Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2013

Open Access 01-06-2013

Altering HIF-1α Through 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) Exposure Affects Coronary Vessel Development

Authors: Jamie Wikenheiser, Ganga Karunamuni, Eddie Sloter, Mary K. Walker, Debashish Roy, David L. Wilson, Michiko Watanabe

Published in: Cardiovascular Toxicology | Issue 2/2013

Login to get access

Abstract

Differential tissue hypoxia drives normal cardiogenic events including coronary vessel development. This requirement renders cardiogenic processes potentially susceptible to teratogens that activate a transcriptional pathway that intersects with the hypoxia-inducible factor (HIF-1) pathway. The potent toxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to cause cardiovascular defects by way of reduced myocardial hypoxia, inhibition of angiogenic stimuli, and alterations in responsiveness of endothelial cells to those stimuli. Our working hypothesis is that HIF-1 levels and thus HIF-1 signaling in the developing myocardium will be reduced by TCDD treatment in vivo during a critical stage and in particularly sensitive sites during heart morphogenesis. This inadequate HIF-1 signaling will subsequently result in outflow tract (OFT) and coronary vasculature defects. Our current data using the chicken embryo model showed a marked decrease in the intensity of immunostaining for HIF-1α nuclear expression in the OFT myocardium of TCDD-treated embryos. This area at the base of the OFT is particularly hypoxic during normal development; where endothelial cells initially form a concentrated anastomosing network known as the peritruncal ring; and where the left and right coronary arteries eventually connect to the aortic lumen. Consistent with this finding, anomalies of the proximal coronaries were detected after TCDD treatment and HIF-1α protein levels decreased in a TCDD dose-dependent manner.
Literature
1.
go back to reference Ivnitski-Steele, I., & Walker, M. K. (2005). Inhibition of neovascularization by environmental agents. Cardiovascular Toxicology, 5, 215–226.CrossRefPubMed Ivnitski-Steele, I., & Walker, M. K. (2005). Inhibition of neovascularization by environmental agents. Cardiovascular Toxicology, 5, 215–226.CrossRefPubMed
2.
go back to reference Kneer, S., & Schrenk, D. (2006). Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Molecular Nutrition & Food Research, 50, 897–907.CrossRef Kneer, S., & Schrenk, D. (2006). Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Molecular Nutrition & Food Research, 50, 897–907.CrossRef
3.
go back to reference Walker, M. K., & Catron, T. F. (2000). Characterization of cardiotoxicity induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and related chemicals during early chick embryo development. Toxicology and Applied Pharmacology, 167, 210–221.CrossRefPubMed Walker, M. K., & Catron, T. F. (2000). Characterization of cardiotoxicity induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and related chemicals during early chick embryo development. Toxicology and Applied Pharmacology, 167, 210–221.CrossRefPubMed
4.
go back to reference Ivnitski, I., Elmaoued, R., & Walker, M. K. (2001). 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibition of coronary angiogenesis is preceded by a decrease in myocyte proliferation and an increase in cardiac apoptosis. Teratology, 64, 201–212.CrossRefPubMed Ivnitski, I., Elmaoued, R., & Walker, M. K. (2001). 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibition of coronary angiogenesis is preceded by a decrease in myocyte proliferation and an increase in cardiac apoptosis. Teratology, 64, 201–212.CrossRefPubMed
5.
go back to reference Ivnitiski-Steele, I. D., & Walker, M. K. (2003). Vascular endothelial growth factor rescues 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibition of coronary vascular outgrowth. Birth defects research. Part A, Clinical and Molecular Teratology, 67, 496–503.CrossRef Ivnitiski-Steele, I. D., & Walker, M. K. (2003). Vascular endothelial growth factor rescues 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibition of coronary vascular outgrowth. Birth defects research. Part A, Clinical and Molecular Teratology, 67, 496–503.CrossRef
6.
go back to reference Ivnitski-Steele, I. D., Sanchez, A., & Walker, M. K. (2004). 2,3,7,8-Tetrachlorodibenzo-p-dioxin reduces myocardial hypoxia and vascular endothelial growth factor expression during chick embryo development. Birth defects research. Part A, Clinical and Molecular Teratology, 70, 51–58.CrossRef Ivnitski-Steele, I. D., Sanchez, A., & Walker, M. K. (2004). 2,3,7,8-Tetrachlorodibenzo-p-dioxin reduces myocardial hypoxia and vascular endothelial growth factor expression during chick embryo development. Birth defects research. Part A, Clinical and Molecular Teratology, 70, 51–58.CrossRef
7.
go back to reference Ivnitski-Steele, I. D., Friggens, M., Chavez, M., & Walker, M. K. (2005). 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits coronary vasculogenesis, in part, by reduced endothelial cell responsiveness to angiogenic stimuli, including vascular endothelial growth factor-A. Birth defects research. Part A, Clinical and Molecular Teratology, 73, 440–446.CrossRef Ivnitski-Steele, I. D., Friggens, M., Chavez, M., & Walker, M. K. (2005). 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits coronary vasculogenesis, in part, by reduced endothelial cell responsiveness to angiogenic stimuli, including vascular endothelial growth factor-A. Birth defects research. Part A, Clinical and Molecular Teratology, 73, 440–446.CrossRef
8.
go back to reference Wikenheiser, J., Doughman, Y. Q., Fisher, S. A., & Watanabe, M. (2006). Differential levels of tissue hypoxia in the developing chicken heart. Developmental Dynamics, 235, 115–123.CrossRefPubMed Wikenheiser, J., Doughman, Y. Q., Fisher, S. A., & Watanabe, M. (2006). Differential levels of tissue hypoxia in the developing chicken heart. Developmental Dynamics, 235, 115–123.CrossRefPubMed
9.
go back to reference Wikenheiser, J., Wolfram, J. A., Gargesha, M., Yang, K., Karunamuni, G., Wilson, D. L., et al. (2009). Altered hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies. Developmental Dynamics, 238, 2688–2700.CrossRefPubMed Wikenheiser, J., Wolfram, J. A., Gargesha, M., Yang, K., Karunamuni, G., Wilson, D. L., et al. (2009). Altered hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies. Developmental Dynamics, 238, 2688–2700.CrossRefPubMed
10.
go back to reference Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88, 49–92.CrossRef Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88, 49–92.CrossRef
11.
go back to reference Puri, M. C., Partanen, J., Rossant, J., & Bernstein, A. (1999). Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development, 126, 4569–4580.PubMed Puri, M. C., Partanen, J., Rossant, J., & Bernstein, A. (1999). Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development, 126, 4569–4580.PubMed
12.
13.
go back to reference Olivey, H. E., Compton, L. A., & Barnett, J. V. (2004). Coronary vessel development: The epicardium delivers. Trends in Cardiovascular Medicine, 14, 247–257.PubMed Olivey, H. E., Compton, L. A., & Barnett, J. V. (2004). Coronary vessel development: The epicardium delivers. Trends in Cardiovascular Medicine, 14, 247–257.PubMed
14.
go back to reference Bogers, A. J. J. C., Gittenberger-de Groot, A. C., Poelmann, R. E., Peault, B. M., & Huysmans, H. A. (1989). Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anatomy and Embryology, 180, 437–441.CrossRefPubMed Bogers, A. J. J. C., Gittenberger-de Groot, A. C., Poelmann, R. E., Peault, B. M., & Huysmans, H. A. (1989). Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anatomy and Embryology, 180, 437–441.CrossRefPubMed
15.
go back to reference Tomanek, R. J. (2005). Formation of the coronary vasculature during development. Angiogenesis, 8, 273–284.CrossRefPubMed Tomanek, R. J. (2005). Formation of the coronary vasculature during development. Angiogenesis, 8, 273–284.CrossRefPubMed
16.
go back to reference Ando, K., Nakajima, Y., Yamagishi, T., Yamamoto, S., & Nakamura, H. (2004). Development of proximal coronary arteries in quail embryonic heart: Multiple capillaries penetrating the aortic sinus fuse to form main coronary trunk. Circulation Research, 94, 346–352.CrossRefPubMed Ando, K., Nakajima, Y., Yamagishi, T., Yamamoto, S., & Nakamura, H. (2004). Development of proximal coronary arteries in quail embryonic heart: Multiple capillaries penetrating the aortic sinus fuse to form main coronary trunk. Circulation Research, 94, 346–352.CrossRefPubMed
17.
go back to reference Sugishita, Y., Leifer, D. W., Agani, F., Watanabe, M., & Fisher, S. A. (2004). Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract. Developmental Biology, 273, 285–296.CrossRefPubMed Sugishita, Y., Leifer, D. W., Agani, F., Watanabe, M., & Fisher, S. A. (2004). Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract. Developmental Biology, 273, 285–296.CrossRefPubMed
18.
go back to reference Liu, H., & Fisher, S. A. (2008). Hypoxia-inducible transcription factor-1 alpha triggers an autocrine survival pathway during embryonic cardiac outflow tract remodeling. Circulation Research, 102, 1331–1339.CrossRefPubMed Liu, H., & Fisher, S. A. (2008). Hypoxia-inducible transcription factor-1 alpha triggers an autocrine survival pathway during embryonic cardiac outflow tract remodeling. Circulation Research, 102, 1331–1339.CrossRefPubMed
19.
go back to reference Mehta, V., Peterson, R. E., & Heideman, W. (2008). 2,3,7,8-Tetrachlorodibenzo-p-dioxin exposure prevents cardiac valve formation in developing zebrafish. Toxicological Sciences, 104, 303–311.CrossRefPubMed Mehta, V., Peterson, R. E., & Heideman, W. (2008). 2,3,7,8-Tetrachlorodibenzo-p-dioxin exposure prevents cardiac valve formation in developing zebrafish. Toxicological Sciences, 104, 303–311.CrossRefPubMed
20.
go back to reference Walker, M. K., Heid, S. E., Smith, S. M., & Swanson, H. I. (2000). Molecular characterization and developmental expression of the aryl hydrocarbon receptor from the chick embryo. Comparative biochemistry and physiology. Part C, Pharmacology, Toxicology and Endocrinology, 126, 305–319. Walker, M. K., Heid, S. E., Smith, S. M., & Swanson, H. I. (2000). Molecular characterization and developmental expression of the aryl hydrocarbon receptor from the chick embryo. Comparative biochemistry and physiology. Part C, Pharmacology, Toxicology and Endocrinology, 126, 305–319.
21.
go back to reference Walker, M. K., Pollenz, R. S., & Smith, S. M. (1997). Expression of the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator during chick cardiogenesis is consistent with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced heart defects. Toxicology and Applied Pharmacology, 143, 407–419.CrossRefPubMed Walker, M. K., Pollenz, R. S., & Smith, S. M. (1997). Expression of the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator during chick cardiogenesis is consistent with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced heart defects. Toxicology and Applied Pharmacology, 143, 407–419.CrossRefPubMed
22.
go back to reference Barbosky, L., Lawrence, D. K., Karunamuni, G., Wikenheiser, J. C., Doughman, Y. Q., Visconti, R. P., et al. (2006). Apoptosis in the developing mouse heart. Developmental Dynamics, 235, 2592–2602.CrossRefPubMed Barbosky, L., Lawrence, D. K., Karunamuni, G., Wikenheiser, J. C., Doughman, Y. Q., Visconti, R. P., et al. (2006). Apoptosis in the developing mouse heart. Developmental Dynamics, 235, 2592–2602.CrossRefPubMed
23.
go back to reference Ishimura, R., Kawakami, T., Ohsako, S., Nohara, K., & Tohyama, C. (2006). Suppressive effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on vascular remodeling that takes place in the normal labyrinth zone of rat placenta during late gestation. Toxicological Sciences, 91, 265–274.CrossRefPubMed Ishimura, R., Kawakami, T., Ohsako, S., Nohara, K., & Tohyama, C. (2006). Suppressive effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on vascular remodeling that takes place in the normal labyrinth zone of rat placenta during late gestation. Toxicological Sciences, 91, 265–274.CrossRefPubMed
24.
go back to reference Jones, N., Iljin, K., Dumont, D. J., & Alitalo, K. (2001). Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nature Review: Molecular Cell Biology, 2, 257–267.CrossRef Jones, N., Iljin, K., Dumont, D. J., & Alitalo, K. (2001). Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nature Review: Molecular Cell Biology, 2, 257–267.CrossRef
25.
go back to reference Heid, S. E., Walker, M. K., & Swanson, H. I. (2001). Correlation of cardiotoxity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicological Sciences, 61, 187–196.CrossRefPubMed Heid, S. E., Walker, M. K., & Swanson, H. I. (2001). Correlation of cardiotoxity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicological Sciences, 61, 187–196.CrossRefPubMed
Metadata
Title
Altering HIF-1α Through 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) Exposure Affects Coronary Vessel Development
Authors
Jamie Wikenheiser
Ganga Karunamuni
Eddie Sloter
Mary K. Walker
Debashish Roy
David L. Wilson
Michiko Watanabe
Publication date
01-06-2013
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 2/2013
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-012-9194-7

Other articles of this Issue 2/2013

Cardiovascular Toxicology 2/2013 Go to the issue