Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2022

01-03-2022 | Glioblastoma | Review

Contemporary RNA Therapeutics for Glioblastoma

Authors: Kaitlyn Melnick, Farhad Dastmalchi, Duane Mitchell, Maryam Rahman, Elias J. Sayour

Published in: NeuroMolecular Medicine | Issue 1/2022

Login to get access

Abstract

Glioblastoma (GBM) is the most common primary brain tumor in adults and is universally lethal with a median survival of less than two years with standard therapy. RNA-based immunotherapies have significant potential to establish a durable treatment response for malignant brain tumors including GBM. RNA offers clear advantages over antigen-focused approaches but cannot often be directly administered due to biological instability. This review will focus on utilization of RNA dendritic cell vaccines and RNA nanoparticle therapies in the treatment of GBM. RNA-pulsed dendritic cell vaccines have been shown to be safe in a small phase I clinical trial and RNA-loaded nanoparticle vaccines will soon be underway in GBM patients (NCT04573140).
Literature
go back to reference Bonehill, A., Heirman, C., Tuyaerts, S., Michiels, A., Breckpot, K., Brasseur, F., et al. (2004). Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. The Journal of Immunology, 172(11), 6649–6657.CrossRef Bonehill, A., Heirman, C., Tuyaerts, S., Michiels, A., Breckpot, K., Brasseur, F., et al. (2004). Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. The Journal of Immunology, 172(11), 6649–6657.CrossRef
go back to reference Ding, L., Li, J., Wu, C., Yan, F., Li, X., & Zhang, S. (2020). A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. Journal of Materials Chemistry B, 8(16), 3527–3533.CrossRef Ding, L., Li, J., Wu, C., Yan, F., Li, X., & Zhang, S. (2020). A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. Journal of Materials Chemistry B, 8(16), 3527–3533.CrossRef
go back to reference Dunn-Pirio, A., Peters, K., DesJardins, A., Randazzo, D., Friedman, H., Healy, P., et al. (2017). Tumor stem cell RNA-loaded dendritic cell vaccine for recurrent glioblastoma: A phase 1 trial (S41. 004). AAN Enterprises. Dunn-Pirio, A., Peters, K., DesJardins, A., Randazzo, D., Friedman, H., Healy, P., et al. (2017). Tumor stem cell RNA-loaded dendritic cell vaccine for recurrent glioblastoma: A phase 1 trial (S41. 004). AAN Enterprises.
go back to reference Grippin, A. J., Wummer, B., Wildes, T., Dyson, K., Trivedi, V., Yang, C., et al. (2019). Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano, 13(12), 13884–13898.CrossRef Grippin, A. J., Wummer, B., Wildes, T., Dyson, K., Trivedi, V., Yang, C., et al. (2019). Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano, 13(12), 13884–13898.CrossRef
go back to reference Insug, O., Ku, G., Ertl, H., & Blaszczyk-Thurin, M. (2002). A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Research, 22(2A), 613–621.PubMed Insug, O., Ku, G., Ertl, H., & Blaszczyk-Thurin, M. (2002). A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Research, 22(2A), 613–621.PubMed
go back to reference Jin, J., Bae, K. H., Yang, H., Lee, S. J., Kim, H., Kim, Y., et al. (2011). In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjugate Chemistry, 22(12), 2568–2572.CrossRef Jin, J., Bae, K. H., Yang, H., Lee, S. J., Kim, H., Kim, Y., et al. (2011). In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjugate Chemistry, 22(12), 2568–2572.CrossRef
go back to reference Kobayashi, T., Yamanaka, R., Homma, J., Tsuchiya, N., Yajima, N., Yoshida, S., et al. (2003). Tumor mRNA-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with malignant glioma. Cancer Immunology Immunotherapy, 52(10), 632–637.CrossRef Kobayashi, T., Yamanaka, R., Homma, J., Tsuchiya, N., Yajima, N., Yoshida, S., et al. (2003). Tumor mRNA-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with malignant glioma. Cancer Immunology Immunotherapy, 52(10), 632–637.CrossRef
go back to reference Learn, C. A., Fecci, P. E., Schmittling, R. J., Xie, W., Karikari, I., Mitchell, D. A., et al. (2006). Profiling of CD4+, CD8+, and CD4+CD25+CD45RO+FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers. Clinical Cancer Research, 12(24), 7306–7315. https://doi.org/10.1158/1078-0432.CCR-06-1727CrossRefPubMed Learn, C. A., Fecci, P. E., Schmittling, R. J., Xie, W., Karikari, I., Mitchell, D. A., et al. (2006). Profiling of CD4+, CD8+, and CD4+CD25+CD45RO+FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers. Clinical Cancer Research, 12(24), 7306–7315. https://​doi.​org/​10.​1158/​1078-0432.​CCR-06-1727CrossRefPubMed
go back to reference Mitchell, D. A., Batich, K. A., Gunn, M. D., Huang, M.-N., Sanchez-Perez, L., Nair, S. K., et al. (2015a). Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 519(7543), 366–369.CrossRef Mitchell, D. A., Batich, K. A., Gunn, M. D., Huang, M.-N., Sanchez-Perez, L., Nair, S. K., et al. (2015a). Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 519(7543), 366–369.CrossRef
go back to reference Mitchell, D. A., Sayour, E. J., Reap, E., Schmittling, R., DeLeon, G., Norberg, P., et al. (2015b). Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunology Research, 3(4), 320–325.CrossRef Mitchell, D. A., Sayour, E. J., Reap, E., Schmittling, R., DeLeon, G., Norberg, P., et al. (2015b). Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunology Research, 3(4), 320–325.CrossRef
go back to reference Mitchell, D. A., Xie, W., Schmittling, R., Learn, C., Friedman, A., McLendon, R. E., et al. (2008). Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology, 10(1), 10–18.CrossRef Mitchell, D. A., Xie, W., Schmittling, R., Learn, C., Friedman, A., McLendon, R. E., et al. (2008). Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology, 10(1), 10–18.CrossRef
go back to reference Rahman, M., Ghiaseddin, A., Yegorov, O., Yang, C., Dechkovskaia, A., Tran, D., et al. (2019). ATIM-15. Sustained complete radiographic response and prolonged systemic immune activation in a patient with MGMT unmethylated midline glioblastoma receiving CMV pp65-LAMP RNA-pulsed dendritic cell vaccines. Neuro-oncology, 21, vi4.CrossRef Rahman, M., Ghiaseddin, A., Yegorov, O., Yang, C., Dechkovskaia, A., Tran, D., et al. (2019). ATIM-15. Sustained complete radiographic response and prolonged systemic immune activation in a patient with MGMT unmethylated midline glioblastoma receiving CMV pp65-LAMP RNA-pulsed dendritic cell vaccines. Neuro-oncology, 21, vi4.CrossRef
go back to reference Yaghi, N. K., Wei, J., Hashimoto, Y., Kong, L.-Y., Gabrusiewicz, K., Nduom, E. K., et al. (2017). Immune modulatory nanoparticle therapeutics for intracerebral glioma. Neuro-Oncology, 19(3), 372–382.PubMed Yaghi, N. K., Wei, J., Hashimoto, Y., Kong, L.-Y., Gabrusiewicz, K., Nduom, E. K., et al. (2017). Immune modulatory nanoparticle therapeutics for intracerebral glioma. Neuro-Oncology, 19(3), 372–382.PubMed
go back to reference Zhang, F., Parayath, N., Ene, C., Stephan, S., Koehne, A., Coon, M., et al. (2019). Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nature Communications, 10(1), 1–16.CrossRef Zhang, F., Parayath, N., Ene, C., Stephan, S., Koehne, A., Coon, M., et al. (2019). Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nature Communications, 10(1), 1–16.CrossRef
Metadata
Title
Contemporary RNA Therapeutics for Glioblastoma
Authors
Kaitlyn Melnick
Farhad Dastmalchi
Duane Mitchell
Maryam Rahman
Elias J. Sayour
Publication date
01-03-2022
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2022
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-021-08669-9

Other articles of this Issue 1/2022

NeuroMolecular Medicine 1/2022 Go to the issue