Skip to main content
Top
Published in: Endocrine 2/2014

01-11-2014 | Original Article

Glucocorticoids activate the local renin–angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis

Authors: Zhang Yongtao, Wang Kunzheng, Zheng Jingjing, Shan Hu, Kou Jianqiang, Liu Ruiyu, Wang Chunsheng

Published in: Endocrine | Issue 2/2014

Login to get access

Abstract

Bone metabolism disorder has been identified to play a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The local renin–angiotensin system (RAS) in bone is newly defined to be closely related to the bone metabolism. However, it is unknown whether the local RAS is involved in GIOP. Adult male New Zealand white rabbits were treated with saline, dexamethasone (DXM) alone, or DXM combined with perindopril. The expression of main RAS components in trabecular bone was examined at mRNA and/or protein levels. Bone metabolism was analyzed using dual-energy X-ray absorptiometry, histomorphometry, biomechanics, biochemical techniques, and quantitative RT-PCR. The expressions of local bone angiotensin II, angiotensin types 1 and 2 receptors, and angiotensin-converting enzyme at mRNA and/or protein levels increased when DXM-induced osteoporosis was present. Whereas, perindopril significantly blocked the activation of the local RAS and partially reversed GIOP. Mineralizing surface, mineral apposition rate, and bone formation rate were decreased by DXM, along with serum osteocalcin being downregulated. These changes were then reversed by the use of perindopril. Osteoclast number, osteoclast surface, and eroded surface increased after the administration of DXM, and urinary deoxypyridinoline was upregulated. These were also inhibited when perindopril was given. Quantitative RT-PCR using RNA isolated from the lumbar vertebrae revealed an increase in the SOST expression and a decrease in the Runx2 expression, whereas the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio and the expression of tartrate resistant acid phosphatase were increased, which were all inhibited by perindopril. The results of this study provide evidence for the role of local RAS is involved in GIOP, and GIOP may be ameliorated by blocking the activation of local RAS in the bone.
Appendix
Available only for authorised users
Literature
1.
go back to reference M. Steinbuch, T. Youket, S. Cohen, Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos. Int. 15, 323–328 (2004)PubMedCrossRef M. Steinbuch, T. Youket, S. Cohen, Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos. Int. 15, 323–328 (2004)PubMedCrossRef
2.
go back to reference T. Van Staa, R. Laan, I. Barton, S. Cohen, D. Reid, C. Cooper, Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 48, 3224–3229 (2003)PubMedCrossRef T. Van Staa, R. Laan, I. Barton, S. Cohen, D. Reid, C. Cooper, Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 48, 3224–3229 (2003)PubMedCrossRef
3.
go back to reference S. Lekamwasam, J. Adachi, D. Agnusdei, J. Bilezikian, S. Boonen, F. Borgström, C. Cooper, A. Diez Perez, R. Eastell, L. Hofbauer, A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos. Int. 23, 2257–2276 (2012)PubMedCrossRef S. Lekamwasam, J. Adachi, D. Agnusdei, J. Bilezikian, S. Boonen, F. Borgström, C. Cooper, A. Diez Perez, R. Eastell, L. Hofbauer, A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos. Int. 23, 2257–2276 (2012)PubMedCrossRef
4.
go back to reference R. Rizzoli, J. Adachi, C. Cooper, W. Dere, J. Devogelaer, A. Diez-Perez, J. Kanis, A. Laslop, B. Mitlak, S. Papapoulos, Management of glucocorticoid-induced osteoporosis. Calcif. Tissue Int. 91, 225–243 (2012)PubMedCrossRef R. Rizzoli, J. Adachi, C. Cooper, W. Dere, J. Devogelaer, A. Diez-Perez, J. Kanis, A. Laslop, B. Mitlak, S. Papapoulos, Management of glucocorticoid-induced osteoporosis. Calcif. Tissue Int. 91, 225–243 (2012)PubMedCrossRef
6.
go back to reference H. Hagiwara, Y. Hiruma, A. Inoue, A. Yamaguchi, S. Hirose, Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J. Endocrinol. 156, 543–550 (1998). doi:10.1677/joe.0.1560543 PubMedCrossRef H. Hagiwara, Y. Hiruma, A. Inoue, A. Yamaguchi, S. Hirose, Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J. Endocrinol. 156, 543–550 (1998). doi:10.​1677/​joe.​0.​1560543 PubMedCrossRef
7.
go back to reference Y.Y. Liu, W.M. Yao, T. Wu, B.L. Xu, F. Chen, L. Cui, Captopril improves osteopenia in ovariectomized rats and promotes bone formation in osteoblasts. J. Bone Miner. Metab. 29, 149–158 (2011)PubMedCrossRef Y.Y. Liu, W.M. Yao, T. Wu, B.L. Xu, F. Chen, L. Cui, Captopril improves osteopenia in ovariectomized rats and promotes bone formation in osteoblasts. J. Bone Miner. Metab. 29, 149–158 (2011)PubMedCrossRef
9.
go back to reference Y. Asaba, M. Ito, T. Fumoto, K. Watanabe, R. Flikuhara, S. Takeshita, Y. Nimura, J. Ishida, A. Fukamizu, K. Ikeda, Activation of renin–angiotensin system induces osteoporosis independently of hypertension. J. Bone Miner. Res. 24, 241–250 (2009). doi:10.1359/jbmr.081006 PubMedCrossRef Y. Asaba, M. Ito, T. Fumoto, K. Watanabe, R. Flikuhara, S. Takeshita, Y. Nimura, J. Ishida, A. Fukamizu, K. Ikeda, Activation of renin–angiotensin system induces osteoporosis independently of hypertension. J. Bone Miner. Res. 24, 241–250 (2009). doi:10.​1359/​jbmr.​081006 PubMedCrossRef
10.
go back to reference H. Shimizu, H. Nakagami, M.K. Osako, R. Hanayama, Y. Kunugiza, T. Kizawa, T. Tomita, H. Yoshikawa, T. Ogihara, R. Morishita, Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J 22, 2465–2475 (2008)PubMedCrossRef H. Shimizu, H. Nakagami, M.K. Osako, R. Hanayama, Y. Kunugiza, T. Kizawa, T. Tomita, H. Yoshikawa, T. Ogihara, R. Morishita, Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J 22, 2465–2475 (2008)PubMedCrossRef
11.
go back to reference B.O. Donmez, S. Ozdemir, M. Sarikanat, N. Yaras, P. Koc, N. Demir, B. Karayalcin, N. Oguz, Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol. Rep. 64, 878–888 (2012)PubMedCrossRef B.O. Donmez, S. Ozdemir, M. Sarikanat, N. Yaras, P. Koc, N. Demir, B. Karayalcin, N. Oguz, Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol. Rep. 64, 878–888 (2012)PubMedCrossRef
12.
go back to reference K. Kaneko, M. Ito, T. Fumoto, R. Fukuhara, J. Ishida, A. Fukamizu, K. Ikeda, Physiological function of the angiotensin AT1a receptor in bone remodeling. J. Bone Miner. Res. 26, 2959–2966 (2011)PubMedCrossRef K. Kaneko, M. Ito, T. Fumoto, R. Fukuhara, J. Ishida, A. Fukamizu, K. Ikeda, Physiological function of the angiotensin AT1a receptor in bone remodeling. J. Bone Miner. Res. 26, 2959–2966 (2011)PubMedCrossRef
14.
go back to reference H. Nakagami, M. Kiomy Osako, H. Shimizu, R. Hanayama, R. Morishita, Potential contribution of action of renin angiotensin system to bone metabolism. Curr. Hypertens Rev. 3, 129–132 (2007)CrossRef H. Nakagami, M. Kiomy Osako, H. Shimizu, R. Hanayama, R. Morishita, Potential contribution of action of renin angiotensin system to bone metabolism. Curr. Hypertens Rev. 3, 129–132 (2007)CrossRef
15.
go back to reference L. Rejnmark, P. Vestergaard, L. Mosekilde, Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J. Hypertens. 24, 581–589 (2006)PubMedCrossRef L. Rejnmark, P. Vestergaard, L. Mosekilde, Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J. Hypertens. 24, 581–589 (2006)PubMedCrossRef
16.
go back to reference D. Woods, G. Onambele, R. Woledge, D. Skelton, S. Bruce, S.E. Humphries, H. Montgomery, Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. J. Clin. Endocrinol. Metab. 86, 2200–2204 (2001)PubMed D. Woods, G. Onambele, R. Woledge, D. Skelton, S. Bruce, S.E. Humphries, H. Montgomery, Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. J. Clin. Endocrinol. Metab. 86, 2200–2204 (2001)PubMed
17.
go back to reference J.L. Pérez-Castrillón, I. Justo, J. Silva, A. Sanz, J.C.M. Escudero, R. Igea, P. Escudero, C. Pueyo, C. Diaz, G. Hernández, Relationship between bone mineral density and angiotensin converting enzyme polymorphism in hypertensive postmenopausal women. Am. J. Hypertens. 16, 233–235 (2003)PubMedCrossRef J.L. Pérez-Castrillón, I. Justo, J. Silva, A. Sanz, J.C.M. Escudero, R. Igea, P. Escudero, C. Pueyo, C. Diaz, G. Hernández, Relationship between bone mineral density and angiotensin converting enzyme polymorphism in hypertensive postmenopausal women. Am. J. Hypertens. 16, 233–235 (2003)PubMedCrossRef
18.
go back to reference M.L.M. Barreto-Chaves, I. Aneas, J.E. Krieger, Glucocorticoid regulation of angiotensin-converting enzyme in primary culture of adult cardiac fibroblasts. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R25–R32 (2001)PubMed M.L.M. Barreto-Chaves, I. Aneas, J.E. Krieger, Glucocorticoid regulation of angiotensin-converting enzyme in primary culture of adult cardiac fibroblasts. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R25–R32 (2001)PubMed
19.
go back to reference A. Sato, H. Suzuki, Y. Nakazato, H. Shibata, T. Inagami, T. Saruta, Increased expression of vascular angiotensin II type 1A receptor gene in glucocorticoid induced hypertension. J. Hypertens. 12, 511–516 (1994)PubMedCrossRef A. Sato, H. Suzuki, Y. Nakazato, H. Shibata, T. Inagami, T. Saruta, Increased expression of vascular angiotensin II type 1A receptor gene in glucocorticoid induced hypertension. J. Hypertens. 12, 511–516 (1994)PubMedCrossRef
20.
go back to reference S.G. Roy, P. De, D. Mukherjee, V. Chander, A. Konar, D. Bandyopadhyay, A. Bandyopadhyay, Excess of glucocorticoid induces cardiac dysfunction via activating angiotensin II pathway. Cell. Physiol. Biochem. 24, 1–10 (2009)PubMedCrossRef S.G. Roy, P. De, D. Mukherjee, V. Chander, A. Konar, D. Bandyopadhyay, A. Bandyopadhyay, Excess of glucocorticoid induces cardiac dysfunction via activating angiotensin II pathway. Cell. Physiol. Biochem. 24, 1–10 (2009)PubMedCrossRef
21.
go back to reference K.J. Zhang, J. Zhang, Z.K. Kang, X.M. Xue, J.F. Kang, Y.W. Li, H.N. Dong, D.G. Liu, Ibandronate for prevention and treatment of glucocorticoid-induced osteoporosis in rabbits. Rheumatol. Int. 32, 3405–3411 (2011)PubMedCrossRef K.J. Zhang, J. Zhang, Z.K. Kang, X.M. Xue, J.F. Kang, Y.W. Li, H.N. Dong, D.G. Liu, Ibandronate for prevention and treatment of glucocorticoid-induced osteoporosis in rabbits. Rheumatol. Int. 32, 3405–3411 (2011)PubMedCrossRef
22.
go back to reference H. Mitani, T. Bandoh, J. Ishikawa, M. Kimura, T. Totsuka, S. Hayashi, Inhibitory effects of fluvastatin, a new HMG-CoA reductase inhibitor, on the increase in vascular ACE activity in cholesterol-fed rabbits. Br. J. Pharmacol. 119, 1269–1275 (1996)PubMedCrossRefPubMedCentral H. Mitani, T. Bandoh, J. Ishikawa, M. Kimura, T. Totsuka, S. Hayashi, Inhibitory effects of fluvastatin, a new HMG-CoA reductase inhibitor, on the increase in vascular ACE activity in cholesterol-fed rabbits. Br. J. Pharmacol. 119, 1269–1275 (1996)PubMedCrossRefPubMedCentral
23.
go back to reference A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott, R.R. Recker, Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987)PubMedCrossRef A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott, R.R. Recker, Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987)PubMedCrossRef
24.
go back to reference C.H. Turner, D.B. Burr, Basic biomechanical measurements of bone: a tutorial. Bone 14, 595–608 (1993)PubMedCrossRef C.H. Turner, D.B. Burr, Basic biomechanical measurements of bone: a tutorial. Bone 14, 595–608 (1993)PubMedCrossRef
25.
go back to reference Y. Izu, F. Mizoguchi, A. Kawamata, T. Hayata, T. Nakamoto, K. Nakashima, T. Inagami, Y. Ezura, M. Noda, Angiotensin II type 2 receptor blockade increases bone mass. J. Biol. Chem. 284, 4857–4864 (2009). doi:10.1074/jbc.M807610200 PubMedCrossRef Y. Izu, F. Mizoguchi, A. Kawamata, T. Hayata, T. Nakamoto, K. Nakashima, T. Inagami, Y. Ezura, M. Noda, Angiotensin II type 2 receptor blockade increases bone mass. J. Biol. Chem. 284, 4857–4864 (2009). doi:10.​1074/​jbc.​M807610200 PubMedCrossRef
26.
go back to reference P. Garcia, S. Schwenzer, J.E. Slotta, C. Scheuer, A.E. Tami, J.H. Holstein, T. Histing, M. Burkhardt, T. Pohlemann, M.D. Menger, Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin–angiotensin system. Br. J. Pharmacol. 159, 1672–1680 (2010). doi:10.1111/j.1476-5381.2010.00651.x PubMedCrossRefPubMedCentral P. Garcia, S. Schwenzer, J.E. Slotta, C. Scheuer, A.E. Tami, J.H. Holstein, T. Histing, M. Burkhardt, T. Pohlemann, M.D. Menger, Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin–angiotensin system. Br. J. Pharmacol. 159, 1672–1680 (2010). doi:10.​1111/​j.​1476-5381.​2010.​00651.​x PubMedCrossRefPubMedCentral
27.
go back to reference I.C. Haznedaroglu, M. Oztürk, Towards the understanding of the local hematopoietic bone marrow renin–angiotensin system. Int. J. Biochem. Cell Biol. 35, 867–880 (2003)PubMedCrossRef I.C. Haznedaroglu, M. Oztürk, Towards the understanding of the local hematopoietic bone marrow renin–angiotensin system. Int. J. Biochem. Cell Biol. 35, 867–880 (2003)PubMedCrossRef
28.
go back to reference F.A.O. Mendelsohn, C.J. Lloyd, C. Kachel, J.W. Funder, Induction by glucocorticoids of angiotensin converting enzyme-production from bovine endothelial-cells in culture and rat lung in vivo. J. Clin. Investig. 70, 684–692 (1982). doi:10.1172/jci110663 PubMedCrossRefPubMedCentral F.A.O. Mendelsohn, C.J. Lloyd, C. Kachel, J.W. Funder, Induction by glucocorticoids of angiotensin converting enzyme-production from bovine endothelial-cells in culture and rat lung in vivo. J. Clin. Investig. 70, 684–692 (1982). doi:10.​1172/​jci110663 PubMedCrossRefPubMedCentral
29.
go back to reference I. Hamming, H. Van Goor, A. Turner, C. Rushworth, A. Michaud, P. Corvol, G. Navis, Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp. Physiol. 93, 631–638 (2008)PubMedCrossRef I. Hamming, H. Van Goor, A. Turner, C. Rushworth, A. Michaud, P. Corvol, G. Navis, Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp. Physiol. 93, 631–638 (2008)PubMedCrossRef
30.
go back to reference Y. Zhu, Y. Zhu, J. Li, H. Schäfer, W. Schmidt, T. Unger, T. Yao, Effects of ramipril on cardiac gene transcription levels of angiotensin II receptors after myocardial infarction. Zhongguo yao lixue bao 20, 481 (1999) Y. Zhu, Y. Zhu, J. Li, H. Schäfer, W. Schmidt, T. Unger, T. Yao, Effects of ramipril on cardiac gene transcription levels of angiotensin II receptors after myocardial infarction. Zhongguo yao lixue bao 20, 481 (1999)
31.
go back to reference N. Iwai, T. Inagami, Regulation of the expression of the rat angiotensin II receptor mRNA. Biochem. Biophys. Res. Commun. 182, 1094–1099 (1992)PubMedCrossRef N. Iwai, T. Inagami, Regulation of the expression of the rat angiotensin II receptor mRNA. Biochem. Biophys. Res. Commun. 182, 1094–1099 (1992)PubMedCrossRef
32.
go back to reference I.D. McCarthy, Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann. Biomed. Eng. 33, 95–103 (2005)PubMedCrossRef I.D. McCarthy, Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann. Biomed. Eng. 33, 95–103 (2005)PubMedCrossRef
33.
go back to reference A. Bergula, W. Huang, J. Frangos, Femoral vein ligation increases bone mass in the hindlimb suspended rat. Bone 24, 171–177 (1999)PubMedCrossRef A. Bergula, W. Huang, J. Frangos, Femoral vein ligation increases bone mass in the hindlimb suspended rat. Bone 24, 171–177 (1999)PubMedCrossRef
34.
go back to reference C. Paszty, C.H. Turner, M.K. Robinson, Sclerostin, a gem from the genome leads to bone-building antibodies. J. Bone Miner. Res. 25, 1897–1904 (2010)PubMedCrossRef C. Paszty, C.H. Turner, M.K. Robinson, Sclerostin, a gem from the genome leads to bone-building antibodies. J. Bone Miner. Res. 25, 1897–1904 (2010)PubMedCrossRef
35.
go back to reference W. Yao, Z. Cheng, A. Pham, C. Busse, E.A. Zimmermann, R.O. Ritchie, N.E. Lane, Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum. 58, 3485–3497 (2008)PubMedCrossRefPubMedCentral W. Yao, Z. Cheng, A. Pham, C. Busse, E.A. Zimmermann, R.O. Ritchie, N.E. Lane, Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum. 58, 3485–3497 (2008)PubMedCrossRefPubMedCentral
36.
go back to reference D.H. Solomon, H. Mogun, K. Garneau, M.A. Fischer, Risk of fractures in older adults using antihypertensive medications. J. Bone Miner. Res. 26, 1561–1567 (2011)PubMedCrossRef D.H. Solomon, H. Mogun, K. Garneau, M.A. Fischer, Risk of fractures in older adults using antihypertensive medications. J. Bone Miner. Res. 26, 1561–1567 (2011)PubMedCrossRef
Metadata
Title
Glucocorticoids activate the local renin–angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis
Authors
Zhang Yongtao
Wang Kunzheng
Zheng Jingjing
Shan Hu
Kou Jianqiang
Liu Ruiyu
Wang Chunsheng
Publication date
01-11-2014
Publisher
Springer US
Published in
Endocrine / Issue 2/2014
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-014-0196-z

Other articles of this Issue 2/2014

Endocrine 2/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine