Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 3/2008

Open Access 01-12-2008

P. aeruginosa Biofilms in CF Infection

Authors: Victoria E. Wagner, Barbara H. Iglewski

Published in: Clinical Reviews in Allergy & Immunology | Issue 3/2008

Login to get access

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen of immunocompromised hosts. In cystic fibrosis (CF), P. aeruginosa causes acute and chronic lung infections that result in significant morbidity and mortality. P. aeruginosa possesses several traits that contribute to its ability to colonize and persist in acute and chronic infections. These include high resistance to antimicrobials, ability to form biofilms, plethora of virulence products, and metabolic versatility. In P. aeruginosa, a cell-to-cell communication process termed quorum sensing (QS) regulates many of these factors that contribute to its pathogenesis. Recent evidence suggests that the CF lung environment presents a specialized niche for P. aeruginosa. The relationship of P. aeruginosa QS, biofilm formation, and the CF lung environment is discussed.
Literature
1.
go back to reference Ikeno T et al (2007) Small and rough colony Pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients. Microbiol Immunol 51(10):929–938PubMed Ikeno T et al (2007) Small and rough colony Pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients. Microbiol Immunol 51(10):929–938PubMed
2.
go back to reference Whiteley M, Greenberg EP (2001) Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183(19):5529–5534PubMedCrossRef Whiteley M, Greenberg EP (2001) Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183(19):5529–5534PubMedCrossRef
3.
go back to reference Pesci EC, Iglewski BH (1997) The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5(4):132–134 discussion 134–135PubMedCrossRef Pesci EC, Iglewski BH (1997) The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5(4):132–134 discussion 134–135PubMedCrossRef
4.
go back to reference de Kievit TR et al (2002) Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol Lett 212(1):101–106PubMed de Kievit TR et al (2002) Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol Lett 212(1):101–106PubMed
5.
go back to reference Pesci E, Iglewski B (1999) Quorum sensing in Pseudomonas aeruginosa, in cell–cell signaling in bacteria. American Society for Microbiology, Washington DC, pp 147–155 Pesci E, Iglewski B (1999) Quorum sensing in Pseudomonas aeruginosa, in cell–cell signaling in bacteria. American Society for Microbiology, Washington DC, pp 147–155
6.
go back to reference McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182(10):2702–2708PubMedCrossRef McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182(10):2702–2708PubMedCrossRef
7.
go back to reference Hentzer M et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J 22(15):3803–3815PubMedCrossRef Hentzer M et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J 22(15):3803–3815PubMedCrossRef
8.
go back to reference Schuster M et al (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185(7):2066–2079PubMedCrossRef Schuster M et al (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185(7):2066–2079PubMedCrossRef
9.
go back to reference Wagner VE et al (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185(7):2080–2095PubMedCrossRef Wagner VE et al (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185(7):2080–2095PubMedCrossRef
10.
go back to reference Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33PubMedCrossRef Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33PubMedCrossRef
12.
go back to reference Costerton J, Stewart P, Greenberg E (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRef Costerton J, Stewart P, Greenberg E (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRef
13.
go back to reference Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574PubMed Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574PubMed
14.
go back to reference Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193PubMedCrossRef Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193PubMedCrossRef
15.
16.
go back to reference Gomez MI, Prince A (2007) Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7(3):244–251PubMedCrossRef Gomez MI, Prince A (2007) Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7(3):244–251PubMedCrossRef
17.
go back to reference Hentzer M, Eberl L, Givskov M (2005) Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2:37–61CrossRef Hentzer M, Eberl L, Givskov M (2005) Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2:37–61CrossRef
18.
go back to reference Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMedCrossRef Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMedCrossRef
19.
go back to reference Sauer K et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154PubMedCrossRef Sauer K et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154PubMedCrossRef
20.
go back to reference Xu KD et al (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039PubMed Xu KD et al (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039PubMed
21.
go back to reference Davies DG et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298PubMedCrossRef Davies DG et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298PubMedCrossRef
22.
go back to reference Bjarnsholt T et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151(Pt 2):373–383PubMedCrossRef Bjarnsholt T et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151(Pt 2):373–383PubMedCrossRef
23.
go back to reference Hassett DJ et al (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34(5):1082–1093PubMedCrossRef Hassett DJ et al (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34(5):1082–1093PubMedCrossRef
24.
go back to reference Klausen M et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524PubMedCrossRef Klausen M et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524PubMedCrossRef
25.
go back to reference Klausen M et al (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50(1):61–68PubMedCrossRef Klausen M et al (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50(1):61–68PubMedCrossRef
26.
go back to reference O’Toole G, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304PubMedCrossRef O’Toole G, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304PubMedCrossRef
27.
go back to reference Sonawane A, Jyot J, Ramphal R (2006) Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infect Immun 74(12):7035–7039PubMedCrossRef Sonawane A, Jyot J, Ramphal R (2006) Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infect Immun 74(12):7035–7039PubMedCrossRef
28.
go back to reference Tielker D et al (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151(Pt 5):1313–1323PubMedCrossRef Tielker D et al (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151(Pt 5):1313–1323PubMedCrossRef
29.
go back to reference Diggle SP et al (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8(6):1095–1104PubMedCrossRef Diggle SP et al (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8(6):1095–1104PubMedCrossRef
30.
go back to reference Boteva RN, Bogoeva VP, Stoitsova SR (2005) PA-I lectin from Pseudomonas aeruginosa binds acyl homoserine lactones. Biochim Biophys Acta 1747(2):143–149PubMed Boteva RN, Bogoeva VP, Stoitsova SR (2005) PA-I lectin from Pseudomonas aeruginosa binds acyl homoserine lactones. Biochim Biophys Acta 1747(2):143–149PubMed
31.
go back to reference Winzer K et al (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182(22):6401–6411PubMedCrossRef Winzer K et al (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182(22):6401–6411PubMedCrossRef
32.
go back to reference Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. Acta Pathol Microbiol Immunol Scand Suppl 28:1–79 Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. Acta Pathol Microbiol Immunol Scand Suppl 28:1–79
33.
go back to reference Pedersen SS et al (1992) Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47(1):6–13PubMedCrossRef Pedersen SS et al (1992) Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47(1):6–13PubMedCrossRef
34.
go back to reference Hentzer M et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401PubMedCrossRef Hentzer M et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401PubMedCrossRef
35.
go back to reference Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56(2):309–322PubMedCrossRef Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56(2):309–322PubMedCrossRef
36.
go back to reference Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648PubMed Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648PubMed
37.
go back to reference Reimmann C et al (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24(2):309–319PubMedCrossRef Reimmann C et al (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24(2):309–319PubMedCrossRef
38.
go back to reference Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189(14):5383–5386PubMedCrossRef Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189(14):5383–5386PubMedCrossRef
39.
go back to reference Leid JG et al (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518PubMed Leid JG et al (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518PubMed
40.
go back to reference Allesen-Holm M et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128PubMedCrossRef Allesen-Holm M et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128PubMedCrossRef
41.
go back to reference Whitchurch CB et al (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487PubMedCrossRef Whitchurch CB et al (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487PubMedCrossRef
42.
go back to reference Yang L et al (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1318–1328PubMedCrossRef Yang L et al (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1318–1328PubMedCrossRef
43.
go back to reference Whiteley M et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864PubMedCrossRef Whiteley M et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864PubMedCrossRef
44.
go back to reference Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425PubMedCrossRef Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425PubMedCrossRef
45.
go back to reference Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18):5756–5767PubMed Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18):5756–5767PubMed
46.
go back to reference Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–2539PubMedCrossRef Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–2539PubMedCrossRef
47.
go back to reference Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223PubMedCrossRef Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223PubMedCrossRef
48.
go back to reference Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185(3):1027–1036PubMedCrossRef Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185(3):1027–1036PubMedCrossRef
49.
go back to reference Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187(1):37–44PubMedCrossRef Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187(1):37–44PubMedCrossRef
50.
go back to reference Kirov SM, Webb JS, Kjelleberg S (2005) Clinical significance of seeding dispersal in biofilms. Microbiology 151(Pt 11):3452–3453 discussion 3453PubMedCrossRef Kirov SM, Webb JS, Kjelleberg S (2005) Clinical significance of seeding dispersal in biofilms. Microbiology 151(Pt 11):3452–3453 discussion 3453PubMedCrossRef
51.
go back to reference Kirov SM et al (2007) Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153(Pt 10):3264–3274PubMedCrossRef Kirov SM et al (2007) Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153(Pt 10):3264–3274PubMedCrossRef
52.
go back to reference Morici LA et al (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189(21):7752–7764PubMedCrossRef Morici LA et al (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189(21):7752–7764PubMedCrossRef
53.
go back to reference Whitchurch CB et al (2002) Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol 184(16):4544–4554PubMedCrossRef Whitchurch CB et al (2002) Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol 184(16):4544–4554PubMedCrossRef
54.
go back to reference Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40(5):1215–1226PubMedCrossRef Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40(5):1215–1226PubMedCrossRef
55.
go back to reference O’Toole GA et al (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182(2):425–431PubMedCrossRef O’Toole GA et al (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182(2):425–431PubMedCrossRef
56.
go back to reference Heydorn A et al (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68(4):2008–2017PubMedCrossRef Heydorn A et al (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68(4):2008–2017PubMedCrossRef
57.
go back to reference Goodman AL et al (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7(5):745–754PubMedCrossRef Goodman AL et al (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7(5):745–754PubMedCrossRef
58.
go back to reference Schuster M et al (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51(4):973–985PubMedCrossRef Schuster M et al (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51(4):973–985PubMedCrossRef
59.
go back to reference Kuchma SL, Connolly JP, O’Toole GA (2005) A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187(4):1441–1454PubMedCrossRef Kuchma SL, Connolly JP, O’Toole GA (2005) A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187(4):1441–1454PubMedCrossRef
60.
go back to reference Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639PubMedCrossRef Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639PubMedCrossRef
61.
62.
go back to reference Guvener ZT, Harwood CS (2007) Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol Microbiol 66(6):1459–1473PubMed Guvener ZT, Harwood CS (2007) Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol Microbiol 66(6):1459–1473PubMed
63.
go back to reference Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102(40):14422–14427PubMedCrossRef Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102(40):14422–14427PubMedCrossRef
64.
go back to reference Kulasakara H et al (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3¢-5¢)-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103(8):2839–2844PubMedCrossRef Kulasakara H et al (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3¢-5¢)-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103(8):2839–2844PubMedCrossRef
65.
go back to reference Lee VT et al (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65(6):1474–1484PubMedCrossRef Lee VT et al (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65(6):1474–1484PubMedCrossRef
66.
go back to reference Merighi M et al (2007) The second messenger bis-(3¢-5¢)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65(4):876–895PubMedCrossRef Merighi M et al (2007) The second messenger bis-(3¢-5¢)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65(4):876–895PubMedCrossRef
67.
go back to reference Morgan R et al (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188(21):7335–7343PubMedCrossRef Morgan R et al (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188(21):7335–7343PubMedCrossRef
69.
go back to reference Kulasekara HD et al (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55(2):368–380PubMedCrossRef Kulasekara HD et al (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55(2):368–380PubMedCrossRef
70.
go back to reference Schaber JA et al (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75(8):3715–3721PubMedCrossRef Schaber JA et al (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75(8):3715–3721PubMedCrossRef
71.
go back to reference Rahme LG et al (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268(5219):1899–1902PubMedCrossRef Rahme LG et al (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268(5219):1899–1902PubMedCrossRef
72.
go back to reference Rumbaugh KP, Griswold JA, Hamood AN (1999) Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J Burn Care Rehabil 20(1):42–49PubMed Rumbaugh KP, Griswold JA, Hamood AN (1999) Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J Burn Care Rehabil 20(1):42–49PubMed
73.
go back to reference Mahajan-Miklos S, Rahme LG, Ausubel FM (2000) Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37(5):981–988PubMedCrossRef Mahajan-Miklos S, Rahme LG, Ausubel FM (2000) Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37(5):981–988PubMedCrossRef
74.
go back to reference Hendrickson EL et al (2001) Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol 183(24):7126–7134PubMedCrossRef Hendrickson EL et al (2001) Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol 183(24):7126–7134PubMedCrossRef
75.
go back to reference Singh PK et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764PubMedCrossRef Singh PK et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764PubMedCrossRef
76.
77.
go back to reference Thelin WR, Boucher RC (2007) The epithelium as a target for therapy in cystic fibrosis. Curr Opin Pharmacol 7(3):290–295PubMedCrossRef Thelin WR, Boucher RC (2007) The epithelium as a target for therapy in cystic fibrosis. Curr Opin Pharmacol 7(3):290–295PubMedCrossRef
78.
go back to reference Hassett DJ et al (2002) Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54(11):1425–1443PubMedCrossRef Hassett DJ et al (2002) Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54(11):1425–1443PubMedCrossRef
79.
go back to reference Worlitzsch D et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109(3):317–325PubMed Worlitzsch D et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109(3):317–325PubMed
80.
go back to reference Hass D, Gamper M, Zimmermann A (1992) Anaerobic control in Pseudomons aeruginosa. In: Galli E, Silver S, Witholt B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington, DC, pp 177–187 Hass D, Gamper M, Zimmermann A (1992) Anaerobic control in Pseudomons aeruginosa. In: Galli E, Silver S, Witholt B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington, DC, pp 177–187
81.
go back to reference Hassett DJ (1996) Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J Bacteriol 178(24):7322–7325PubMed Hassett DJ (1996) Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J Bacteriol 178(24):7322–7325PubMed
82.
go back to reference Linnane SJ et al (1998) Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. Am J Respir Crit Care Med 158(1):207–212PubMed Linnane SJ et al (1998) Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. Am J Respir Crit Care Med 158(1):207–212PubMed
83.
go back to reference Grasemann H (1999) Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. Am J Respir Crit Care Med 159(2):684–685PubMed Grasemann H (1999) Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. Am J Respir Crit Care Med 159(2):684–685PubMed
84.
go back to reference Mercenier A et al (1980) Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol 144(1):159–163PubMed Mercenier A et al (1980) Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol 144(1):159–163PubMed
85.
go back to reference Vander Wauven C et al (1984) Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol 160(3):928–934PubMed Vander Wauven C et al (1984) Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol 160(3):928–934PubMed
86.
go back to reference Eschbach M et al (2004) Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186(14):4596–4604PubMedCrossRef Eschbach M et al (2004) Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186(14):4596–4604PubMedCrossRef
87.
go back to reference O’May CY, Reid DW, Kirov SM (2006) Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. FEMS Immunol Med Microbiol 48(3):373–380PubMedCrossRef O’May CY, Reid DW, Kirov SM (2006) Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. FEMS Immunol Med Microbiol 48(3):373–380PubMedCrossRef
88.
go back to reference Govan J, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574PubMed Govan J, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574PubMed
89.
go back to reference Yoon SS et al (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3(4):593–603PubMedCrossRef Yoon SS et al (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3(4):593–603PubMedCrossRef
90.
go back to reference Barraud N et al (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353PubMedCrossRef Barraud N et al (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353PubMedCrossRef
91.
go back to reference Yoon SS et al (2006) Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest 116(2):436–446PubMedCrossRef Yoon SS et al (2006) Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest 116(2):436–446PubMedCrossRef
92.
go back to reference Matsui H et al (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103(48):18131–18136PubMedCrossRef Matsui H et al (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103(48):18131–18136PubMedCrossRef
93.
go back to reference Tang HB et al (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64(1):37–43PubMed Tang HB et al (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64(1):37–43PubMed
94.
go back to reference Rahme LG et al (1997) Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci USA 94(24):13245–13250PubMedCrossRef Rahme LG et al (1997) Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci USA 94(24):13245–13250PubMedCrossRef
95.
go back to reference Preston MJ et al (1997) Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65(8):3086–3090PubMed Preston MJ et al (1997) Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65(8):3086–3090PubMed
96.
go back to reference Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96(2):715–720PubMedCrossRef Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96(2):715–720PubMedCrossRef
97.
go back to reference Mahajan-Miklos S et al (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96(1):47–56PubMedCrossRef Mahajan-Miklos S et al (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96(1):47–56PubMedCrossRef
98.
go back to reference de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9):4839–4849PubMedCrossRef de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9):4839–4849PubMedCrossRef
99.
go back to reference Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124(4):1766–1774PubMedCrossRef Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124(4):1766–1774PubMedCrossRef
100.
go back to reference Rahme LG et al (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 97(16):8815–8821PubMedCrossRef Rahme LG et al (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 97(16):8815–8821PubMedCrossRef
101.
go back to reference Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182(13):3843–3845PubMedCrossRef Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182(13):3843–3845PubMedCrossRef
102.
go back to reference Tang H, Kays M, Prince A (1995) Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect Immun 63(4):1278–1285PubMed Tang H, Kays M, Prince A (1995) Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect Immun 63(4):1278–1285PubMed
103.
go back to reference Pearson JP et al (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68(7):4331–4334PubMedCrossRef Pearson JP et al (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68(7):4331–4334PubMedCrossRef
104.
go back to reference Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5(12):1294–1308PubMedCrossRef Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5(12):1294–1308PubMedCrossRef
105.
go back to reference Hoffmann N et al (2005) Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun 73(4):2504–2514PubMedCrossRef Hoffmann N et al (2005) Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun 73(4):2504–2514PubMedCrossRef
106.
go back to reference Erickson DL et al (2002) Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70(4):1783–1790PubMedCrossRef Erickson DL et al (2002) Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70(4):1783–1790PubMedCrossRef
107.
go back to reference Storey D et al (1998) Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66(6):2521–2528PubMed Storey D et al (1998) Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66(6):2521–2528PubMed
108.
go back to reference Deretic V, Gill JF, Chakrabarty AM (1987) Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol 169(1):351–358PubMed Deretic V, Gill JF, Chakrabarty AM (1987) Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol 169(1):351–358PubMed
109.
go back to reference Collier DN et al (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215(1):41–46PubMedCrossRef Collier DN et al (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215(1):41–46PubMedCrossRef
110.
go back to reference Smith KM, Bu Y, Suga H (2003) Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol 10(6):563–571PubMedCrossRef Smith KM, Bu Y, Suga H (2003) Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol 10(6):563–571PubMedCrossRef
111.
go back to reference Schaber JA et al (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53(Pt):841–853PubMedCrossRef Schaber JA et al (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53(Pt):841–853PubMedCrossRef
112.
go back to reference Sandoz KM, Mitzimberg SM, Schuster M (2007) Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA 104(40):15876–15881PubMedCrossRef Sandoz KM, Mitzimberg SM, Schuster M (2007) Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA 104(40):15876–15881PubMedCrossRef
113.
go back to reference Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112(10):1460–1465PubMed Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112(10):1460–1465PubMed
Metadata
Title
P. aeruginosa Biofilms in CF Infection
Authors
Victoria E. Wagner
Barbara H. Iglewski
Publication date
01-12-2008
Publisher
Humana Press Inc
Published in
Clinical Reviews in Allergy & Immunology / Issue 3/2008
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-008-8079-9

Other articles of this Issue 3/2008

Clinical Reviews in Allergy & Immunology 3/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine