Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2021

01-12-2021 | Spinal Muscular Atrophy | Review

Repurposing Vorinostat for the Treatment of Disorders Affecting Brain

Authors: K. V. Athira, Prashant Sadanandan, Sumana Chakravarty

Published in: NeuroMolecular Medicine | Issue 4/2021

Login to get access

Abstract

Based on the findings in recent years, we summarize the therapeutic potential of vorinostat (VOR), the first approved histone deacetylase (HDAC) inhibitor, in disorders of brain, and strategies to improve drug efficacy and reduce side effects. Scientific evidences provide a strong case for the therapeutic utility of VOR in various disorders affecting brain, including stroke, Alzheimer’s disease, frontotemporal dementia, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, X‐linked adrenoleukodystrophy, epilepsy, Niemann-Pick type C disease, and neuropsychiatric disorders. Further elucidation of the neuroprotective and neurorestorative properties of VOR using proper clinical study designs could provide momentum towards its clinical application. To improve the therapeutic prospect, concerns on systemic toxicity and off-target actions need to be addressed along with the improvement in formulation and delivery aspects, especially with respect to solubility, permeability, and pharmacokinetic properties. Newer approaches in this regard include poly(ethylene glycol)-b-poly(dl-lactic acid) micelles, VOR-pluronic F127 micelles, encapsulation of iron complexes of VOR into PEGylated liposomes, human serum albumin bound VOR nanomedicine, magnetically guided layer-by-layer assembled nanocarriers, as well as convection-enhanced delivery. Even though targeting specific class or isoform of HDAC is projected as advantageous over pan-HDAC inhibitor like VOR, in terms of adverse effects and efficacy, till clinical validation, the idea is debated. As the VOR treatment-related adverse changes are mostly found reversible, further optimization of the therapeutic strategies with respect to dose, dosage regimen, and formulations of VOR could propel its clinical prospects.
Literature
go back to reference Abel, T., & Zukin, R. S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8(1), 57–64PubMedPubMedCentralCrossRef Abel, T., & Zukin, R. S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8(1), 57–64PubMedPubMedCentralCrossRef
go back to reference Alarcón, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., & Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42(6), 947–959PubMedCrossRef Alarcón, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., & Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42(6), 947–959PubMedCrossRef
go back to reference Almeida, S., Gao, F., Coppola, G., & Gao, F.-B. (2016). Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients. Neurobiology of Aging, 42, 35–40PubMedPubMedCentralCrossRef Almeida, S., Gao, F., Coppola, G., & Gao, F.-B. (2016). Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients. Neurobiology of Aging, 42, 35–40PubMedPubMedCentralCrossRef
go back to reference Alquezar, C., Esteras, N., de la Encarnación, A., Moreno, F., de Munain, A. L., & Martín-Requero, Á. (2015). Increasing progranulin levels and blockade of the ERK1/2 pathway: Upstream and downstream strategies for the treatment of progranulin deficient frontotemporal dementia. European Neuropsychopharmacology, 25(3), 386–403PubMedCrossRef Alquezar, C., Esteras, N., de la Encarnación, A., Moreno, F., de Munain, A. L., & Martín-Requero, Á. (2015). Increasing progranulin levels and blockade of the ERK1/2 pathway: Upstream and downstream strategies for the treatment of progranulin deficient frontotemporal dementia. European Neuropsychopharmacology, 25(3), 386–403PubMedCrossRef
go back to reference Athira, K. V., Bandopadhyay, S., Samudrala, P. K., Naidu, V., Lahkar, M., & Chakravarty, S. (2020). An overview of the heterogeneity of major depressive disorder: Current knowledge and future prospective. Current Neuropharmacology, 18(3), 168–187PubMedPubMedCentralCrossRef Athira, K. V., Bandopadhyay, S., Samudrala, P. K., Naidu, V., Lahkar, M., & Chakravarty, S. (2020). An overview of the heterogeneity of major depressive disorder: Current knowledge and future prospective. Current Neuropharmacology, 18(3), 168–187PubMedPubMedCentralCrossRef
go back to reference Athira, K., Madhana, R. M., Lahkar, M., Sinha, S., & Naidu, V. (2018). Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behavioural Brain Research, 344, 73–84CrossRef Athira, K., Madhana, R. M., Lahkar, M., Sinha, S., & Naidu, V. (2018). Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behavioural Brain Research, 344, 73–84CrossRef
go back to reference Athira, K., Wahul, A. B., Soren, K., Das, T., Dey, S., Samudrala, P. K., Kumar, A., Lahkar, M., & Chakravarty, S. (2021). Differential modulation of GR signaling and HDACs in the development of resilient/vulnerable phenotype and antidepressant-like response of vorinostat. Psychoneuroendocrinology, 124, 105083CrossRef Athira, K., Wahul, A. B., Soren, K., Das, T., Dey, S., Samudrala, P. K., Kumar, A., Lahkar, M., & Chakravarty, S. (2021). Differential modulation of GR signaling and HDACs in the development of resilient/vulnerable phenotype and antidepressant-like response of vorinostat. Psychoneuroendocrinology, 124, 105083CrossRef
go back to reference Atluri, V. S. R., Pilakka-Kanthikeel, S., Samikkannu, T., Sagar, V., Kurapati, K. R. V., Saxena, S. K., Yndart, A., Raymond, A., Ding, H., & Hernandez, O. (2014). Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: Role of nicotine in progression of HIV-associated neurocognitive disorder. Molecular Brain, 7(1), 37PubMedPubMedCentralCrossRef Atluri, V. S. R., Pilakka-Kanthikeel, S., Samikkannu, T., Sagar, V., Kurapati, K. R. V., Saxena, S. K., Yndart, A., Raymond, A., Ding, H., & Hernandez, O. (2014). Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: Role of nicotine in progression of HIV-associated neurocognitive disorder. Molecular Brain, 7(1), 37PubMedPubMedCentralCrossRef
go back to reference Benito, E., Urbanke, H., Ramachandran, B., Barth, J., Halder, R., Awasthi, A., Jain, G., Capece, V., Burkhardt, S., & Navarro-Sala, M. (2015). HDAC inhibitor–dependent transcriptome and memory reinstatement in cognitive decline models. The Journal of Clinical Investigation, 125(9), 3572–3584PubMedPubMedCentralCrossRef Benito, E., Urbanke, H., Ramachandran, B., Barth, J., Halder, R., Awasthi, A., Jain, G., Capece, V., Burkhardt, S., & Navarro-Sala, M. (2015). HDAC inhibitor–dependent transcriptome and memory reinstatement in cognitive decline models. The Journal of Clinical Investigation, 125(9), 3572–3584PubMedPubMedCentralCrossRef
go back to reference Berger, J., & Gärtner, J. (2006). X-linked adrenoleukodystrophy: Clinical, biochemical and pathogenetic aspects. Biochimica et Biophysica Acta B, 1763(12), 1721–1732CrossRef Berger, J., & Gärtner, J. (2006). X-linked adrenoleukodystrophy: Clinical, biochemical and pathogenetic aspects. Biochimica et Biophysica Acta B, 1763(12), 1721–1732CrossRef
go back to reference Berton, O., McClung, C. A., DiLeone, R. J., Krishnan, V., Renthal, W., Russo, S. J., Graham, D., Tsankova, N. M., Bolanos, C. A., & Rios, M. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311(5762), 864–868PubMedCrossRef Berton, O., McClung, C. A., DiLeone, R. J., Krishnan, V., Renthal, W., Russo, S. J., Graham, D., Tsankova, N. M., Bolanos, C. A., & Rios, M. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311(5762), 864–868PubMedCrossRef
go back to reference Broide, R. S., Redwine, J. M., Aftahi, N., Young, W., Bloom, F. E., & Winrow, C. J. (2007). Distribution of histone deacetylases 1–11 in the rat brain. Journal of Molecular Neuroscience, 31(1), 47–58PubMedCrossRef Broide, R. S., Redwine, J. M., Aftahi, N., Young, W., Bloom, F. E., & Winrow, C. J. (2007). Distribution of histone deacetylases 1–11 in the rat brain. Journal of Molecular Neuroscience, 31(1), 47–58PubMedCrossRef
go back to reference Buchwald, M., Krämer, O. H., & Heinzel, T. (2009). HDACi–targets beyond chromatin. Cancer Letters, 280(2), 160–167PubMedCrossRef Buchwald, M., Krämer, O. H., & Heinzel, T. (2009). HDACi–targets beyond chromatin. Cancer Letters, 280(2), 160–167PubMedCrossRef
go back to reference Cenik, B., Sephton, C. F., Dewey, C. M., Xian, X., Wei, S., Yu, K., Niu, W., Coppola, G., Coughlin, S. E., & Lee, S. E. (2011). Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription rational therapeutic approach to frontotemporal dementia. Journal of Biological Chemistry, 286(18), 16101–16108CrossRef Cenik, B., Sephton, C. F., Dewey, C. M., Xian, X., Wei, S., Yu, K., Niu, W., Coppola, G., Coughlin, S. E., & Lee, S. E. (2011). Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription rational therapeutic approach to frontotemporal dementia. Journal of Biological Chemistry, 286(18), 16101–16108CrossRef
go back to reference Chakravarty, S., Bhat, U. A., Reddy, R. G., Gupta, P., & Kumar, A. (2014a). Histone deacetylase inhibitors and psychiatric disorders. Epigenetics in Psychiatry, 2, 515–544CrossRef Chakravarty, S., Bhat, U. A., Reddy, R. G., Gupta, P., & Kumar, A. (2014a). Histone deacetylase inhibitors and psychiatric disorders. Epigenetics in Psychiatry, 2, 515–544CrossRef
go back to reference Chakravarty, S., Pathak, S. S., Maitra, S., Khandelwal, N., Chandra, K. B., & Kumar, A. (2014b). Epigenetic regulatory mechanisms in stress-induced behavior. International Review of Neurobiology., 115, 117–154PubMedCrossRef Chakravarty, S., Pathak, S. S., Maitra, S., Khandelwal, N., Chandra, K. B., & Kumar, A. (2014b). Epigenetic regulatory mechanisms in stress-induced behavior. International Review of Neurobiology., 115, 117–154PubMedCrossRef
go back to reference Chandran, P., Kavalakatt, A., Malarvizhi, G. L., Vasanthakumari, D. R. V. N., Retnakumari, A. P., Sidharthan, N., Pavithran, K., Nair, S., & Koyakutty, M. (2014). Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 721–732CrossRef Chandran, P., Kavalakatt, A., Malarvizhi, G. L., Vasanthakumari, D. R. V. N., Retnakumari, A. P., Sidharthan, N., Pavithran, K., Nair, S., & Koyakutty, M. (2014). Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 721–732CrossRef
go back to reference Chen, S., Wu, H., Ossola, B., Schendzielorz, N., Wilson, B. C., Chu, C.-H., Chen, S., Wang, Q., Zhang, D., & Qian, L. (2012). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. British Journal of Pharmacology, 165(2), 494–505PubMedPubMedCentralCrossRef Chen, S., Wu, H., Ossola, B., Schendzielorz, N., Wilson, B. C., Chu, C.-H., Chen, S., Wang, Q., Zhang, D., & Qian, L. (2012). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. British Journal of Pharmacology, 165(2), 494–505PubMedPubMedCentralCrossRef
go back to reference Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., Olsen, J. V., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840PubMedCrossRef Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., Olsen, J. V., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840PubMedCrossRef
go back to reference Covington, H. E., Maze, I., LaPlant, Q. C., Vialou, V. F., Ohnishi, Y. N., Berton, O., Fass, D. M., Renthal, W., Rush, A. J., & Wu, E. Y. (2009). Antidepressant actions of histone deacetylase inhibitors. Journal of Neuroscience, 29(37), 11451–11460PubMedCrossRef Covington, H. E., Maze, I., LaPlant, Q. C., Vialou, V. F., Ohnishi, Y. N., Berton, O., Fass, D. M., Renthal, W., Rush, A. J., & Wu, E. Y. (2009). Antidepressant actions of histone deacetylase inhibitors. Journal of Neuroscience, 29(37), 11451–11460PubMedCrossRef
go back to reference Cuadrado-Tejedor, M., Garcia-Barroso, C., Sanzhez-Arias, J., Mederos, S., Rabal, O., Ugarte, A., Franco, R., Pascual-Lucas, M., Segura, V., & Perea, G. (2015). Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer’s disease. Clinical Epigenetics, 7(1), 108PubMedPubMedCentralCrossRef Cuadrado-Tejedor, M., Garcia-Barroso, C., Sanzhez-Arias, J., Mederos, S., Rabal, O., Ugarte, A., Franco, R., Pascual-Lucas, M., Segura, V., & Perea, G. (2015). Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer’s disease. Clinical Epigenetics, 7(1), 108PubMedPubMedCentralCrossRef
go back to reference De Ruijter, A. J., Van Gennip, A. H., Caron, H. N., Stephan, K., & Van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370(3), 737–749PubMedCentralCrossRef De Ruijter, A. J., Van Gennip, A. H., Caron, H. N., Stephan, K., & Van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370(3), 737–749PubMedCentralCrossRef
go back to reference De Souza, C. (2015). P Chatterji B: HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents on Anti-cancer Drug Discovery, 10(2), 145–162PubMedCrossRef De Souza, C. (2015). P Chatterji B: HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents on Anti-cancer Drug Discovery, 10(2), 145–162PubMedCrossRef
go back to reference De Souza, C., Lindstrom, A. R., Ma, Z., & Chatterji, B. P. (2020). Nanomaterials as potential transporters of HDAC inhibitors. Medicine in Drug Discovery, 6, 100040CrossRef De Souza, C., Lindstrom, A. R., Ma, Z., & Chatterji, B. P. (2020). Nanomaterials as potential transporters of HDAC inhibitors. Medicine in Drug Discovery, 6, 100040CrossRef
go back to reference Di, X.-J., Han, D.-Y., Wang, Y.-J., Chance, M. R., & Mu, T.-W. (2013). SAHA enhances proteostasis of epilepsy-associated α1 (A322D) β2γ2 GABAA receptors. Chemistry & Biology, 20(12), 1456–1468CrossRef Di, X.-J., Han, D.-Y., Wang, Y.-J., Chance, M. R., & Mu, T.-W. (2013). SAHA enhances proteostasis of epilepsy-associated α1 (A322D) β2γ2 GABAA receptors. Chemistry & Biology, 20(12), 1456–1468CrossRef
go back to reference Didonna, A., & Opal, P. (2015). The promise and perils of HDAC inhibitors in neurodegeneration. Annals of Clinical and Translational Neurology, 2(1), 79–101PubMedCrossRef Didonna, A., & Opal, P. (2015). The promise and perils of HDAC inhibitors in neurodegeneration. Annals of Clinical and Translational Neurology, 2(1), 79–101PubMedCrossRef
go back to reference Dokmanovic, M., Clarke, C., & Marks, P. A. (2007). Histone deacetylase inhibitors: Overview and perspectives. Molecular Cancer Research, 5(10), 981–989PubMedCrossRef Dokmanovic, M., Clarke, C., & Marks, P. A. (2007). Histone deacetylase inhibitors: Overview and perspectives. Molecular Cancer Research, 5(10), 981–989PubMedCrossRef
go back to reference Drummond, D. C., Noble, C. O., Kirpotin, D. B., Guo, Z., Scott, G. K., & Benz, C. C. (2005). Clinical development of histone deacetylase inhibitors as anticancer agents. Annual Review of Pharmacology and Toxicology, 45, 495–528PubMedCrossRef Drummond, D. C., Noble, C. O., Kirpotin, D. B., Guo, Z., Scott, G. K., & Benz, C. C. (2005). Clinical development of histone deacetylase inhibitors as anticancer agents. Annual Review of Pharmacology and Toxicology, 45, 495–528PubMedCrossRef
go back to reference Durisic, N., Keramidas, A., Dixon, C. L., & Lynch, J. W. (2018). SAHA (vorinostat) corrects inhibitory synaptic deficits caused by missense epilepsy mutations to the GABAA receptor γ2 subunit. Frontiers in Molecular Neuroscience, 11, 89PubMedPubMedCentralCrossRef Durisic, N., Keramidas, A., Dixon, C. L., & Lynch, J. W. (2018). SAHA (vorinostat) corrects inhibitory synaptic deficits caused by missense epilepsy mutations to the GABAA receptor γ2 subunit. Frontiers in Molecular Neuroscience, 11, 89PubMedPubMedCentralCrossRef
go back to reference Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18(7), 1414PubMedCentralCrossRef Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18(7), 1414PubMedCentralCrossRef
go back to reference Eyüpoglu, I. Y., Hahnen, E., Buslei, R., Siebzehnrübl, F. A., Savaskan, N. E., Lüders, M., Tränkle, C., Wick, W., Weller, M., & Fahlbusch, R. (2005). Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo. Journal of Neurochemistry, 93(4), 992–999PubMedCrossRef Eyüpoglu, I. Y., Hahnen, E., Buslei, R., Siebzehnrübl, F. A., Savaskan, N. E., Lüders, M., Tränkle, C., Wick, W., Weller, M., & Fahlbusch, R. (2005). Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo. Journal of Neurochemistry, 93(4), 992–999PubMedCrossRef
go back to reference Faraco, G., Pancani, T., Formentini, L., Mascagni, P., Fossati, G., Leoni, F., Moroni, F., & Chiarugi, A. (2006). Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Molecular Pharmacology, 70(6), 1876–1884PubMedCrossRef Faraco, G., Pancani, T., Formentini, L., Mascagni, P., Fossati, G., Leoni, F., Moroni, F., & Chiarugi, A. (2006). Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Molecular Pharmacology, 70(6), 1876–1884PubMedCrossRef
go back to reference Faria Freitas, M., Cuendet, M., & Bertrand, P. (2018). HDAC inhibitors: a 2013–2017 patent survey. Expert Opinion on Therapeutic Patents, 28(5), 365–381CrossRef Faria Freitas, M., Cuendet, M., & Bertrand, P. (2018). HDAC inhibitors: a 2013–2017 patent survey. Expert Opinion on Therapeutic Patents, 28(5), 365–381CrossRef
go back to reference Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., Breslow, R., & Pavletich, N. P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 401(6749), 188–193PubMedCrossRef Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., Breslow, R., & Pavletich, N. P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 401(6749), 188–193PubMedCrossRef
go back to reference Fujita, Y., Morinobu, S., Takei, S., Fuchikami, M., Matsumoto, T., Yamamoto, S., & Yamawaki, S. (2012). Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. Journal of Psychiatric Research, 46(5), 635–643PubMedCrossRef Fujita, Y., Morinobu, S., Takei, S., Fuchikami, M., Matsumoto, T., Yamamoto, S., & Yamawaki, S. (2012). Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. Journal of Psychiatric Research, 46(5), 635–643PubMedCrossRef
go back to reference Galanis, E., Jaeckle, K. A., Maurer, M. J., Reid, J. M., Ames, M. M., Hardwick, J. S., Reilly, J. F., Loboda, A., Nebozhyn, M., & Fantin, V. R. (2009). Phase II trial of vorinostat in recurrent glioblastoma multiforme: A north central cancer treatment group study. Journal of Clinical Oncology, 27(12), 2052PubMedPubMedCentralCrossRef Galanis, E., Jaeckle, K. A., Maurer, M. J., Reid, J. M., Ames, M. M., Hardwick, J. S., Reilly, J. F., Loboda, A., Nebozhyn, M., & Fantin, V. R. (2009). Phase II trial of vorinostat in recurrent glioblastoma multiforme: A north central cancer treatment group study. Journal of Clinical Oncology, 27(12), 2052PubMedPubMedCentralCrossRef
go back to reference Gangisetty, O. & Murugan, S. (2016). Epigenetic modifications in neurological diseases: natural products as epigenetic modulators a treatment strategy. In The benefits of natural products for neurodegenerative diseases. (pp. 1–25). Springer. Gangisetty, O. & Murugan, S. (2016). Epigenetic modifications in neurological diseases: natural products as epigenetic modulators a treatment strategy. In The benefits of natural products for neurodegenerative diseases. (pp. 1–25). Springer.
go back to reference Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748–25755CrossRef Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748–25755CrossRef
go back to reference Ge, Z., Da, Y., Xue, Z., Zhang, K., Zhuang, H., Peng, M., Li, Y., Li, W., Simard, A., & Hao, J. (2013). Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Experimental Neurology, 241, 56–66PubMedCrossRef Ge, Z., Da, Y., Xue, Z., Zhang, K., Zhuang, H., Peng, M., Li, Y., Li, W., Simard, A., & Hao, J. (2013). Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Experimental Neurology, 241, 56–66PubMedCrossRef
go back to reference Gill, S. S. (2019). Method of treating a CNS disorder using a water-soluble histone deacetylase inhibitor. Google Patents. Gill, S. S. (2019). Method of treating a CNS disorder using a water-soluble histone deacetylase inhibitor. Google Patents.
go back to reference Golden, S. A., Christoffel, D. J., Heshmati, M., Hodes, G. E., Magida, J., Davis, K., Cahill, M. E., Dias, C., Ribeiro, E., & Ables, J. L. (2013). Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nature Medicine, 19(3), 337PubMedPubMedCentralCrossRef Golden, S. A., Christoffel, D. J., Heshmati, M., Hodes, G. E., Magida, J., Davis, K., Cahill, M. E., Dias, C., Ribeiro, E., & Ables, J. L. (2013). Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nature Medicine, 19(3), 337PubMedPubMedCentralCrossRef
go back to reference Grayson, D. R., Kundakovic, M., & Sharma, R. P. (2010). Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Molecular Pharmacology, 77(2), 126–135PubMedCrossRef Grayson, D. R., Kundakovic, M., & Sharma, R. P. (2010). Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Molecular Pharmacology, 77(2), 126–135PubMedCrossRef
go back to reference Gryder, B. E., Sodji, Q. H., & Oyelere, A. K. (2012). Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Medicinal Chemistry, 4(4), 505–524PubMedCrossRef Gryder, B. E., Sodji, Q. H., & Oyelere, A. K. (2012). Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Medicinal Chemistry, 4(4), 505–524PubMedCrossRef
go back to reference Guan, J.-S., Haggarty, S. J., Giacometti, E., Dannenberg, J.-H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., & Mazitschek, R. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243), 55PubMedPubMedCentralCrossRef Guan, J.-S., Haggarty, S. J., Giacometti, E., Dannenberg, J.-H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., & Mazitschek, R. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243), 55PubMedPubMedCentralCrossRef
go back to reference Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10(1), 32PubMedPubMedCentralCrossRef Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10(1), 32PubMedPubMedCentralCrossRef
go back to reference Hahnen, E., Eyüpoglu, I. Y., Brichta, L., Haastert, K., Tränkle, C., Siebzehnrübl, F. A., Riessland, M., Hölker, I., Claus, P., & Romstöck, J. (2006). In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. Journal of Neurochemistry, 98(1), 193–202PubMedCrossRef Hahnen, E., Eyüpoglu, I. Y., Brichta, L., Haastert, K., Tränkle, C., Siebzehnrübl, F. A., Riessland, M., Hölker, I., Claus, P., & Romstöck, J. (2006). In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. Journal of Neurochemistry, 98(1), 193–202PubMedCrossRef
go back to reference Hanson, J. E., La, H., Plise, E., Chen, Y.-H., Ding, X., Hanania, T., Sabath, E. V., Alexandrov, V., Brunner, D., & Leahy, E. (2013a). SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE, 8(7), e69964PubMedPubMedCentralCrossRef Hanson, J. E., La, H., Plise, E., Chen, Y.-H., Ding, X., Hanania, T., Sabath, E. V., Alexandrov, V., Brunner, D., & Leahy, E. (2013a). SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE, 8(7), e69964PubMedPubMedCentralCrossRef
go back to reference Hanson, J. E., La, H., Plise, E., Chen, Y.-H., Ding, X., Hanania, T., Sabath, E. V., Alexandrov, V., Brunner, D., & Leahy, E. (2013b). SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE, 8(7), e69968CrossRef Hanson, J. E., La, H., Plise, E., Chen, Y.-H., Ding, X., Hanania, T., Sabath, E. V., Alexandrov, V., Brunner, D., & Leahy, E. (2013b). SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE, 8(7), e69968CrossRef
go back to reference Hauke, J., Riessland, M., Lunke, S., Eyüpoglu, I. Y., Blümcke, I., El-Osta, A., Wirth, B., & Hahnen, E. (2009). Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Human Molecular Genetics, 18(2), 304–317PubMedCrossRef Hauke, J., Riessland, M., Lunke, S., Eyüpoglu, I. Y., Blümcke, I., El-Osta, A., Wirth, B., & Hahnen, E. (2009). Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Human Molecular Genetics, 18(2), 304–317PubMedCrossRef
go back to reference Hockly, E., Richon, V. M., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., & Lowden, P. A. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proceedings of the National Academy of Sciences, 100(4), 2041–2046CrossRef Hockly, E., Richon, V. M., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., & Lowden, P. A. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proceedings of the National Academy of Sciences, 100(4), 2041–2046CrossRef
go back to reference Hoodin, F., LaLonde, L., Errickson, J., Votruba, K., Kentor, R., Gatza, E., Reddy, P., & Choi, S. W. (2019). Cognitive function and quality of life in vorinostat-treated patients after matched unrelated donor myeloablative conditioning hematopoietic cell transplantation. Biology of Blood and Marrow Transplantation, 25(2), 343–353PubMedCrossRef Hoodin, F., LaLonde, L., Errickson, J., Votruba, K., Kentor, R., Gatza, E., Reddy, P., & Choi, S. W. (2019). Cognitive function and quality of life in vorinostat-treated patients after matched unrelated donor myeloablative conditioning hematopoietic cell transplantation. Biology of Blood and Marrow Transplantation, 25(2), 343–353PubMedCrossRef
go back to reference Jayant, R. D., Atluri, V. S., Agudelo, M., Sagar, V., Kaushik, A., & Nair, M. (2015). Sustained-release nanoART formulation for the treatment of neuroAIDS. International Journal of Nanomedicine, 10, 1077PubMedPubMedCentralCrossRef Jayant, R. D., Atluri, V. S., Agudelo, M., Sagar, V., Kaushik, A., & Nair, M. (2015). Sustained-release nanoART formulation for the treatment of neuroAIDS. International Journal of Nanomedicine, 10, 1077PubMedPubMedCentralCrossRef
go back to reference Jhelum, P., Karisetty, B., Kumar, A., & Chakravarty, S. (2017). Implications of epigenetic mechanisms and their targets in cerebral ischemia models. Current Neuropharmacology, 15(6), 815–830PubMedPubMedCentralCrossRef Jhelum, P., Karisetty, B., Kumar, A., & Chakravarty, S. (2017). Implications of epigenetic mechanisms and their targets in cerebral ischemia models. Current Neuropharmacology, 15(6), 815–830PubMedPubMedCentralCrossRef
go back to reference Jochems, J., Boulden, J., Lee, B. G., Blendy, J. A., Jarpe, M., Mazitschek, R., Van Duzer, J. H., Jones, S., & Berton, O. (2014). Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology, 39(2), 389PubMedCrossRef Jochems, J., Boulden, J., Lee, B. G., Blendy, J. A., Jarpe, M., Mazitschek, R., Van Duzer, J. H., Jones, S., & Berton, O. (2014). Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology, 39(2), 389PubMedCrossRef
go back to reference Johnstone, R. W., & Licht, J. D. (2003). Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell, 4(1), 13–18PubMedCrossRef Johnstone, R. W., & Licht, J. D. (2003). Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell, 4(1), 13–18PubMedCrossRef
go back to reference Kazantsev, A. G., & Thompson, L. M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery, 7(10), 854–868PubMedCrossRef Kazantsev, A. G., & Thompson, L. M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery, 7(10), 854–868PubMedCrossRef
go back to reference Kelly, W. K., O’Connor, O. A., Krug, M. L., Chiao, J. H., Heaney, M., Curley, T., MacGregore-Cortelli, B., Tong, W., Secrist, J. P., & Schwartz, L. (2005). Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. Journal of Clinical Oncology, 23(17), 3923PubMedCrossRef Kelly, W. K., O’Connor, O. A., Krug, M. L., Chiao, J. H., Heaney, M., Curley, T., MacGregore-Cortelli, B., Tong, W., Secrist, J. P., & Schwartz, L. (2005). Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. Journal of Clinical Oncology, 23(17), 3923PubMedCrossRef
go back to reference Kelly, W. K., Richon, V. M., O’Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., & Rosa, E. (2003). Phase I clinical trial of histone deacetylase inhibitor: Suberoylanilide hydroxamic acid administered intravenously. Clinical Cancer Research, 9(10), 3578–3588PubMed Kelly, W. K., Richon, V. M., O’Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., & Rosa, E. (2003). Phase I clinical trial of histone deacetylase inhibitor: Suberoylanilide hydroxamic acid administered intravenously. Clinical Cancer Research, 9(10), 3578–3588PubMed
go back to reference Kidd, S. K., & Schneider, J. S. (2010). Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Research, 1354, 172–178PubMedPubMedCentralCrossRef Kidd, S. K., & Schneider, J. S. (2010). Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Research, 1354, 172–178PubMedPubMedCentralCrossRef
go back to reference Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D., & Rumbaugh, G. (2010). Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology, 35(4), 870–880PubMedCrossRef Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D., & Rumbaugh, G. (2010). Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology, 35(4), 870–880PubMedCrossRef
go back to reference Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 15(20), 3012–3023PubMedCrossRef Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 15(20), 3012–3023PubMedCrossRef
go back to reference Kretsovali, A., Hadjimichael, C., & Charmpilas, N. (2012). Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells International, 2012, 1–10CrossRef Kretsovali, A., Hadjimichael, C., & Charmpilas, N. (2012). Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells International, 2012, 1–10CrossRef
go back to reference Kuta, R., Larochelle, N., Fernandez, M., Pal, A., Minotti, S., Tibshirani, M., Louis, K. S., Gentil, B. J., Nalbantoglu, J. N., & Hermann, A. (2020). Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress and Chaperones, 1, 1–19 Kuta, R., Larochelle, N., Fernandez, M., Pal, A., Minotti, S., Tibshirani, M., Louis, K. S., Gentil, B. J., Nalbantoglu, J. N., & Hermann, A. (2020). Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress and Chaperones, 1, 1–19
go back to reference Kv, A., Madhana, R. M., Bais, A. K., Singh, V. B., Malik, A., Sinha, S., Lahkar, M., Kumar, P., & Samudrala, P. K. (2020). Cognitive improvement by vorinostat through modulation of endoplasmic reticulum stress in a corticosterone-induced chronic stress model in mice. ACS Chemical Neuroscience, 11(17), 2649–2657CrossRef Kv, A., Madhana, R. M., Bais, A. K., Singh, V. B., Malik, A., Sinha, S., Lahkar, M., Kumar, P., & Samudrala, P. K. (2020). Cognitive improvement by vorinostat through modulation of endoplasmic reticulum stress in a corticosterone-induced chronic stress model in mice. ACS Chemical Neuroscience, 11(17), 2649–2657CrossRef
go back to reference Lai, J.-I., Leman, L. J., Ku, S., Vickers, C. J., Olsen, C. A., Montero, A., Ghadiri, M. R., & Gottesfeld, J. M. (2017). Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: Screening with iPSC-derived neuronal cells. Bioorganic & Medicinal Chemistry Letters, 27(15), 3289–3293CrossRef Lai, J.-I., Leman, L. J., Ku, S., Vickers, C. J., Olsen, C. A., Montero, A., Ghadiri, M. R., & Gottesfeld, J. M. (2017). Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: Screening with iPSC-derived neuronal cells. Bioorganic & Medicinal Chemistry Letters, 27(15), 3289–3293CrossRef
go back to reference Lee, P., Murphy, B., Miller, R., Menon, V., Banik, N. L., Giglio, P., Lindhorst, S. M., & Varma, A. K. (2015). Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Research, 35(2), 615–625PubMedPubMedCentral Lee, P., Murphy, B., Miller, R., Menon, V., Banik, N. L., Giglio, P., Lindhorst, S. M., & Varma, A. K. (2015). Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Research, 35(2), 615–625PubMedPubMedCentral
go back to reference Li, S., Lu, X., Shao, Q., Chen, Z., Huang, Q., Jiao, Z., Huang, X., Yue, M., Peng, J., & Zhou, X. (2019). Early histone deacetylase inhibition mitigates ischemia/reperfusion brain injury by reducing microglia activation and modulating their phenotype. Frontiers in Neurology, 10, 893PubMedPubMedCentralCrossRef Li, S., Lu, X., Shao, Q., Chen, Z., Huang, Q., Jiao, Z., Huang, X., Yue, M., Peng, J., & Zhou, X. (2019). Early histone deacetylase inhibition mitigates ischemia/reperfusion brain injury by reducing microglia activation and modulating their phenotype. Frontiers in Neurology, 10, 893PubMedPubMedCentralCrossRef
go back to reference Lindemann, R., Newbold, A., Whitecross, K., Cluse, L., Frew, A., Ellis, L., Williams, S., Wiegmans, A., Dear, A., & Scott, C. (2007). Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proceedings of the National Academy of Sciences, 104(19), 8071–8076CrossRef Lindemann, R., Newbold, A., Whitecross, K., Cluse, L., Frew, A., Ellis, L., Williams, S., Wiegmans, A., Dear, A., & Scott, C. (2007). Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proceedings of the National Academy of Sciences, 104(19), 8071–8076CrossRef
go back to reference Mai, A., Rotili, D., Valente, S., & Kazantsev, A. G. (2009). Histone deacetylase inhibitors and neurodegenerative disorders: Holding the promise. Current Pharmaceutical Design, 15(34), 3940–3957PubMedCrossRef Mai, A., Rotili, D., Valente, S., & Kazantsev, A. G. (2009). Histone deacetylase inhibitors and neurodegenerative disorders: Holding the promise. Current Pharmaceutical Design, 15(34), 3940–3957PubMedCrossRef
go back to reference Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., & Pazdur, R. (2007). FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. The Oncologist, 12(10), 1247–1252PubMedCrossRef Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., & Pazdur, R. (2007). FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. The Oncologist, 12(10), 1247–1252PubMedCrossRef
go back to reference Marks, P. A., & Breslow, R. (2007). Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnology, 25(1), 84–90PubMedCrossRef Marks, P. A., & Breslow, R. (2007). Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnology, 25(1), 84–90PubMedCrossRef
go back to reference Marks, P. A., & Dokmanovic, M. (2005). Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert opinion on investigational drugs, 14(12), 1497–1511PubMedCrossRef Marks, P. A., & Dokmanovic, M. (2005). Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert opinion on investigational drugs, 14(12), 1497–1511PubMedCrossRef
go back to reference McLaughlin, F., & La Thangue, N. B. (2004). Histone deacetylase inhibitors open new doors in cancer therapy. Biochemical Pharmacology, 68(6), 1139–1144PubMedCrossRef McLaughlin, F., & La Thangue, N. B. (2004). Histone deacetylase inhibitors open new doors in cancer therapy. Biochemical Pharmacology, 68(6), 1139–1144PubMedCrossRef
go back to reference Meng, J., Li, Y., Camarillo, C., Yao, Y., Zhang, Y., Xu, C., & Jiang, L. (2014). The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity. PLoS ONE, 9(1), e85570PubMedPubMedCentralCrossRef Meng, J., Li, Y., Camarillo, C., Yao, Y., Zhang, Y., Xu, C., & Jiang, L. (2014). The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity. PLoS ONE, 9(1), e85570PubMedPubMedCentralCrossRef
go back to reference Meng, J., Li, Y., Zhang, M., Li, W., Zhou, L., Wang, Q., Lin, L., Jiang, L., & Zhu, W. (2019). A combination of curcumin, vorinostat and silibinin reverses Aβ-induced nerve cell toxicity via activation of AKT-MDM2-p53 pathway. PeerJ, 7, e6716PubMedPubMedCentralCrossRef Meng, J., Li, Y., Zhang, M., Li, W., Zhou, L., Wang, Q., Lin, L., Jiang, L., & Zhu, W. (2019). A combination of curcumin, vorinostat and silibinin reverses Aβ-induced nerve cell toxicity via activation of AKT-MDM2-p53 pathway. PeerJ, 7, e6716PubMedPubMedCentralCrossRef
go back to reference Meylan, E. M., Halfon, O., Magistretti, P. J., & Cardinaux, J.-R. (2016). The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: possible relevance for treatment-resistant depression. Neuropharmacology, 107, 111–121PubMedPubMedCentralCrossRef Meylan, E. M., Halfon, O., Magistretti, P. J., & Cardinaux, J.-R. (2016). The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: possible relevance for treatment-resistant depression. Neuropharmacology, 107, 111–121PubMedPubMedCentralCrossRef
go back to reference Mielcarek, M., Benn, C. L., Franklin, S. A., Smith, D. L., Woodman, B., Marks, P. A., & Bates, G. P. (2011). SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS ONE, 6(11), e203CrossRef Mielcarek, M., Benn, C. L., Franklin, S. A., Smith, D. L., Woodman, B., Marks, P. A., & Bates, G. P. (2011). SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS ONE, 6(11), e203CrossRef
go back to reference Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., Poulaki, V., Shringarpure, R., Hideshima, T., Akiyama, M., Chauhan, D., Munshi, N., & Gu, X. (2004). Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proceedings of the National Academy of Sciences, 101(2), 540–545CrossRef Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., Poulaki, V., Shringarpure, R., Hideshima, T., Akiyama, M., Chauhan, D., Munshi, N., & Gu, X. (2004). Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proceedings of the National Academy of Sciences, 101(2), 540–545CrossRef
go back to reference Mohamed, E. A., Hashim, I. I. A., Yusif, R. M., Suddek, G. M., Shaaban, A. A. A., & Badria, F. A. E. (2017). Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities. European Journal of Pharmaceutical Sciences, 96, 232–242PubMedCrossRef Mohamed, E. A., Hashim, I. I. A., Yusif, R. M., Suddek, G. M., Shaaban, A. A. A., & Badria, F. A. E. (2017). Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities. European Journal of Pharmaceutical Sciences, 96, 232–242PubMedCrossRef
go back to reference Mohamed, E. A., Zhao, Y., Meshali, M. M., Remsberg, C. M., Borg, T. M., Foda, A. M. M., Takemoto, J. K., Sayre, C. L., Martinez, S. E., & Davies, N. M. (2012). Vorinostat with sustained exposure and high solubility in poly (ethylene glycol)-b-poly (dl-lactic acid) micelle nanocarriers: Characterization and effects on pharmacokinetics in rat serum and urine. Journal of Pharmaceutical Sciences, 101(10), 3787–3798PubMedCrossRef Mohamed, E. A., Zhao, Y., Meshali, M. M., Remsberg, C. M., Borg, T. M., Foda, A. M. M., Takemoto, J. K., Sayre, C. L., Martinez, S. E., & Davies, N. M. (2012). Vorinostat with sustained exposure and high solubility in poly (ethylene glycol)-b-poly (dl-lactic acid) micelle nanocarriers: Characterization and effects on pharmacokinetics in rat serum and urine. Journal of Pharmaceutical Sciences, 101(10), 3787–3798PubMedCrossRef
go back to reference Morris, M. J., & Monteggia, L. M. (2013). Unique functional roles for class I and class II histone deacetylases in central nervous system development and function. International Journal of Developmental Neuroscience, 31(6), 370–381PubMedPubMedCentralCrossRef Morris, M. J., & Monteggia, L. M. (2013). Unique functional roles for class I and class II histone deacetylases in central nervous system development and function. International Journal of Developmental Neuroscience, 31(6), 370–381PubMedPubMedCentralCrossRef
go back to reference Mueller, S., Yang, X., Sottero, T. L., Gragg, A., Prasad, G., Polley, M.-Y., Weiss, W. A., Matthay, K. K., Davidoff, A. M., & DuBois, S. G. (2011). Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: Efficacy and underlying mechanisms. Cancer Letters, 306(2), 223–229PubMedPubMedCentralCrossRef Mueller, S., Yang, X., Sottero, T. L., Gragg, A., Prasad, G., Polley, M.-Y., Weiss, W. A., Matthay, K. K., Davidoff, A. M., & DuBois, S. G. (2011). Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: Efficacy and underlying mechanisms. Cancer Letters, 306(2), 223–229PubMedPubMedCentralCrossRef
go back to reference Munkacsi, A. B., Hammond, N., Schneider, R. T., Senanayake, D. S., Higaki, K., Lagutin, K., Bloor, S. J., Ory, D. S., Maue, R. A., & Chen, F. W. (2017). Normalization of hepatic homeostasis in the Npc1nmf164 mouse model of Niemann-Pick type C disease treated with the histone deacetylase inhibitor vorinostat. Journal of Biological Chemistry, 292(11), 4395–4410CrossRef Munkacsi, A. B., Hammond, N., Schneider, R. T., Senanayake, D. S., Higaki, K., Lagutin, K., Bloor, S. J., Ory, D. S., Maue, R. A., & Chen, F. W. (2017). Normalization of hepatic homeostasis in the Npc1nmf164 mouse model of Niemann-Pick type C disease treated with the histone deacetylase inhibitor vorinostat. Journal of Biological Chemistry, 292(11), 4395–4410CrossRef
go back to reference Musolino, P. L., Gong, Y., Snyder, J. M., Jimenez, S., Lok, J., Lo, E. H., Moser, A. B., Grabowski, E. F., Frosch, M. P., & Eichler, F. S. (2015). Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain, 138(11), 3206–3220PubMedPubMedCentralCrossRef Musolino, P. L., Gong, Y., Snyder, J. M., Jimenez, S., Lok, J., Lo, E. H., Moser, A. B., Grabowski, E. F., Frosch, M. P., & Eichler, F. S. (2015). Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain, 138(11), 3206–3220PubMedPubMedCentralCrossRef
go back to reference Nuutinen, T., Suuronen, T., Kauppinen, A., & Salminen, A. (2010). Valproic acid stimulates clusterin expression in human astrocytes: Implications for Alzheimer’s disease. Neuroscience Letters, 475(2), 64–68PubMedCrossRef Nuutinen, T., Suuronen, T., Kauppinen, A., & Salminen, A. (2010). Valproic acid stimulates clusterin expression in human astrocytes: Implications for Alzheimer’s disease. Neuroscience Letters, 475(2), 64–68PubMedCrossRef
go back to reference Olsen, E., Kim, Y., Kuzel, T., Pacheco, T., Foss, F., Parker, S., Wang, J., Frankel, S., Lis, J., & Duvic, M. (2006). Vorinostat (suberoylanilide hydroxamic acid, SAHA) is clinically active in advanced cutaneous T-cell lymphoma (CTCL): Results of a phase IIb trial. Journal of Clinical Oncology, 24(18 suppl), 7500–7500CrossRef Olsen, E., Kim, Y., Kuzel, T., Pacheco, T., Foss, F., Parker, S., Wang, J., Frankel, S., Lis, J., & Duvic, M. (2006). Vorinostat (suberoylanilide hydroxamic acid, SAHA) is clinically active in advanced cutaneous T-cell lymphoma (CTCL): Results of a phase IIb trial. Journal of Clinical Oncology, 24(18 suppl), 7500–7500CrossRef
go back to reference Palmieri, D., Lockman, P. R., Thomas, F. C., Hua, E., Herring, J., Hargrave, E., Johnson, M., Flores, N., Qian, Y., & Vega-Valle, E. (2009). Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clinical Cancer Research, 15(19), 6148–6157PubMedPubMedCentralCrossRef Palmieri, D., Lockman, P. R., Thomas, F. C., Hua, E., Herring, J., Hargrave, E., Johnson, M., Flores, N., Qian, Y., & Vega-Valle, E. (2009). Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clinical Cancer Research, 15(19), 6148–6157PubMedPubMedCentralCrossRef
go back to reference Peixoto, P., & Lansiaux, A. (2006). Histone-deacetylases inhibitors: from TSA to SAHA. Bulletin du Cancer, 93(1), 27–36PubMed Peixoto, P., & Lansiaux, A. (2006). Histone-deacetylases inhibitors: from TSA to SAHA. Bulletin du Cancer, 93(1), 27–36PubMed
go back to reference Pipalia, N. H., Subramanian, K., Mao, S., Ralph, H., Hutt, D. M., Scott, S. M., Balch, W. E., & Maxfield, F. R. (2017). Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells. Journal of Lipid Research, 58(4), 695–708PubMedPubMedCentralCrossRef Pipalia, N. H., Subramanian, K., Mao, S., Ralph, H., Hutt, D. M., Scott, S. M., Balch, W. E., & Maxfield, F. R. (2017). Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells. Journal of Lipid Research, 58(4), 695–708PubMedPubMedCentralCrossRef
go back to reference Price, S., & Dyke, H. J. (2007). Histone deacetylase inhibitors: An analysis of recent patenting activity. Expert Opinion on Therapeutic Patents, 17(7), 745–765CrossRef Price, S., & Dyke, H. J. (2007). Histone deacetylase inhibitors: An analysis of recent patenting activity. Expert Opinion on Therapeutic Patents, 17(7), 745–765CrossRef
go back to reference Rauniyar, N., Subramanian, K., Lavallée-Adam, M., Martínez-Bartolomé, S., Balch, W. E., & Yates, J. R. (2015). Quantitative proteomics of human fibroblasts with I1061T mutation in Niemann-Pick C1 (NPC1) protein provides insights into the disease pathogenesis. Molecular & Cellular Proteomics, 14(7), 1734–1749CrossRef Rauniyar, N., Subramanian, K., Lavallée-Adam, M., Martínez-Bartolomé, S., Balch, W. E., & Yates, J. R. (2015). Quantitative proteomics of human fibroblasts with I1061T mutation in Niemann-Pick C1 (NPC1) protein provides insights into the disease pathogenesis. Molecular & Cellular Proteomics, 14(7), 1734–1749CrossRef
go back to reference Reddy, R. G., Surineni, G., Bhattacharya, D., Marvadi, S. K., Sagar, A., Kalle, A. M., Kumar, A., Kantevari, S., & Chakravarty, S. (2019). Crafting carbazole-based vorinostat and tubastatin-A-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega, 4(17), 17279–17294PubMedPubMedCentralCrossRef Reddy, R. G., Surineni, G., Bhattacharya, D., Marvadi, S. K., Sagar, A., Kalle, A. M., Kumar, A., Kantevari, S., & Chakravarty, S. (2019). Crafting carbazole-based vorinostat and tubastatin-A-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega, 4(17), 17279–17294PubMedPubMedCentralCrossRef
go back to reference Richon, V., Webb, Y., Merger, R., Sheppard, T., Jursic, B., Ngo, L., Civoli, F., Breslow, R., Rifkind, R., & Marks, P. (1996). Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proceedings of the National Academy of Sciences, 93(12), 5705–5708CrossRef Richon, V., Webb, Y., Merger, R., Sheppard, T., Jursic, B., Ngo, L., Civoli, F., Breslow, R., Rifkind, R., & Marks, P. (1996). Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proceedings of the National Academy of Sciences, 93(12), 5705–5708CrossRef
go back to reference Riessland, M., Ackermann, B., Förster, A., Jakubik, M., Hauke, J., Garbes, L., Fritzsche, I., Mende, Y., Blumcke, I., & Hahnen, E. (2010). SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Human Molecular Genetics, 19(8), 1492–1506PubMedCrossRef Riessland, M., Ackermann, B., Förster, A., Jakubik, M., Hauke, J., Garbes, L., Fritzsche, I., Mende, Y., Blumcke, I., & Hahnen, E. (2010). SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Human Molecular Genetics, 19(8), 1492–1506PubMedCrossRef
go back to reference Rooney, A. G., Carson, A., & Grant, R. (2011). Depression in cerebral glioma patients: A systematic review of observational studies. Journal of the National Cancer Institute, 103(1), 61–76PubMedCrossRef Rooney, A. G., Carson, A., & Grant, R. (2011). Depression in cerebral glioma patients: A systematic review of observational studies. Journal of the National Cancer Institute, 103(1), 61–76PubMedCrossRef
go back to reference Schroeder, F. A., Lewis, M. C., Fass, D. M., Wagner, F. F., Zhang, Y.-L., Hennig, K. M., Gale, J., Zhao, W.-N., Reis, S., & Barker, D. D. (2013). A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE, 8(8), e71323PubMedPubMedCentralCrossRef Schroeder, F. A., Lewis, M. C., Fass, D. M., Wagner, F. F., Zhang, Y.-L., Hennig, K. M., Gale, J., Zhao, W.-N., Reis, S., & Barker, D. D. (2013). A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE, 8(8), e71323PubMedPubMedCentralCrossRef
go back to reference Seo, Y. J., Kang, Y., Muench, L., Reid, A., Caesar, S., Jean, L., Wagner, F., Holson, E., Haggarty, S. J., & Weiss, P. (2014). Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chemical Neuroscience, 5(7), 588–596PubMedPubMedCentralCrossRef Seo, Y. J., Kang, Y., Muench, L., Reid, A., Caesar, S., Jean, L., Wagner, F., Holson, E., Haggarty, S. J., & Weiss, P. (2014). Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chemical Neuroscience, 5(7), 588–596PubMedPubMedCentralCrossRef
go back to reference Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Review of Biochemistry, 76, 75–100PubMedCrossRef Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Review of Biochemistry, 76, 75–100PubMedCrossRef
go back to reference She, A., Kurtser, I., Reis, S. A., Hennig, K., Lai, J., Lang, A., Zhao, W.-N., Mazitschek, R., Dickerson, B. C., & Herz, J. (2017). Selectivity and kinetic requirements of HDAC inhibitors as progranulin enhancers for treating frontotemporal dementia. Cell Chemical Biology, 24(7), 892–906PubMedPubMedCentralCrossRef She, A., Kurtser, I., Reis, S. A., Hennig, K., Lai, J., Lang, A., Zhao, W.-N., Mazitschek, R., Dickerson, B. C., & Herz, J. (2017). Selectivity and kinetic requirements of HDAC inhibitors as progranulin enhancers for treating frontotemporal dementia. Cell Chemical Biology, 24(7), 892–906PubMedPubMedCentralCrossRef
go back to reference Shim, H., Wei, L., Holder, C. A., Guo, Y., Hu, X. P., Miller, A. H., & Olson, J. J. (2014). Use of high-resolution volumetric MR spectroscopic imaging in assessing treatment response of glioblastoma to an HDAC inhibitor. American Journal of Roentgenology, 203(2), W158–W165PubMedCrossRef Shim, H., Wei, L., Holder, C. A., Guo, Y., Hu, X. P., Miller, A. H., & Olson, J. J. (2014). Use of high-resolution volumetric MR spectroscopic imaging in assessing treatment response of glioblastoma to an HDAC inhibitor. American Journal of Roentgenology, 203(2), W158–W165PubMedCrossRef
go back to reference Sukumari-Ramesh, S., Alleyne, C. H., & Dhandapani, K. M. (2016). The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) confers acute neuroprotection after intracerebral hemorrhage in mice. Translational Stroke Research, 7(2), 141–148PubMedCrossRef Sukumari-Ramesh, S., Alleyne, C. H., & Dhandapani, K. M. (2016). The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) confers acute neuroprotection after intracerebral hemorrhage in mice. Translational Stroke Research, 7(2), 141–148PubMedCrossRef
go back to reference Suraweera, A., O’Byrne, K. J., & Richard, D. J. (2018). Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Frontiers in Oncology, 8, 92PubMedPubMedCentralCrossRef Suraweera, A., O’Byrne, K. J., & Richard, D. J. (2018). Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Frontiers in Oncology, 8, 92PubMedPubMedCentralCrossRef
go back to reference Tanaka, M., Levy, J., Terada, M., Breslow, R., Rifkind, R. A., & Marks, P. A. (1975). Induction of erythroid differentiation in murine virus infected eythroleukemia cells by highly polar compounds. Proceedings of the National Academy of Sciences, 72(3), 1003–1006CrossRef Tanaka, M., Levy, J., Terada, M., Breslow, R., Rifkind, R. A., & Marks, P. A. (1975). Induction of erythroid differentiation in murine virus infected eythroleukemia cells by highly polar compounds. Proceedings of the National Academy of Sciences, 72(3), 1003–1006CrossRef
go back to reference Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9(4), 519PubMedCrossRef Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9(4), 519PubMedCrossRef
go back to reference Uchida, S., Hara, K., Kobayashi, A., Otsuki, K., Yamagata, H., Hobara, T., Suzuki, T., Miyata, N., & Watanabe, Y. (2011). Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron, 69(2), 359–372PubMedCrossRef Uchida, S., Hara, K., Kobayashi, A., Otsuki, K., Yamagata, H., Hobara, T., Suzuki, T., Miyata, N., & Watanabe, Y. (2011). Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron, 69(2), 359–372PubMedCrossRef
go back to reference Ugur, H. C., Ramakrishna, N., Bello, L., Menon, L. G., Kim, S.-K., Black, P. M., & Carroll, R. S. (2007). Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. Journal of Neuro-Oncology, 83(3), 267–275PubMedCrossRef Ugur, H. C., Ramakrishna, N., Bello, L., Menon, L. G., Kim, S.-K., Black, P. M., & Carroll, R. S. (2007). Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. Journal of Neuro-Oncology, 83(3), 267–275PubMedCrossRef
go back to reference VanderMolen, K. M., McCulloch, W., Pearce, C. J., & Oberlies, N. H. (2011). Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. The Journal of Antibiotics, 64(8), 525PubMedPubMedCentralCrossRef VanderMolen, K. M., McCulloch, W., Pearce, C. J., & Oberlies, N. H. (2011). Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. The Journal of Antibiotics, 64(8), 525PubMedPubMedCentralCrossRef
go back to reference Wang, Y., Tu, S., Steffen, D., & Xiong, M. P. (2014). Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats. Journal of Pharmacy & Pharmaceutical Sciences, 17(4), 583CrossRef Wang, Y., Tu, S., Steffen, D., & Xiong, M. P. (2014). Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats. Journal of Pharmacy & Pharmaceutical Sciences, 17(4), 583CrossRef
go back to reference Wash, P. L., Hoffman, T. Z., Wiley, B. M., Bonnefous, C., Smith, N. D., Sertic, M. S., Lawrence, C. M., Symons, K. T., Nguyen, P.-M., & Lustig, K. D. (2008). α-Mercaptoketone based histone deacetylase inhibitors. Bioorganic & Medicinal Chemistry Letters, 18(24), 6482–6485CrossRef Wash, P. L., Hoffman, T. Z., Wiley, B. M., Bonnefous, C., Smith, N. D., Sertic, M. S., Lawrence, C. M., Symons, K. T., Nguyen, P.-M., & Lustig, K. D. (2008). α-Mercaptoketone based histone deacetylase inhibitors. Bioorganic & Medicinal Chemistry Letters, 18(24), 6482–6485CrossRef
go back to reference Wei, L., Hong, S., Yoon, Y., Hwang, S. N., Park, J. C., Zhang, Z., Olson, J. J., Hu, X. P., & Shim, H. (2012). Early prediction of response to Vorinostat in an orthotopic rat glioma model. NMR in Biomedicine, 25(9), 1104–1111PubMedPubMedCentralCrossRef Wei, L., Hong, S., Yoon, Y., Hwang, S. N., Park, J. C., Zhang, Z., Olson, J. J., Hu, X. P., & Shim, H. (2012). Early prediction of response to Vorinostat in an orthotopic rat glioma model. NMR in Biomedicine, 25(9), 1104–1111PubMedPubMedCentralCrossRef
go back to reference Xu, J., Shi, J., Zhang, J., & Zhang, Y. (2018). Vorinostat: a histone deacetylases (HDAC) inhibitor ameliorates traumatic brain injury by inducing iNOS/Nrf2/ARE pathway. Folia Neuropathologica, 56, 179–186PubMedCrossRef Xu, J., Shi, J., Zhang, J., & Zhang, Y. (2018). Vorinostat: a histone deacetylases (HDAC) inhibitor ameliorates traumatic brain injury by inducing iNOS/Nrf2/ARE pathway. Folia Neuropathologica, 56, 179–186PubMedCrossRef
go back to reference Yang, C., Rahimpour, S., Lu, J., Pacak, K., Ikejiri, B., Brady, R. O., & Zhuang, Z. (2013). Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. Proceedings of the National Academy of Sciences, 110(3), 966–971CrossRef Yang, C., Rahimpour, S., Lu, J., Pacak, K., Ikejiri, B., Brady, R. O., & Zhuang, Z. (2013). Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. Proceedings of the National Academy of Sciences, 110(3), 966–971CrossRef
go back to reference Yin, D., Ong, J. M., Hu, J., Desmond, J. C., Kawamata, N., Konda, B. M., Black, K. L., & Koeffler, H. P. (2007). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: Effects on gene expression and growth of glioma cells in vitro and in vivo. Clinical Cancer Research, 13(3), 1045–1052PubMedCrossRef Yin, D., Ong, J. M., Hu, J., Desmond, J. C., Kawamata, N., Konda, B. M., Black, K. L., & Koeffler, H. P. (2007). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: Effects on gene expression and growth of glioma cells in vitro and in vivo. Clinical Cancer Research, 13(3), 1045–1052PubMedCrossRef
go back to reference Yu, Q., Feng, N., Hu, Y., Luo, F., Zhao, W., Zhao, W., Liu, Z., Li, M., Xu, L., & Wu, L. (2019). Suberoylanilide hydroxamic acid (SAHA) alleviates the learning and memory impairment in rat offspring caused by maternal sevoflurane exposure during late gestation. The Journal of Toxicological Sciences, 44(3), 177–189PubMedCrossRef Yu, Q., Feng, N., Hu, Y., Luo, F., Zhao, W., Zhao, W., Liu, Z., Li, M., Xu, L., & Wu, L. (2019). Suberoylanilide hydroxamic acid (SAHA) alleviates the learning and memory impairment in rat offspring caused by maternal sevoflurane exposure during late gestation. The Journal of Toxicological Sciences, 44(3), 177–189PubMedCrossRef
go back to reference Zagni, C., Floresta, G., Monciino, G., & Rescifina, A. (2017). The search for potent, small-molecule HDACIs in cancer treatment: A decade after vorinostat. Medicinal Research Reviews, 37(6), 1373–1428PubMedCrossRef Zagni, C., Floresta, G., Monciino, G., & Rescifina, A. (2017). The search for potent, small-molecule HDACIs in cancer treatment: A decade after vorinostat. Medicinal Research Reviews, 37(6), 1373–1428PubMedCrossRef
go back to reference Ziemka-Nalecz, M., Jaworska, J., Sypecka, J., & Zalewska, T. (2018). Histone deacetylase inhibitors: A therapeutic key in neurological disorders? Journal of Neuropathology & Experimental Neurology, 77(10), 855–870CrossRef Ziemka-Nalecz, M., Jaworska, J., Sypecka, J., & Zalewska, T. (2018). Histone deacetylase inhibitors: A therapeutic key in neurological disorders? Journal of Neuropathology & Experimental Neurology, 77(10), 855–870CrossRef
go back to reference Zierfuss, B., Weinhofer, I., Kühl, J. S., Köhler, W., Bley, A., Zauner, K., Binder, J., Martinović, K., Seiser, C., & Hertzberg, C. (2020). Vorinostat in the acute neuroinflammatory form of X-linked adrenoleukodystrophy. Annals of Clinical and Translational Neurology, 7, 639–652PubMedPubMedCentralCrossRef Zierfuss, B., Weinhofer, I., Kühl, J. S., Köhler, W., Bley, A., Zauner, K., Binder, J., Martinović, K., Seiser, C., & Hertzberg, C. (2020). Vorinostat in the acute neuroinflammatory form of X-linked adrenoleukodystrophy. Annals of Clinical and Translational Neurology, 7, 639–652PubMedPubMedCentralCrossRef
Metadata
Title
Repurposing Vorinostat for the Treatment of Disorders Affecting Brain
Authors
K. V. Athira
Prashant Sadanandan
Sumana Chakravarty
Publication date
01-12-2021
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 4/2021
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-021-08660-4

Other articles of this Issue 4/2021

NeuroMolecular Medicine 4/2021 Go to the issue