Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2013

01-03-2013 | Original Paper

Activation of Tetrodotoxin-Resistant Sodium Channel NaV1.9 in Rat Primary Sensory Neurons Contributes to Melittin-Induced Pain Behavior

Authors: Yao-Qing Yu, Zhen-Yu Zhao, Xue-Feng Chen, Fang Xie, Yan Yang, Jun Chen

Published in: NeuroMolecular Medicine | Issue 1/2013

Login to get access

Abstract

Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in dorsal root ganglion (DRG) neurons play important roles in pathological pain. We recently reported that melittin, the major toxin of whole bee venom, induced action potential firings in DRG neurons even in the presence of a high concentration (500 nM) of TTX, indicating the contribution of TTX-R sodium channels. This hypothesis is fully investigated in the present study. After subcutaneous injection of melittin, NaV1.8 and NaV1.9 significantly upregulate mRNA and protein expressions, and related sodium currents also increase. Double immunohistochemical results show that NaV1.8-positive neurons are mainly medium- and small-sized, whereas NaV1.9-positive ones are only small-sized. Antisense oligodeoxynucleotides (AS ODNs) targeting NaV1.8 and NaV1.9 are used to evaluate functional significance of the increased expressions of TTX-R sodium channels. Behavioral tests demonstrate that AS ODN targeting NaV1.9, but not NaV1.8, reverses melittin-induced heat hypersensitivity. Neither NaV1.8 AS ODN nor NaV1.9 AS ODN affects melittin-induced mechanical hypersensitivity. These results provide previously unknown evidence that upregulation of NaV1.9, but not NaV1.8, in small-sized DRG neurons contributes to melittin-induced heat hypersensitivity. Furthermore, melittin-induced biological effect indicates a potential strategy to study properties of TTX-R sodium channels.
Appendix
Available only for authorised users
Literature
go back to reference Amaya, F., Wang, H., Costigan, M., et al. (2006). The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. Journal of Neuroscience, 26, 12852–12860.PubMedCrossRef Amaya, F., Wang, H., Costigan, M., et al. (2006). The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. Journal of Neuroscience, 26, 12852–12860.PubMedCrossRef
go back to reference Baker, M. D., Chandra, S. Y., Ding, Y., Waxman, S. G., & Wood, J. N. (2003). GTP-induced tetrodotoxin-resistant Na + current regulates excitability in mouse and rat small diameter sensory neurones. Journal of Physiology, 548, 373–382.PubMedCrossRef Baker, M. D., Chandra, S. Y., Ding, Y., Waxman, S. G., & Wood, J. N. (2003). GTP-induced tetrodotoxin-resistant Na + current regulates excitability in mouse and rat small diameter sensory neurones. Journal of Physiology, 548, 373–382.PubMedCrossRef
go back to reference Basbaum, A. I., Bautista, D. M., Scherrer, G., & Julius, D. (2009). Cellular and molecular mechanisms of pain. Cell, 139, 267–284.PubMedCrossRef Basbaum, A. I., Bautista, D. M., Scherrer, G., & Julius, D. (2009). Cellular and molecular mechanisms of pain. Cell, 139, 267–284.PubMedCrossRef
go back to reference Cardenas, L. M., Cardenas, C. G., & Scroggs, R. S. (2001). 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels. Journal of Neurophysiology, 86, 241–248.PubMed Cardenas, L. M., Cardenas, C. G., & Scroggs, R. S. (2001). 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels. Journal of Neurophysiology, 86, 241–248.PubMed
go back to reference Chen, J., & Lariviere, W. R. (2010). The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Progress in Neurobiology, 92, 151–183.PubMedCrossRef Chen, J., & Lariviere, W. R. (2010). The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Progress in Neurobiology, 92, 151–183.PubMedCrossRef
go back to reference Chen, Y. N., Li, K. C., Li, Z., et al. (2006). Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience, 138, 631–640.PubMedCrossRef Chen, Y. N., Li, K. C., Li, Z., et al. (2006). Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience, 138, 631–640.PubMedCrossRef
go back to reference Chen, J., Luo, C., Li, H., & Chen, H. (1999). Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: A comparative study with the formalin test. Pain, 83, 67–76.PubMedCrossRef Chen, J., Luo, C., Li, H., & Chen, H. (1999). Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: A comparative study with the formalin test. Pain, 83, 67–76.PubMedCrossRef
go back to reference Coste, B., Crest, M., & Delmas, P. (2007). Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2 + currents, and mechanically activated cation currents in different populations of DRG neurons. Journal of General Physiology, 129, 57–77.PubMedCrossRef Coste, B., Crest, M., & Delmas, P. (2007). Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2 + currents, and mechanically activated cation currents in different populations of DRG neurons. Journal of General Physiology, 129, 57–77.PubMedCrossRef
go back to reference Coste, B., Osorio, N., Padilla, F., Crest, M., & Delmas, P. (2004). Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Molecular and Cellular Neuroscience, 26, 123–134.PubMedCrossRef Coste, B., Osorio, N., Padilla, F., Crest, M., & Delmas, P. (2004). Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Molecular and Cellular Neuroscience, 26, 123–134.PubMedCrossRef
go back to reference Cummins, T. R., Dib-Hajj, S. D., Black, J. A., Akopian, A. N., Wood, J. N., & Waxman, S. G. (1999). A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. Journal of Neuroscience, 19, C43. Cummins, T. R., Dib-Hajj, S. D., Black, J. A., Akopian, A. N., Wood, J. N., & Waxman, S. G. (1999). A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. Journal of Neuroscience, 19, C43.
go back to reference Dai, Y., Fukuoka, T., Wang, H., Yamanaka, H., Obata, K., Tokunaga, A., et al. (2004). Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain, 108, 258–266.PubMedCrossRef Dai, Y., Fukuoka, T., Wang, H., Yamanaka, H., Obata, K., Tokunaga, A., et al. (2004). Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain, 108, 258–266.PubMedCrossRef
go back to reference Dib-Hajj, S., Black, J. A., Cummins, T. R., & Waxman, S. G. (2002). NaN/Nav1.9: A sodium channel with unique properties. Trends in Neurosciences, 25, 253–259.PubMedCrossRef Dib-Hajj, S., Black, J. A., Cummins, T. R., & Waxman, S. G. (2002). NaN/Nav1.9: A sodium channel with unique properties. Trends in Neurosciences, 25, 253–259.PubMedCrossRef
go back to reference Du, Y. R., Xiao, Y., Lu, Z. M., et al. (2011). Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochemical and Biophysical Research Communications, 408, 32–37.PubMedCrossRef Du, Y. R., Xiao, Y., Lu, Z. M., et al. (2011). Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochemical and Biophysical Research Communications, 408, 32–37.PubMedCrossRef
go back to reference England, S., Bevan, S., & Docherty, R. J. (1996). PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. Journal of Physiology, 495, 429–440.PubMed England, S., Bevan, S., & Docherty, R. J. (1996). PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. Journal of Physiology, 495, 429–440.PubMed
go back to reference Fang, X., Djouhri, L., Black, J. A., Dib-Hajj, S. D., Waxman, S. G., & Lawson, S. N. (2002). The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. Journal of Neuroscience, 22, 7425–7433.PubMed Fang, X., Djouhri, L., Black, J. A., Dib-Hajj, S. D., Waxman, S. G., & Lawson, S. N. (2002). The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. Journal of Neuroscience, 22, 7425–7433.PubMed
go back to reference Fukuoka, T., Kobayashi, K., Yamanaka, H., Obata, K., Dai, Y., & Noguchi, K. (2008). Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons. The Journal of Comparative Neurology, 510, 188–206.PubMedCrossRef Fukuoka, T., Kobayashi, K., Yamanaka, H., Obata, K., Dai, Y., & Noguchi, K. (2008). Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons. The Journal of Comparative Neurology, 510, 188–206.PubMedCrossRef
go back to reference Gold, M. S. (1999). Tetrodotoxin-resistant Na + currents and inflammatory hyperalgesia. Proceedings of the National Academy of Sciences of the United States of America, 96, 7645–7649.PubMedCrossRef Gold, M. S. (1999). Tetrodotoxin-resistant Na + currents and inflammatory hyperalgesia. Proceedings of the National Academy of Sciences of the United States of America, 96, 7645–7649.PubMedCrossRef
go back to reference Goldin, A. L. (2001). Resurgence of sodium channel research. Annual Review of Physiology, 63, 871–894.PubMedCrossRef Goldin, A. L. (2001). Resurgence of sodium channel research. Annual Review of Physiology, 63, 871–894.PubMedCrossRef
go back to reference Hao, J., Liu, M. G., Yu, Y. Q., Cao, F. L., Li, Z., Lu, Z. M., et al. (2008). Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience, 152, 1067–1075.PubMedCrossRef Hao, J., Liu, M. G., Yu, Y. Q., Cao, F. L., Li, Z., Lu, Z. M., et al. (2008). Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience, 152, 1067–1075.PubMedCrossRef
go back to reference Hillsley, K., Lin, J. H., Stanisz, A., Grundy, D., Aerssens, J., Peeters, P. J., et al. (2006). Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. Journal of Physiology, 576, 257–267.PubMedCrossRef Hillsley, K., Lin, J. H., Stanisz, A., Grundy, D., Aerssens, J., Peeters, P. J., et al. (2006). Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. Journal of Physiology, 576, 257–267.PubMedCrossRef
go back to reference Katz, E. J., & Gold, M. S. (2006). Inflammatory hyperalgesia: A role for the C-fiber sensory neuron cell body? Journal of Pain, 7, 170–178.PubMedCrossRef Katz, E. J., & Gold, M. S. (2006). Inflammatory hyperalgesia: A role for the C-fiber sensory neuron cell body? Journal of Pain, 7, 170–178.PubMedCrossRef
go back to reference Li, K. C., & Chen, J. (2004). Altered pain-related behaviors and spinal neuronal responses produced by s.c. injection of melittin in rats. Neuroscience, 126, 753–762.PubMedCrossRef Li, K. C., & Chen, J. (2004). Altered pain-related behaviors and spinal neuronal responses produced by s.c. injection of melittin in rats. Neuroscience, 126, 753–762.PubMedCrossRef
go back to reference Lu, Z. M., Xie, F., Fu, H., Liu, M. G., Cao, F. L., Hao, J., et al. (2008). Roles of peripheral P2X and P2Y receptors in the development of melittin-induced nociception and hypersensitivity. Neurochemical Research, 33, 2085–2091.PubMedCrossRef Lu, Z. M., Xie, F., Fu, H., Liu, M. G., Cao, F. L., Hao, J., et al. (2008). Roles of peripheral P2X and P2Y receptors in the development of melittin-induced nociception and hypersensitivity. Neurochemical Research, 33, 2085–2091.PubMedCrossRef
go back to reference McCleskey, E. W., & Gold, M. S. (1999). Ion channels of nociception. Annual Review of Physiology, 61, 835–856.PubMedCrossRef McCleskey, E. W., & Gold, M. S. (1999). Ion channels of nociception. Annual Review of Physiology, 61, 835–856.PubMedCrossRef
go back to reference Mogil, J. S. (2009). Animal models of pain: progress and challenges. Nature Reviews Neuroscience, 10, 283–294.PubMedCrossRef Mogil, J. S. (2009). Animal models of pain: progress and challenges. Nature Reviews Neuroscience, 10, 283–294.PubMedCrossRef
go back to reference Ostman, J. A., Nassar, M. A., Wood, J. N., & Baker, M. D. (2008). GTP up-regulated persistent Na + current and enhanced nociceptor excitability require NaV1.9. Journal of Physiology, 586, 1077–1087.PubMedCrossRef Ostman, J. A., Nassar, M. A., Wood, J. N., & Baker, M. D. (2008). GTP up-regulated persistent Na + current and enhanced nociceptor excitability require NaV1.9. Journal of Physiology, 586, 1077–1087.PubMedCrossRef
go back to reference Pawlak, M., Stankowski, S., & Schwarz, G. (1991). Melittin induced voltage-dependent conductance in DOPC lipid bilayers. Biochimica et Biophysica Acta, 1062, 94–102.PubMedCrossRef Pawlak, M., Stankowski, S., & Schwarz, G. (1991). Melittin induced voltage-dependent conductance in DOPC lipid bilayers. Biochimica et Biophysica Acta, 1062, 94–102.PubMedCrossRef
go back to reference Porreca, F., Lai, J., Bian, D., et al. (1999). A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 96, 7640–7644.PubMedCrossRef Porreca, F., Lai, J., Bian, D., et al. (1999). A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 96, 7640–7644.PubMedCrossRef
go back to reference Priest, B. T., Murphy, B. A., Lindia, J. A., et al. (2005). Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proceedings of the National Academy of Sciences of the United States of America, 102, 9382–9387.PubMedCrossRef Priest, B. T., Murphy, B. A., Lindia, J. A., et al. (2005). Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proceedings of the National Academy of Sciences of the United States of America, 102, 9382–9387.PubMedCrossRef
go back to reference Raghuraman, H., & Chattopadhyay, A. (2007). Melittin: a membrane-active peptide with diverse functions. Bioscience Reports, 27, 189–223.PubMedCrossRef Raghuraman, H., & Chattopadhyay, A. (2007). Melittin: a membrane-active peptide with diverse functions. Bioscience Reports, 27, 189–223.PubMedCrossRef
go back to reference Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86, 629–640.PubMed Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86, 629–640.PubMed
go back to reference Rex, S. (1996). Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophysical Chemistry, 58, 75–85.PubMedCrossRef Rex, S. (1996). Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophysical Chemistry, 58, 75–85.PubMedCrossRef
go back to reference Rush, A. M., Dib-Hajj, S. D., Liu, S., Cummins, T. R., Black, J. A., & Waxman, S. G. (2006). A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 8245–8250.PubMedCrossRef Rush, A. M., Dib-Hajj, S. D., Liu, S., Cummins, T. R., Black, J. A., & Waxman, S. G. (2006). A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 8245–8250.PubMedCrossRef
go back to reference Rush, A. M., & Waxman, S. G. (2004). PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Research, 1023, 264–271.PubMedCrossRef Rush, A. M., & Waxman, S. G. (2004). PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Research, 1023, 264–271.PubMedCrossRef
go back to reference Shin, H. K., & Kim, J. H. (2004). Melittin selectively activates capsaicin-sensitive primary afferent fibers. NeuroReport, 15, 1745–1749.PubMedCrossRef Shin, H. K., & Kim, J. H. (2004). Melittin selectively activates capsaicin-sensitive primary afferent fibers. NeuroReport, 15, 1745–1749.PubMedCrossRef
go back to reference Tanaka, M., Cummins, T. R., Ishikawa, K., Dib-Hajj, S. D., Black, J. A., & Waxman, S. G. (1998). SNS Na + channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. NeuroReport, 9, 967–972.PubMedCrossRef Tanaka, M., Cummins, T. R., Ishikawa, K., Dib-Hajj, S. D., Black, J. A., & Waxman, S. G. (1998). SNS Na + channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. NeuroReport, 9, 967–972.PubMedCrossRef
go back to reference Yu, Y. Q., & Chen, J. (2005). Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neuroscience Letters, 381, 194–198.PubMedCrossRef Yu, Y. Q., & Chen, J. (2005). Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neuroscience Letters, 381, 194–198.PubMedCrossRef
go back to reference Yu, Y. Q., Zhao, F., Guan, S. M., & Chen, J. (2011). Antisense-mediated knockdown of NaV1.8, but not NaV1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. PLoS ONE, 6, e19865.PubMedCrossRef Yu, Y. Q., Zhao, F., Guan, S. M., & Chen, J. (2011). Antisense-mediated knockdown of NaV1.8, but not NaV1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. PLoS ONE, 6, e19865.PubMedCrossRef
Metadata
Title
Activation of Tetrodotoxin-Resistant Sodium Channel NaV1.9 in Rat Primary Sensory Neurons Contributes to Melittin-Induced Pain Behavior
Authors
Yao-Qing Yu
Zhen-Yu Zhao
Xue-Feng Chen
Fang Xie
Yan Yang
Jun Chen
Publication date
01-03-2013
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 1/2013
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-012-8211-0

Other articles of this Issue 1/2013

NeuroMolecular Medicine 1/2013 Go to the issue