, R.E. Duncan, H.S. Sul, The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20, 424–428 (2009)PubMedCentralPubMedCrossRef
213.
go back to reference K. Rahmouni, C.D. Sigmund, W.G. Haynes, A.L. Mark, Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58, 536–542 (2009)PubMedCentralPubMedCrossRef K. Rahmouni, C.D. Sigmund, W.G. Haynes, A.L. Mark, Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58, 536–542 (2009)PubMedCentralPubMedCrossRef
214.
go back to reference S.M. Harlan, D.F. Guo, D.A. Morgan, C. Fernandes-Santos, K. Rahmouni, Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 17, 599–606 (2013)PubMedCentralPubMedCrossRef S.M. Harlan, D.F. Guo, D.A. Morgan, C. Fernandes-Santos, K. Rahmouni, Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 17, 599–606 (2013)PubMedCentralPubMedCrossRef
Metadata
Title
Hypothalamic-autonomic control of energy homeostasis
Authors
Patricia Seoane-Collazo
Johan Fernø
Francisco Gonzalez
Carlos Diéguez
Rosaura Leis
Rubén Nogueiras
Miguel López
Publication date
01-11-2015
Publisher
Springer US
Published in
Endocrine / Issue 2/2015
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-015-0658-y

Other articles of this Issue 2/2015

Endocrine 2/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine