Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 2/2013

01-10-2013

Use of Mesenchymal Stem Cells (MSC) in Chronic Inflammatory Fistulizing and Fibrotic Diseases: a Comprehensive Review

Authors: Jan Voswinkel, Sabine Francois, Jean-Marc Simon, Marc Benderitter, Norbert-Claude Gorin, Mohamad Mohty, Loïc Fouillard, Alain Chapel

Published in: Clinical Reviews in Allergy & Immunology | Issue 2/2013

Login to get access

Abstract

Mesenchymal stem cells (MSC), multipotent adult stem cells, feature the potential to regenerate tissue damage and, in parallel, inhibit inflammation and fibrosis. MSC can be safely transplanted in autologous and allogeneic ways as they are non-immunogenic, and consequently represent a therapeutic option for refractory connective tissue diseases, fibrosing diseases like scleroderma and fistulizing colitis like in Crohn’s disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, and 22 are on autoimmune diseases. In irradiation-induced colitis, MSC accelerate functional recovery of the intestine and dampen the systemic inflammatory response. In order to provide rescue therapy for accidentally over-irradiated prostate cancer patients who underwent radiotherapy, allogeneic bone marrow-derived MSC from family donors were intravenously infused to three patients with refractory and fistulizing colitis resembling fistulizing Crohn’s disease. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhoea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets towards an increase of T regulatory cells and a decrease of activated effector T cells. The current data indicate that MSC represent a promising alternative strategy in the treatment of various immune-mediated diseases. Encouraging results have already been obtained from clinical trials in Crohn’s disease and SLE as well as from case series in systemic sclerosis. MSC represent a safe therapeutic measure for patients who suffer from chronic and fistulizing colitis. These findings are instructional for the management of refractory inflammatory bowel diseases that are characterized by similar clinical and immunopathological features.
Literature
1.
go back to reference Djouad F, Bony C, Haupl T et al (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 7:R1304–R1315PubMedCrossRef Djouad F, Bony C, Haupl T et al (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 7:R1304–R1315PubMedCrossRef
2.
go back to reference De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44(1):85–95PubMedCrossRef De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44(1):85–95PubMedCrossRef
3.
go back to reference Noel D, Caton D, Roche S et al (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314:1575–1584PubMedCrossRef Noel D, Caton D, Roche S et al (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314:1575–1584PubMedCrossRef
4.
go back to reference Fickert S, Fiedler J, Brenner RE (2003) Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthr Cartil 11:790–800PubMedCrossRef Fickert S, Fiedler J, Brenner RE (2003) Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthr Cartil 11:790–800PubMedCrossRef
5.
go back to reference Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20PubMedCrossRef Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20PubMedCrossRef
6.
go back to reference Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75(3):389–397PubMedCrossRef Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75(3):389–397PubMedCrossRef
7.
go back to reference Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57PubMedCrossRef Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57PubMedCrossRef
8.
go back to reference Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213PubMedCrossRef Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213PubMedCrossRef
9.
10.
go back to reference Tokoyoda K, Zehentmeier S, Hegazy AN et al (2009) Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30:721–730PubMedCrossRef Tokoyoda K, Zehentmeier S, Hegazy AN et al (2009) Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30:721–730PubMedCrossRef
11.
go back to reference Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886PubMedCrossRef Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886PubMedCrossRef
12.
go back to reference Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRef Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRef
13.
go back to reference Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49PubMedCrossRef Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49PubMedCrossRef
14.
go back to reference Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583PubMedCrossRef Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583PubMedCrossRef
15.
go back to reference Djouad F, Charbonnier LM, Bouffi C et al (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032PubMedCrossRef Djouad F, Charbonnier LM, Bouffi C et al (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032PubMedCrossRef
16.
go back to reference Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126PubMedCrossRef Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126PubMedCrossRef
17.
go back to reference Ren G, Su J, Zhang L et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27:1954–1962PubMedCrossRef Ren G, Su J, Zhang L et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27:1954–1962PubMedCrossRef
18.
go back to reference Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234PubMedCrossRef Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234PubMedCrossRef
19.
go back to reference Nasef A, Mathieu N, Chapel A et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237PubMedCrossRef Nasef A, Mathieu N, Chapel A et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237PubMedCrossRef
20.
go back to reference Nasef A, Zhang YZ, Mazurier C et al (2009) Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation. Int J Lab Hematol 31:9–19PubMedCrossRef Nasef A, Zhang YZ, Mazurier C et al (2009) Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation. Int J Lab Hematol 31:9–19PubMedCrossRef
21.
go back to reference Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92:881–888PubMedCrossRef Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92:881–888PubMedCrossRef
22.
go back to reference Parekkadan B, Tilles AW, Yarmush ML (2008) Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells 26:1913–1919PubMedCrossRef Parekkadan B, Tilles AW, Yarmush ML (2008) Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells 26:1913–1919PubMedCrossRef
23.
go back to reference Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761PubMedCrossRef Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761PubMedCrossRef
24.
go back to reference Zhou H, Jin Z, Liu J, Yu S, Cui Q, Yi D (2008) Mesenchymal stem cells might be used to induce tolerance in heart transplantation. Med Hypotheses 70:785–787PubMedCrossRef Zhou H, Jin Z, Liu J, Yu S, Cui Q, Yi D (2008) Mesenchymal stem cells might be used to induce tolerance in heart transplantation. Med Hypotheses 70:785–787PubMedCrossRef
25.
go back to reference Haniffa MA, Wang XN, Holtick U et al (2007) Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 179:1595–1604PubMed Haniffa MA, Wang XN, Holtick U et al (2007) Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 179:1595–1604PubMed
26.
go back to reference Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372PubMedCrossRef Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372PubMedCrossRef
27.
go back to reference Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019PubMedCrossRef Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019PubMedCrossRef
28.
go back to reference Malgieri A, Kantzari E, Patrizi MP, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3:248–26PubMed Malgieri A, Kantzari E, Patrizi MP, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3:248–26PubMed
29.
go back to reference Voswinkel, J., and Chapel, A. (2012). Mesenchymal stem cells and rheumatism: state of the art. Z Rheumatol. Voswinkel, J., and Chapel, A. (2012). Mesenchymal stem cells and rheumatism: state of the art. Z Rheumatol.
30.
go back to reference Beggs KJ, Lyubimov A, Borneman JN et al (2006) Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant 15:711–721PubMedCrossRef Beggs KJ, Lyubimov A, Borneman JN et al (2006) Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant 15:711–721PubMedCrossRef
31.
go back to reference Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525PubMedCrossRef Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525PubMedCrossRef
32.
go back to reference Rubio D, Garcia-Castro J, Martin MC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039PubMed Rubio D, Garcia-Castro J, Martin MC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039PubMed
33.
go back to reference Tarte K, Gaillard J, Lataillade JJ et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553PubMedCrossRef Tarte K, Gaillard J, Lataillade JJ et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553PubMedCrossRef
34.
go back to reference Bernardo ME, Zaffaroni N, Novara F et al (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149PubMedCrossRef Bernardo ME, Zaffaroni N, Novara F et al (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149PubMedCrossRef
35.
go back to reference Liang J, Zhang H, Hua B et al (2010) Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69:1423–1429PubMedCrossRef Liang J, Zhang H, Hua B et al (2010) Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69:1423–1429PubMedCrossRef
36.
go back to reference Sun L, Wang D, Liang J et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62:2467–2475PubMedCrossRef Sun L, Wang D, Liang J et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62:2467–2475PubMedCrossRef
37.
go back to reference Dryden GW (2009) Overview of stem cell therapy for Crohn’s disease. Expert Opin Biol Ther 9:841–847PubMedCrossRef Dryden GW (2009) Overview of stem cell therapy for Crohn’s disease. Expert Opin Biol Ther 9:841–847PubMedCrossRef
38.
go back to reference Dryden GW Jr (2009) Overview of biologic therapy for Crohn’s disease. Expert Opin Biol Ther 9:967–974PubMedCrossRef Dryden GW Jr (2009) Overview of biologic therapy for Crohn’s disease. Expert Opin Biol Ther 9:967–974PubMedCrossRef
39.
go back to reference Ditschkowski M, Einsele H, Schwerdtfeger R et al (2003) Improvement of inflammatory bowel disease after allogeneic stem-cell transplantation. Transplantation 75:1745–1747PubMedCrossRef Ditschkowski M, Einsele H, Schwerdtfeger R et al (2003) Improvement of inflammatory bowel disease after allogeneic stem-cell transplantation. Transplantation 75:1745–1747PubMedCrossRef
40.
go back to reference Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48:1416–1423PubMedCrossRef Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48:1416–1423PubMedCrossRef
41.
go back to reference Garcia-Olmo D, Herreros D, Pascual I et al (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52:79–86PubMedCrossRef Garcia-Olmo D, Herreros D, Pascual I et al (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52:79–86PubMedCrossRef
42.
go back to reference Garcia-Olmo D, Herreros D, Pascual M et al (2009) Treatment of enterocutaneous fistula in Crohn’s disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Colorectal Dis 24:27–30PubMedCrossRef Garcia-Olmo D, Herreros D, Pascual M et al (2009) Treatment of enterocutaneous fistula in Crohn’s disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Colorectal Dis 24:27–30PubMedCrossRef
43.
go back to reference Garcia-Olmo D, Herreros D, De-La-Quintana P et al (2010) Adipose-derived stem cells in Crohn’s rectovaginal fistula. Case Report Med 2010:961758 Garcia-Olmo D, Herreros D, De-La-Quintana P et al (2010) Adipose-derived stem cells in Crohn’s rectovaginal fistula. Case Report Med 2010:961758
44.
go back to reference Duijvestein M, Vos AC, Roelofs H et al (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59:1662–1669PubMedCrossRef Duijvestein M, Vos AC, Roelofs H et al (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59:1662–1669PubMedCrossRef
45.
go back to reference Lazebnik LB, Konopliannikov AG, Kniazev OV et al (2010) Use of allogeneic mesenchymal stem cells in the treatment of intestinal inflammatory diseases. Ter Arkh 82:38–43PubMed Lazebnik LB, Konopliannikov AG, Kniazev OV et al (2010) Use of allogeneic mesenchymal stem cells in the treatment of intestinal inflammatory diseases. Ter Arkh 82:38–43PubMed
46.
go back to reference Ciccocioppo R, Bernardo ME, Sgarella A et al (2011) Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulizing Crohn’s disease. Gut 60:788–798PubMedCrossRef Ciccocioppo R, Bernardo ME, Sgarella A et al (2011) Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulizing Crohn’s disease. Gut 60:788–798PubMedCrossRef
47.
go back to reference Cipriani P, Guiducci S, Miniati I et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004PubMedCrossRef Cipriani P, Guiducci S, Miniati I et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004PubMedCrossRef
48.
go back to reference Larghero J, Farge D, Braccini A et al (2008) Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis 67:443–449PubMedCrossRef Larghero J, Farge D, Braccini A et al (2008) Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis 67:443–449PubMedCrossRef
49.
go back to reference Keyszer G, Christopeit M, Fick S et al (2011) Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum 63:2540–2542PubMedCrossRef Keyszer G, Christopeit M, Fick S et al (2011) Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum 63:2540–2542PubMedCrossRef
51.
go back to reference Ringden O, Uzunel M, Rasmusson I et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397.52PubMedCrossRef Ringden O, Uzunel M, Rasmusson I et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397.52PubMedCrossRef
52.
go back to reference Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586PubMedCrossRef Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586PubMedCrossRef
53.
go back to reference Potten CS, Owen G, Roberts SA (1990) The temporal and spatial changes in cell proliferation within the irradiated crypts of the murine small intestine. Int J Radiat Biol 57:185–199PubMedCrossRef Potten CS, Owen G, Roberts SA (1990) The temporal and spatial changes in cell proliferation within the irradiated crypts of the murine small intestine. Int J Radiat Biol 57:185–199PubMedCrossRef
54.
go back to reference Gaugler MH, Vereycken-Holler V, Squiban C, Vandamme M, Vozenin-Brotons MC, Benderitter M (2005) Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses. Radiat Res 163:479–487PubMedCrossRef Gaugler MH, Vereycken-Holler V, Squiban C, Vandamme M, Vozenin-Brotons MC, Benderitter M (2005) Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses. Radiat Res 163:479–487PubMedCrossRef
55.
go back to reference Milliat F, Francois A, Isoir M et al (2006) Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation: implication in radiation-induced vascular damages. Am J Pathol 169:1484–1495PubMedCrossRef Milliat F, Francois A, Isoir M et al (2006) Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation: implication in radiation-induced vascular damages. Am J Pathol 169:1484–1495PubMedCrossRef
56.
go back to reference Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297PubMedCrossRef Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297PubMedCrossRef
57.
go back to reference Zhang J, Gong JF, Zhang W, Zhu WM, Li JS (2008) Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice. J Biomed Sci 15:585–594PubMedCrossRef Zhang J, Gong JF, Zhang W, Zhu WM, Li JS (2008) Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice. J Biomed Sci 15:585–594PubMedCrossRef
58.
go back to reference Semont A, Francois S, Mouiseddine M et al (2006) Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol 585:19–30PubMedCrossRef Semont A, Francois S, Mouiseddine M et al (2006) Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol 585:19–30PubMedCrossRef
59.
go back to reference Kudo K, Liu Y, Takahashi K et al (2010) Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J Radiat Res 51:73–79PubMedCrossRef Kudo K, Liu Y, Takahashi K et al (2010) Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J Radiat Res 51:73–79PubMedCrossRef
60.
go back to reference Gao Z, Zhang Q, Han Y, Cheng X, Lu Y, Fan L, Wu Z (2012) Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotherapy 14:267–273PubMedCrossRef Gao Z, Zhang Q, Han Y, Cheng X, Lu Y, Fan L, Wu Z (2012) Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotherapy 14:267–273PubMedCrossRef
61.
go back to reference Semont A, Mouiseddine M, Francois A et al (2010) Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ 17:952–961PubMedCrossRef Semont A, Mouiseddine M, Francois A et al (2010) Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ 17:952–961PubMedCrossRef
62.
go back to reference Lorenzi B, Pessina F, Lorenzoni P et al (2008) Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Dis Colon Rectum 51:411–420PubMedCrossRef Lorenzi B, Pessina F, Lorenzoni P et al (2008) Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Dis Colon Rectum 51:411–420PubMedCrossRef
63.
go back to reference Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C (2011) Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One 6:e24072PubMedCrossRef Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C (2011) Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One 6:e24072PubMedCrossRef
64.
go back to reference Peiffert D, Simon JM, Eschwege F (2007) Epinal radiotherapy accident: passed, present, future. Cancer Radiother 11:309–312PubMedCrossRef Peiffert D, Simon JM, Eschwege F (2007) Epinal radiotherapy accident: passed, present, future. Cancer Radiother 11:309–312PubMedCrossRef
65.
go back to reference Marchesi V, Aigle D, Peiffert D, Noel A, Simon JM (2009) Securitization of the bi-site radiotherapy activity as part of the resumption of treatments in the Hospital of Epinal by the team of Alexis Vautrin Nancy Cancer Center. Cancer Radiother 13:740–743PubMedCrossRef Marchesi V, Aigle D, Peiffert D, Noel A, Simon JM (2009) Securitization of the bi-site radiotherapy activity as part of the resumption of treatments in the Hospital of Epinal by the team of Alexis Vautrin Nancy Cancer Center. Cancer Radiother 13:740–743PubMedCrossRef
66.
go back to reference Choi EW, Shin IS, Park SY et al (2012) Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum 64:243–253PubMedCrossRef Choi EW, Shin IS, Park SY et al (2012) Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum 64:243–253PubMedCrossRef
67.
go back to reference Von Korff M, Jensen MP, Karoly P (2000) Assessing global pain severity by self-report in clinical and health services research. Spine 25:3140–3151, Phila Pa 1976CrossRef Von Korff M, Jensen MP, Karoly P (2000) Assessing global pain severity by self-report in clinical and health services research. Spine 25:3140–3151, Phila Pa 1976CrossRef
68.
go back to reference Tan G, Jensen MP, Thornby JI, Shanti BF (2004) Validation of the Brief Pain Inventory for chronic nonmalignant pain. J Pain 5:133–137PubMedCrossRef Tan G, Jensen MP, Thornby JI, Shanti BF (2004) Validation of the Brief Pain Inventory for chronic nonmalignant pain. J Pain 5:133–137PubMedCrossRef
69.
go back to reference Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370PubMedCrossRef Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370PubMedCrossRef
70.
go back to reference Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–483PubMedCrossRef Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–483PubMedCrossRef
71.
go back to reference Sensebe L, Bourin P (2008) Producing MSC according GMP: process and controls. Biomed Mater Eng 18:173–177PubMed Sensebe L, Bourin P (2008) Producing MSC according GMP: process and controls. Biomed Mater Eng 18:173–177PubMed
Metadata
Title
Use of Mesenchymal Stem Cells (MSC) in Chronic Inflammatory Fistulizing and Fibrotic Diseases: a Comprehensive Review
Authors
Jan Voswinkel
Sabine Francois
Jean-Marc Simon
Marc Benderitter
Norbert-Claude Gorin
Mohamad Mohty
Loïc Fouillard
Alain Chapel
Publication date
01-10-2013
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 2/2013
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-012-8347-6

Other articles of this Issue 2/2013

Clinical Reviews in Allergy & Immunology 2/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine